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Abstract:

Background:

Identification of diseased patients from primary care based electronic medical records (EMRs) has methodological challenges that
may impact epidemiologic inferences.

Objective:

To compare deterministic clinically guided selection algorithms with probabilistic machine learning (ML) methodologies for their
ability to identify patients with type 2 diabetes mellitus (T2DM) from large population based EMRs from nationally representative
primary care database.

Methods:

Four cohorts of patients with T2DM were defined by deterministic approach based on disease codes. The database was mined for a
set of best predictors of T2DM and the performance of six ML algorithms were compared based on cross-validated true positive rate,
true negative rate, and area under receiver operating characteristic curve.

Results:

In the database of 11,018,025 research suitable individuals, 379 657 (3.4%) were coded to have T2DM. Logistic Regression classifier
was selected as best ML algorithm and resulted in a cohort of 383,330 patients with potential T2DM. Eighty-three percent (83%) of
this cohort had a T2DM code, and 16% of the patients with T2DM code were not included in this ML cohort. Of those in the ML
cohort without disease code, 52% had at least one measure of elevated glucose level and 22% had received at least one prescription
for antidiabetic medication.

Conclusion:

Deterministic cohort selection based on disease coding potentially introduces significant mis-classification problem. ML techniques
allow testing for potential disease predictors, and under meaningful data input, are able to identify diseased cohorts in a holistic way.

Keywords: Electronic Medical Records, Primary Care Database, Machine Learning Algorithm, Diabetes, Type 2 Diabetes, Cohort
Identification.
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1. INTRODUCTION

Recent advances in the design and implementation of large patient-level electronic medical records (EMRs) from
national primary care databases have created opportunities in clinical, epidemiological and public health research [1, 2].
In a typical primary or ambulatory care setting, large volumes of data are generated as patients go through various
phases of treatment. Individual patients’ longitudinal data on demographics, lifestyle, disease and treatment history,
clinical and laboratory parameters, hospitalization statistics, and clinical events are typically organized and stored in a
form of relational database. Such databases present unique challenges in terms of efficient and effective extraction of
data for various investigative interests [3]. One of the challenging aspects in this context is the identification of disease
cohorts for retrospective or prospective clinical epidemiological studies [4, 5].

Diagnostic codes, such as the International Classification of Diseases (ICD) codes or Read codes [6], are generally
used  to  identify  disease  cohorts  from EMRs  [4].  The  reliability  of  diagnosis  coding  for  various  diseases  has  been
extensively examined for many primary care databases including The Health Improvement Network (THIN) database
from the United Kingdom [7 - 9]. However, there are four specific issues in relation to identifying cohorts by diagnostic
codes: (1) differentiating between disease subtypes from high-level codes, (2) overlapping codes of disease subtypes
longitudinally at individual patient level, (3) absence of codes for diseased patients (false negatives), and (4) presence of
disease specific codes for patients without the specific disease (false positives).

With regards to diabetes mellitus (DM), identification and appropriate classification of different types of diabetes in
the  primary  care  databases  are  particularly  challenging  [5,  10  -  13].  These  challenges  border  mostly  on  inaccurate
coding  leading  to  misclassification,  misdiagnosis,  and  undiagnosed  diabetes  [12].  Algorithms  based  on  laboratory,
clinical,  and medication  data  have  thus  been proposed as  tools  for  distinguishing between type  1  diabetes  mellitus
(T1DM) and type 2 diabetes mellitus (T2DM) [10, 14 - 16]. However, the overall accuracy and reliability of derived
disease  cohorts  based  on  diagnostic  codes  can  be  improved  by  implementing  advanced  machine  learning  (ML)  or
statistical data mining techniques and clinically guided cohort selection algorithms that robustly capture comprehensive
patient level information available in the EMRs [4, 5, 12, 13].

Shivade and colleagues (2014) have conducted a systematic review of various techniques used for the identification
of different disease cohorts from different sources of clinical databases [2]. Some of these proposed algorithms have
been criticized for their appropriateness in the context of other studies [17]. While several studies compared or applied
ML techniques to identify T2DM patients, to the best of our knowledge, there is no study that employed an extensive
assessment  of  diagnostic  codes,  deterministic  clinical  selection  algorithms,  and  ML  algorithms  simultaneously  to
identify T2DM cohorts from primary care EMRs.

The aims of this exploratory methodological  study were to (1) explore technical  challenges in the extraction of
disease cohorts, (2) compare the ability of different clinically guided cohort selection algorithms to identify the disease
cohorts,  and  (3)  compare  the  disease  cohorts  identified  by  ML  algorithms  and  clinically  guided  cohort  selection
algorithms using a large nationally representative primary care database from the UK.

2. MATERIALS AND METHODS

In this section, we introduce the primary care database, describe the challenges in identifying cohort of patients with
specific  disease  (i.e.  T2DM),  explain  the  clinically  guided  cohort  selection  algorithms,  and  the  data  mining  and
computational processes leading to comparison of different supervised ML techniques.

2.1. Data Source

Data from The Health Improvement Network (THIN), which is a patient level primary care data from UK was used
in  this  study.  THIN  is  an  ongoing  primary  care  database  of  medical  records  of  anonymized  patients  from  general
practitioners, covers over 600 UK general practices, and has been linked to the hospital episode statistics (HES) and
other statistics from the National of Bureau of Statistics. Longitudinal patient level records have been collected since
1990  and  the  current  version  of  the  database  holds  more  than  13  million  individual  patient  records.  The  patients
included in this database are representative of the UK population by age, gender, medical conditions and death rates
adjusted  for  demographics  and  social  deprivation.  The  accuracy  and  completeness  of  THIN  database  have  been
previously described elsewhere [18, 19]. The THIN database is considered as one of the most comprehensive patient
level databases available globally, and has been extensively used by researchers and government bodies for clinical,
epidemiological and public health related studies [20]. The database contains extensive information on individuals’
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demographic,  clinical,  laboratory,  medications  and  event  history  data.  The  study  protocol  was  approved  by  the
Independent Scientific Review Committee for the THIN database (Protocol Number: 15THIN030) and the Institutional
Review Board of QIMR Berghofer Medical Research Institute.

2.2. Challenges in Identifying Disease Cohort

THIN uses  the  UK’s  standard Read code classification system which is  useful  for  hierarchical  classification of
patients’  specific  circumstances  and  lifestyles,  thereby  enhancing  scalability  and  retrieval  (6).  However,  the  Read
coding  system  is  complex  as  a  disease  or  an  encounter  with  a  general  practitioner  can  be  coded  in  several  ways
including use of existing codes or by creating new user-defined codes [21]. In this way, considerable variation and
inconsistency is introduced into the coding system as observed in the case of DM [11, 14, 22].

2.2.1. Differentiating Between Disease Subtypes

Typically, many diabetes related codes are available for a single patient, some of which are high- level codes (e.g.
C10 -  “Diabetes  mellitus”)  or  disease  related  codes  that  are  unspecific  in  the  description  of  the  diabetes  type  (e.g.
C106.12-“Diabetes mellitus with neuropathy”). Common practice has been to exclude any high level codes [14, 23]
which may lead to underestimation of the disease cohort. When it is impossible to identify disease subtype (type 1 or
type 2 diabetes) from the diagnostic codes, data on surrogate markers (like glutamic acid carboxylase) could be useful,
but such information is not available in THIN database. Nevertheless, combinations of available biomarkers (such as
age, weight or HbA1c) and medication prescriptions have been used to distinguish types of diabetes in some studies [10,
14].

2.2.2. Longitudinally Overlapping Disease Subtypes

Patients  may  have  different  disease  subtypes  coded  longitudinally  as  a  result  of  data  entry  errors  or  biological
progression  of  the  disease.  While  the  former  can  lead  to  any  combinations  of  subtypes,  the  latter  may  result  in
developing  T1DM  from  T2DM  or  T2DM  from  gestational  diabetes.  To  distinguish  between  contradictory  codes,
longitudinal exploratory techniques were applied in some studies [5]. Also, the techniques described above that deal
with unspecific codes may be considered. To address the issue of contradictory diagnostic codes longitudinally, the
following was adopted to distinguish between T1DM and T2DM.

Use of Read codes that uniquely distinguish between T1DM and T2DM.i.
In patients with unspecific codes, or longitudinally overlapping subtypes, the following is used:ii.

If oral antidiabetic drug (ADD) is taken ≥ 2 months, then T2DM.a.
Otherwise, if  age at first  available diagnosis date ≤ 18 years and insulin initiated within 1 year,  thenb.
T1DM.
Otherwise, if age at first available diagnosis date > 18 years and insulin initiated within 3 months thenc.
T1DM.
Else T2DM.d.

Patients with codes for gestational diabetes and other forms of diabetes were not include in this studyiii.

2.2.3. Absence of Codes for Patients with Disease and Presence of Codes for Patients without Disease

Data entry errors such as omissions,  typing, communicating errors and patients’ temporary loss of follow-up in
EMRs usually result in relatively small amount of false positive, and larger numbers of false negative patients identified
by diagnostic  codes.  Earlier  studies  have  addressed  this  complex issue  by  employing deterministic  or  probabilistic
algorithms [2, 15, 16]. We further focus on this challenging aspect by comparing deterministic (clinically guided) and
probabilistic (ML) cohort identification approaches.

2.3. Clinically Guided Cohort Selection Algorithms

Four separate cohorts were created by applying logical, clinically guided algorithms that select patients from those
who have at least one record of Read code for T2DM (Fig. 1). Specifically, the T2DM cohorts were selected on the
basis of available records for:

Selection algorithm 1: T2DM Read code (Cohort 1);i.
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Selection algorithm 2: Lifestyle modification intervention + T2DM Read code (Cohort 2);ii.
Selection algorithm 3: At least one prescription for antidiabetic medication + lifestyle modification interventioniii.
+ T2DM Read code (Cohort 3);
Selection algorithm 4: At least one prescription for antidiabetic medication or lifestyle modification interventioniv.
+ T2DM Read code (Cohort 4).

Selection algorithm 1: T2DM Read code only; Selection algorithm 2: T2DM Read code + lifestyle modification
advice. Selection algorithm 3: T2DM Read code + antidiabetic medication + lifestyle modification advice. Selection
algorithm 4: T2DM Read code + (antidiabetic medication or lifestyle modification advice)

Fig. (1). Flow chart for the selection of type 2 diabetes (T2DM) cohorts by clinically guided algorithms.

2.4. Supervised Machine Learning Techniques

The process of selecting one most appropriate probabilistic algorithm to identify patients with T2DM is described
below.

2.4.1. Feature Selection

THIN database was mined to detect the most frequent medications, comorbidities, laboratory and anthropometric
measurements  among patients  with  T2DM identified on the  basis  of  Read codes.  The resulting 280 variables  were
combined with current clinical considerations, practices and guidelines for T2DM management [24], and 11 potential
disease  predictors  were  obtained  through  iterative  process  (Table  1).  Correlation  based  Feature  Selection  (CFS)
algorithm was applied to determine best of these predictors [25, 26]. This scheme independent attribute subset selection
approach  is  particularly  useful  when  attributes  are  correlated  with  one  another,  and  with  the  class  attribute.  Bi-
directional, forward and backward greedy search methods were applied using 10-fold cross-validation [27] and they all
agreed on the same seven features described in Table 1.

2.4.2. Training Dataset

From the 11,018,025 patients in THIN database, a training dataset of 150,000 instances, containing equal number of
positive and negative representatives was extracted. Positive instances were randomly selected from patients with (1)
available T2DM Read code, (2) at least one year of follow-up, and (3) 18-90 years old at the time of T2DM diagnosis.

All patients with 
valid record

(n=11,018,025)

Individuals with 
any type of DM 

(n=530,948)

No record of DM
(n=10,487,077)

T2DM (Selection algorithm 1) 
n=379,657

Age, mean = 60 years
Male, %     = 55

Exclude :
1. Type 1 Diabetes (n=46,238)
2. Gestational Diabetes (n=15,814)
3. Prediabetes (n=86,800)
4. Other Types (n=2,439)

T2DM (Selection algorithm 3) 
n=197,326

Age, mean = 58 years
Male, %     = 56

T2DM (Selection algorithm 2) 
n=243,597

Age, mean = 59 years
Male, %     = 55

T2DM (Selection algorithm 4) 
n=346,993

Age, mean = 60 years
Male, %     = 55
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Negative instances were also randomly selected from those without Read code for any subtype of DM and at least one
year of follow-up (Fig. (2), training set).

Table 1. Features selected as best T2DM predictors.

– Feature Name Feature Type Selected for ML

1 Two measurements of HbA1c>6% or fasting blood glucose > 7 mmol/l or random blood glucose > 11.1 mmol/l
within 1 year. Binary Yes

2 Any antidiabetic drug prescriptions for at least 6 months. Binary Yes
3 Average BMI. Continuous Yes

4 Hypertension diagnosis or antihypertensive drug use greater or equal to 6 months or beta blockers prescription
for 6 months or more. Binary Yes

5 Chronic kidney diagnosis. Binary Yes
6 Retinopathy or neuropathy diagnosis. Binary Yes
7 Average systolic blood pressure. Continuous Yes
8 Lifestyle modification advice. Binary No
9 Average HbA1c. Continuous No
10 Average random glucose Continuous No
11 Heart failure or myocardial infarction or stroke or coronary artery disease Binary No

Fig. (2). Flowchart of creating dataset for machine learning training, and of dataset for predicting diabetes status.

2.4.3. Classification Algorithm Selection

Keeping  the  selected  subset  of  7  robust  predictors  of  T2DM,  six  classification  algorithms  were  applied  to  the
training set. Ten repeat 10-fold cross-validation was applied to calculate true positive rate (sensitivity), true negative

All patients with 
valid record

(n=11,018,025)

All patients with 
valid record

(n=11,018,025)

No record of DM
(n=10,487,077)

T2DM (Cohort 1)
(n=379,657)

Exclude :
1. Type 1 Diabetes (n=46,238)
2. Gestational Diabetes (n=15,814)
3. Prediabetes (n=86,800)
4. Other Types (n=2,439)

Randomly 
select 75,000
(+ instances)

Follow-up  ≥ 1 yr 
age at diagnosis 18 - 90 years 

(n=350,201)

Randomly select 
75,000

(- instances)

Follow-up ≥ 1 yr 
(n=9,587,202)

Training set
(n=150,000)

Prediction set 
(n=9,937,403)
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rate (specificity), and area under receiver operating characteristic curve (AUC). Percent of correctly classified instances
and  required  central  processing  unit  (CPU)  time  for  training  the  algorithms  were  also  derived.  The  algorithms  for
comparison were: Naïve Bayes [28, 29], Logistic regression [30], Support Vector Machine (SVM) [31, 32], Multilayer
Perceptron (MP) [33], Decision Tree with J48 modification [34], and One Rule [35].

One  Rule  algorithm  performed  significantly  worse.  Except  differences  in  CPU  time,  performance  of  other
algorithms was similar. Among them, Naïve Bayes had lower sensitivity misclassifying approximately 500 additional
patients compared to other approaches. AUC was smaller for SVM and J48, while SVM and MP required significantly
higher CPU time (Table 2). Interestingly, neither body mass index nor blood pressure contributed significantly to any
model. Logistic regression was selected as most appropriate model for predicting T2DM. The model obtained from full
training dataset was applied to all THIN database patients with no record of Read code for diabetes diagnosis other than
T2DM, and with available follow-up for at least one year (Fig. (2), prediction set).

Table 2. Performance of machine learning algorithms on the training dataset.

– Naïve Bayes Logistic Regression Multilayer
Perceptron

Support Vector
Machine

J48
Decision Tree One Rule

Percent correct 95.6 95.9 95.9 95.9 95.9 91.7
TPR 0.98 0.99 0.99 0.99 0.99 0.99
TNR 0.93 0.93 0.93 0.93 0.93 0.84
AUC 0.98 0.98 0.98 0.96 0.96 0.92

CPU time 0.09 3.36 68.03 191.9 1.78 0.21
TPR: True Positive Rate, TNR: True Negative Rate; AUC: Area Under receiver operating characteristic Curve; CPU: Central Processing Unit.

3. RESULTS

The distributions of basic characteristics of patients identified by all four clinically guided algorithms and the ML
algorithm were similar (Table 3). Clinically guided algorithms 1-4 and the ML algorithm resulted in cohorts of 379,657;
243,597; 197,326; 346,993; and 383,330 patients with T2DM respectively. For patients identified by the ML algorithm
who did not have a Read code, the first available date of entry of the significant predictors was used as their date of
diagnosis. At the time of diabetes diagnosis, identified patients were on average 60 years old, 86 kg in weight with 55%
male. The proportions of those who had two elevated glucose level measurements within one year were 75, 86, 90, 79,
and 82% in cohorts identified by selection algorithms 1-4 and ML respectively. With median 11 years of follow-up post
diagnosis, proportions of those who received at least one prescription for antidiabetic medication were 79, 81, 100, 87,
and 75% in cohorts identified by rules 1-4 and ML respectively.

Among the cohort of T2DM patients identified by ML algorithm, 317,979 (83% of 383,330) patients had Read code
for T2DM (Table 4). It is worth noting that 59,678 (16% of 379,657) patients with a record of T2DM Read code were
not selected by ML approach. Almost a fifth (17% of 383,330) of the patients in ML cohort were without a record of
T2DM Read code. Of them, 52% had at least one measure of elevated glucose level and 22% had received at least one
prescription for antidiabetic medication (Table 4).

In order to assess the proportion of patients that remain undetected by the algorithms used in this study, complement
cohort-specific  analysis  was  performed (data  not  shown).  Among patients  not  selected by ML as  T2DM, only  884
patients had at least two elevated glucose measurements (HbA1C > 6% or fasting blood glucose > 7 mmol/l or random
blood glucose > 11.1 mmol/l) within 1 year, compared to 32,039, 106,671, 137,796, and 42,583 patients not selected by
selection algorithms 1-4.

Table 3. Baseline characteristics of T2DM patients identified by selection algorithms and logistic regression classifier (ML).

– Selection Algorithm 1 Selection Algorithm 2 Selection Algorithm 3 Selection Algorithm 4 ML
Patients, n 379,657 243,597 197,326 346,993 383,330
Age at diagnosis (years) α 60 (15) 59 (14) 58 (14) 60 (15) 59 (15)
Age at diagnosis (years) * 61 (50,71) 60 (50,69) 58 (49,67) 60 (50,70) 60 (50,70)
          ≤40 32,644 (9) 19,761 (8) 17,969 (9) 29,701 (9) 71,752 (19)
          41-50 62,656 (17) 43,872 (18) 39,289 (20) 59,608 (17) 58,813 (15)
          51-60 90,464 (24) 62,610 (26) 54,006 (27) 85,587 (25) 84,277 (22)
          61+ 193,893 (51) 117,354 (48) 86,062 (44) 172,097 (50) 168,488 (44)
Male # 208,155 (55) 134,393 (55) 110,178 (56) 191,107(55) 200,447 (52)
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– Selection Algorithm 1 Selection Algorithm 2 Selection Algorithm 3 Selection Algorithm 4 ML
At least one prescription# 300,722 (79) 197,326 (81) 197,326 (100) 300,722 (87) 287,095 (75)
Prescription duration ≥ 6
months# 243,064 (64) 171,800 (71) 171,800 (87) 243,064 (70) 254,255 (66)

RBG (mmol/l) α § 11.5 (5.1) 11.4 (5.1) 12.1 (5.3) 11.6 (5.2) 11.3 95.2)

RBG (mmol/l) α ‡ 9.5 (3.4) 9.4 (3.3) 9.9 (3.4) 9.6(3.4) 9.1 (3.5)

FBG (mmol/l) α § 8.4 (2.3) 8.4 (2.3) 8.9 (2.4) 8.5 (2.3) 8.3 (2.3)

FBG (mmol/l) α ‡ 7.8 (2.1) 7.7 (2.0) 8.0 (2.1) 7.8(2.1) 7.5 (2.1)

HbA1c (%)α § 8.4 (2.1) 8.4 (2.1) 8.7 (2.2) 8.5 (2.2) 8.3 (2.1)

HbA1c (%)α ‡ 7.5 (1.4) 7.5 (1.3) 7.7 (1.3) 7.5(1.4) 7.4 (1.3)

Composite measure# ‡ 283,419 (75) 208,787 (86) 177,689 (90) 272,875 (79) 314,574 (82)

Weight (kg) α § 89.4(20.8) 90.3 (21.0) 91.1 (21.1) 89.6 (20.9) 89.3 (21.0)

Weight (kg) α ‡ 85.0 (19.8) 86.6 (19.9) 87.6 (20.0) 85.5 (19.8) 86.1 (20.6)

BMI (kg/m2) α § 31.6 (6.7) 32.0 (6.7) 32.2 (6.7) 31.7 (6.7) 31.7 (6.8)

BMI (kg/m2) α ‡ 30.2 (6.1) 30.7 (6.1) 31.0 (6.2) 30.4(6.1) 30.7 (6.7)

Normal weight # 22311(12) 15,821 (11) 12,339 (11) 21,108 (12) 24,453 (13)

Overweight # 58,447 (32) 44,283 (32) 35,289 (31) 55,885 (32) 61,846 (32)

Grade 1 obese # 52,465 (29) 41,323 (30) 33,669 (30) 50,423 (29) 55,684 (29)

Grade 2 obese # 27,168 (15) 22,163 (16) 18,497 (16) 26,336 (15) 29,178 (15)

Any CVD# 106,523 (28) 67,011 (28) 51,905 (26) 96,147 (28) 93,703 (24)

CKD# 10,547 (3) 8,035 (3) 4,609 (2) 9,445 (3) 12,404 (3)

Cancer# 24,159 (6) 15,998 (7) 11,084 (6) 21,536 (6) 22,112 (6)

Hypertension# 149,752 (39) 104,916 (43) 79,193 (40) 137,440 (40) 140,341 (37)
Follow-up (years) * 11 (6,17) 10 (6,15) 11 (6,16) 11(6,17) 10 (5,16)
Legend: Selection algorithm 1: Read code only; Selection algorithm 2: Read code and lifestyle modification advice; Selection algorithm 3: Read code
and medication and lifestyle modification advice; Selection algorithm 4: Read code and (medication or lifestyle modification advice); ML: Machine
learned cohort; RBG: random blood glucose; FBG: fasting blood glucose; Composite measure: fasting blood glucose > 7mmol/l or random blood
glucose >11.1 mmol/l or HbA1c >6; BMI: Body Mass Index (kg/m2); Normal: (18.5-24.99), Overweight: (25-29.99); Grade 1 obese: (30-34.99), Grade
2 obese (35-39.99); α: Mean(SD); #: n(%); *: median (Q1,Q3); CKD: Chronic kidney disease ; Any CVD: any cardiovascular disease defined as
occurrence of  angina,  MI,  coronary heart  disease (CHD),  HF,  stroke,  and peripheral  artery disease (PAD) on or  before diagnosis  of  T2DM; §:
measured at diagnosis and ‡: an average over of all available measurements.

Table 4. Baseline characteristics and distribution of glycaemic markers among patients identified by ML.

– Machine Learned T2DM Cohort
(n=383,330)

– With Read Code Without Read Code
Patients # 319,979 (83) 63,351 (17)

Age at diagnosis (years) α 60 (14) 54 (24)
Age at diagnosis (years) * 60 (50, 70) 56 (33, 73)
                    ≤ 40 25,645 (8) 46,107 (73)
                    41-50 56,583 (18) 2,230 (4)
                    51-60 81,262 (25) 3,015 (5)
                    61+ 156,489 (49) 11,999 (19)
Male # 176,568 (55) 23,879 (38)

At least one prescription # 273,272 (85) 13,823 (22)

Prescription duration ≥ 6 months # 241,517 (76) 12,738 (20)

RBG >11.1 mmol/l #, 101,135 (32) 1,471 (2)

FBG > 7 mmol/l# 50,446 (16) 1,695 (3)

HbA1c > 6%# 274,565 (86) 29,793 (47)

Composite measure# 274,565 (86) 29,793 (47)
Legend: RBG: random blood glucose; FBG: fasting blood glucose; Composite measure: fasting blood glucose > 7 mmol/l or random blood glucose
>11.1 mmol/l or HbA1c > 6; *: median (Q1,Q3), #: n (%), α: mean (SD)

(Table 3) contd.....
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4. DISCUSSION

In this study we addressed a number of problems encountered by computer based methods in the complex tasks of
identifying  a  disease  cohort  from  large  EMR  databases.  Specifically,  (1)  we  have  defined  and  discussed  common
technical challenges in differentiating diabetes subtypes, (2) combining clinical, medication and morbidity information
with  database  patterns,  we selected  a  set  of  best  predictors  as  feeds  to  ML algorithms that  can  be  used  to  identify
patients with T2DM in the absence of any disease code, and (3) compared T2DM cohorts identified by clinically guided
selection algorithm and ML algorithm. The results of this study are of particular interest to researchers who work with
THIN database, however methods explored in this study are generalizable for any EMR with different disease coding
systems.

Although  we  have  seen  no  difference  in  distributions  of  basic  characteristics  among  cohorts  obtained  by
deterministic and probabilistic approaches, ML algorithms were found to be superior. With the use of selected features,
we could confirm that 83% of the patients identified by the ML algorithm had a Read code for T2DM (Table 3). Those
without Read code had comparable high risk as identified by the significant predictors. While 25 / 21% of patients with
Read code / Read code + (medication or life style advice) for T2DM did not have at least two elevated measures of
blood glucose within one year, only 18% of ML identified cohort did not have such measures. Among Read code / ML
defined patients without elevated composite glucose measure, 69 / 41% did not receive ADD for at least 6 months. It is
important to note that the patients without a Read code for diabetes are highly less likely to have a 2 elevated blood
glucose measures within one year unless they were known to be diabetic or pre-diabetic.

Five  of  the  six  ML  algorithms  demonstrated  similar  performances  in  the  training-testing  data  sets.  Logistic
regression approach was chosen as the best classifier for THIN database, however different feature patterns within other
EMRs  could  potentially  lead  to  better  performance  of  other  ML  techniques  to  predict  T2DM  cohort.  Tapak  and
colleagues  [36]  reported  SVM  as  the  better  classifier,  while  Mani  and  colleagues  [37]  reported  decision  trees  to
outperform other ML algorithms. In this context it is important to mention that, ML algorithms cannot operate without
meaningful data fed-in (“Garbage in, garbage out” principle). Although the use of different datasets makes it difficult
for direct comparisons, a critical part of ML steps is the feature engineering or selection. Some recent studies have used
large sets of variables associated with diabetes with the aim of enhancing the predictive accuracy [38, 39]. However,
this may be limited by inclusion of irrelevant and redundant variables, and model overfitting in cases where number of
observations are less than number of variables. While earlier studies were primarily based on clinically guided feature
selection, we adopted a more holistic approach initially to identify the data driven candidates as potential predictors of
T2DM  from  the  whole  database.  Combining  clinical  knowledge  and  data  driven  candidate  predictors,  we  ensured
selection of most robust set of 7 predictors. Although selected features were not surprising, we have seen that, BMI,
lifestyle modification advice and hypertension did not contribute to the models, while microvascular complications did.

We have  compared  the  performances  of  six  classification  algorithms  on  a  set  of  150,000  instances,  which  was
reconfirmed to be large enough by assessing the performance curves of several incremental classifiers. Nevertheless,
training dataset was small compared to the whole database; therefore in order to ensure that our results are not prone to
selection bias, we performed same analyses on 2 other randomly selected training datasets and obtained almost identical
results.

Unlike most ML applications that focus on training to ensure best fit for future predictions, in this study, we have
used various techniques to correct available labelling with ultimate goal to improve quality of diseased cohort (Type 2
Diabetes). It would be of great interest to compare ML error, Rule-based error, and human error in terms of predicting
disease from available data. For this task a “gold standard” dataset would consist of random patients whose true disease
state  was  reconfirmed approaching both  clinician  and patient.  We were  not  able  to  conduct  this  task,  as  the  THIN
database contains de-identified patient-level data, which is true for all large EMR databases that are used for research
purposes.  THIN  database  also  does  not  have  data  on  surrogate  markers  that  could  improve  quality  of  the  cohort
identification algorithms. Miscoding between type 1 and type 2 diabetes in the primary care database is not uncommon
[40,  41].  It  is  important  to  mention  that  ML  techniques  may  poorly  distinguish  between  disease  subtypes  without
incorporating additional classification rules. We have excluded patients with other diabetes Read codes from the dataset
on which our ML algorithm was applied. Furthermore, for patients identified as T2DM without Read codes, the ML
techniques are not able to provide exact diagnosis date, therefore requiring incorporation of additional techniques.
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CONCLUSION

Careful investigation of diagnostic codes patterns within the databases is essential prior to conducting analyses on
the  disease  cohort.  Direct  extraction  of  a  disease  cohort  using  diagnostic  codes  may  lead  to  inclusion  of  falsely
diagnosed patients and omitting patients with true disease state. Rule-based techniques represent conservative approach,
which  results  in  minimizing  only  false  positive  cases.  ML techniques  that  minimize  both  false  positives  and  false
negatives cases represent more robust approach. However, ML techniques heavily rely on the meaningful input and use
diagnostic codes for training purposes. Combining human expertise and machine power represent best strategy that
allows  to  test  hypotheses  on  potential  disease  predictors,  lower  human  interventions,  and  to  reduce  the  burden  of
selection bias.

LIST OF ABBREVIATIONS

ADD = Antidiabetic Drug

AUC = Area Under the Curve

BMI = Body Mass Index

CHD = Coronary Heart Disease

CPU = Central Processing Unit

CVD = Cardiovascular Disease

DM = Diabetes Mellitus

EMR = Electronic Medical Record

FBG = Fasting Blood Glucose

GP = General Practitioner

HbA1c = Glycated Haemoglobin

HES = Hospital Episode Statistics

HF = Heart Failure

ICD = International Classification of Diseases

MI = Myocardial Infarction

ML = Machine Learning

MP = Multilayer Perceptron

PAD = Peripheral Artery Disease

RBG = Random Blood Glucose

SD = Standard Deviation

SVM = Support Vector Machine

T1DM = Type 1 Diabetes Mellitus

T2DM = Type 2 Diabetes Mellitus

THIN = The Health Improvement Network

TNR = True Negative Rate

TPR = True Positive Rate

UK = United Kingdom

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study protocol was approved by the Independent Scientific Review Committee for the THIN database (Protocol
Number: 15THIN030) and the Institutional Review Board of QIMR Berghofer Medical Research Institute.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are base of this research.

CONSENT FOR PUBLICATION

Not applicable.



Cohort Identification from Primary Care Database The Open Bioinformatics Journal , 2017, Volume 10   25

CONFLICT OF INTEREST

Sanjoy  K.  Paul  has  acted  as  a  consultant  and/or  speaker  for  Novartis,  GI  Dynamics,  Roche,  AstraZeneca,
Guangzhou  Zhongyi  Pharmaceutical  and  Amylin  Pharmaceuticals  LLC.  He  has  received  grants  in  support  of
investigator  and  investigator  initiated  clinical  studies  from  Merck,  Novo  Nordisk,  AstraZeneca,  Hospira,  Amylin
Pharmaceuticals, Sanofi-Avensis and Pfizer. Ebenezer S. Owusu Adjah, Olga Montvida, and Julius Agbeve. have no
conflict of interest to declare.

ACKNOWLEDGEMENTS

Sanjoy K. Paul conceived the idea and was responsible for the primary design of the study. Ebenezer S. Owusu
Adjah , and Olga Montvida significantly contributed in the study design. Julius Agbeve conducted the primary raw data
extraction.  Ebenezer S.  Owusu Adjah and Olga Montvida jointly conducted the data extraction,  data manipulation,
statistical analyses and developed the first draft of the manuscript. Ebenezer S. Owusu Adjah , Olga Montvida , Sanjoy
K. Paul, and Julius Agbeve contributed to the finalization of the manuscript. Sanjoy K. Paul had full access to all the
data in the study and is the guarantor, taking responsibility for the integrity of the data and the accuracy of the data
analysis.  Ebenezer  S.  Owusu  Adjah  was  supported  by  QIMR  Berghofer  International  Ph.D.  Scholarship  and  The
University of Queensland International Scholarship. Olga Montvida was supported by the Queensland University of
Technology International Scholarship. No separate funding was obtained for this study. Melbourne EpiCentre gratefully
acknowledges the support from the Australian Government’s National Collaborative Research Infrastructure Strategy
(NCRIS) initiative through Therapeutic Innovation Australia and the research project funding from the National Health
and Medical Research Council of Australia (Project Number: GNT1063477). Olga Montvida acknowledges the support
from her associate supervisors Prof. Ross Young and Prof. Louise Hafner.

REFERENCES

[1] Sagreiya  H,  Altman RB.  The  utility  of  general  purpose  versus  specialty  clinical  databases  for  research:  Warfarin  dose  estimation  from
extracted clinical variables. J Biomed Inform 2010; 43(5): 747-51.
[http://dx.doi.org/10.1016/j.jbi.2010.03.014] [PMID: 20363365]

[2] Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to identifying patient phenotype cohorts using electronic health
records. J Am Med Inform Assoc 2014; 21(2): 221-30.
[http://dx.doi.org/10.1136/amiajnl-2013-001935] [PMID: 24201027]

[3] Tate AR, Beloff N, Al-Radwan B, et al. Exploiting the potential of large databases of electronic health records for research using rapid search
algorithms and an intuitive query interface. J Am Med Inform Assoc 2014; 21(2): 292-8.
[http://dx.doi.org/10.1136/amiajnl-2013-001847] [PMID: 24272162]

[4] Kandula S, Zeng-Treitler Q, Chen L, Salomon WL, Bray BE. A bootstrapping algorithm to improve cohort identification using structured
data. J Biomed Inform 2011; 44(Suppl. 1): S63-8.
[http://dx.doi.org/10.1016/j.jbi.2011.10.013] [PMID: 22079803]

[5] Sadek AR, Van Vlymen J, Khunti K, De Lusignan S. Automated identification of miscoded and misclassified cases of diabetes from computer
records. Diabet Med 2012; 29(3): 410-4.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03457.x] [PMID: 21916978]

[6] Read J. The Read clinical classification (Read codes). Br Homeopath J 1991; 80(1): 14-20.
[http://dx.doi.org/10.1016/S0007-0785(05)80418-1]

[7] Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: A
systematic review. Br J Clin Pharmacol 2010; 69(1): 4-14.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03537.x] [PMID: 20078607]

[8] Hammad TA, Margulis AV, Ding Y, Strazzeri MM, Epperly H. Determining the predictive value of Read codes to identify congenital cardiac
malformations in the UK Clinical Practice Research Datalink. Pharmacoepidemiol Drug Saf 2013; 22(11): 1233-8.
[http://dx.doi.org/10.1002/pds.3511] [PMID: 24002995]

[9] Khan NF, Harrison SE, Rose PW. Validity of diagnostic coding within the General Practice Research Database: A systematic review. Br J
Gen Pract 2010; 60(572): e128-36.
[http://dx.doi.org/10.3399/bjgp10X483562]

[10] Stone MA, Camosso-Stefinovic J, Wilkinson J, de Lusignan S, Hattersley AT, Khunti K. Incorrect and incomplete coding and classification
of diabetes: A systematic review. Diabet Med 2010; 27(5): 491-7.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02920.x] [PMID: 20536944]

[11] De Lusignan S, Sadek K, McDonald H, et al. Call for consistent coding in diabetes mellitus using the Royal College of General Practitioners
and NHS pragmatic classification of diabetes. Inform Prim Care 2012; 20(2): 103-13.
[PMID: 23710775]

http://dx.doi.org/10.1016/j.jbi.2010.03.014
http://www.ncbi.nlm.nih.gov/pubmed/20363365
http://dx.doi.org/10.1136/amiajnl-2013-001935
http://www.ncbi.nlm.nih.gov/pubmed/24201027
http://dx.doi.org/10.1136/amiajnl-2013-001847
http://www.ncbi.nlm.nih.gov/pubmed/24272162
http://dx.doi.org/10.1016/j.jbi.2011.10.013
http://www.ncbi.nlm.nih.gov/pubmed/22079803
http://dx.doi.org/10.1111/j.1464-5491.2011.03457.x
http://www.ncbi.nlm.nih.gov/pubmed/21916978
http://dx.doi.org/10.1016/S0007-0785(05)80418-1
http://dx.doi.org/10.1111/j.1365-2125.2009.03537.x
http://www.ncbi.nlm.nih.gov/pubmed/20078607
http://dx.doi.org/10.1002/pds.3511
http://www.ncbi.nlm.nih.gov/pubmed/24002995
http://dx.doi.org/10.3399/bjgp10X483562
http://dx.doi.org/10.1111/j.1464-5491.2009.02920.x
http://www.ncbi.nlm.nih.gov/pubmed/20536944
http://www.ncbi.nlm.nih.gov/pubmed/23710775


26   The Open Bioinformatics Journal , 2017, Volume 10 Owusu Adjah et al.

[12] Seidu S, Davies MJ, Mostafa S, de Lusignan S, Khunti K. Prevalence and characteristics in coding, classification and diagnosis of diabetes in
primary care. Postgrad Med J 2014; 90(1059): 13-7.
[http://dx.doi.org/10.1136/postgradmedj-2013-132068] [PMID: 24225940]

[13] De Lusignan S, Liaw S-T, Dedman D, Khunti K, Sadek K, Jones S. An algorithm to improve diagnostic accuracy in diabetes in computerised
problem orientated medical records (POMR) compared with an established algorithm developed in episode orientated records (EOMR). J
Innov Health Inform 2015; 22(2): 255-64.
[http://dx.doi.org/10.14236/jhi.v22i2.79] [PMID: 26245239]

[14] De Lusignan S, Khunti K, Belsey J, et al. A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: A
pilot and validation study of routinely collected data. Diabet Med 2010; 27(2): 203-9.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02917.x] [PMID: 20546265]

[15] Holt TA, Gunnarsson CL, Cload PA, Ross SD. Identification of undiagnosed diabetes and quality of diabetes care in the United States: Cross-
sectional study of 11.5 million primary care electronic records. CMAJ Open 2014; 2(4): E248-55.
[http://dx.doi.org/10.9778/cmajo.20130095] [PMID: 25485250]

[16] Holt TA, Stables D, Hippisley-Cox J, O’Hanlon S, Majeed A. Identifying undiagnosed diabetes: cross-sectional survey of 3.6 million patients’
electronic records. Br J Gen Pract 2008; 58(548): 192-6.
[http://dx.doi.org/10.3399/bjgp08X277302] [PMID: 18318973]

[17] Magliano DJ, Zimmet P, Shaw J. US trends for diabetes prevalence among adults. JAMA 2016; 315(7): 705.
[http://dx.doi.org/10.1001/jama.2015.16455] [PMID: 26881376]

[18] Blak BT, Thompson M, Dattani H, Bourke A. Generalisability of The Health Improvement Network (THIN) database: Demographics, chronic
disease prevalence and mortality rates. Inform Prim Care 2011; 19(4): 251-5.
[PMID: 22828580]

[19] Denburg  MR,  Haynes  K,  Shults  J,  Lewis  JD,  Leonard  MB.  Validation  of  The  Health  Improvement  Network  (THIN)  database  for
epidemiologic studies of chronic kidney disease. Pharmacoepidemiol Drug Saf 2011; 20(11): 1138-49.
[http://dx.doi.org/10.1002/pds.2203] [PMID: 22020900]

[20] IMS  Health  Incorporated  The  Health  Improvement  Network  (THIN)  database  London:  IMS  Health  Incorporated  2017.  Available  at:
http://www.csdmruk.imshealth.com/index.html

[21] Gray J, Orr D, Majeed A. Use of Read codes in diabetes management in a south London primary care group: Implications for establishing
disease registers. BMJ 2003; 326(7399): 1130.
[http://dx.doi.org/10.1136/bmj.326.7399.1130] [PMID: 12763987]

[22] Rollason W, Khunti K, De Lusignan S. Variation in the recording of diabetes diagnostic data in primary care computer systems: Implications
for the quality of care. Inform Prim Care 2009; 17(2): 113-9.
[PMID: 19807953]

[23] Lycett D, Nichols L, Ryan R, et al. The association between smoking cessation and glycaemic control in patients with type 2 diabetes: A
THIN database cohort study. Lancet Diabetes Endocrinol 2015; 3(6): 423-30.
[http://dx.doi.org/10.1016/S2213-8587(15)00082-0] [PMID: 25935880]

[24] American Diabetes Association. Standards of Medical Care in Diabetes-2015. Diabetes Care 2015; 38(Suppl. 1): S4.
[http://dx.doi.org/10.2337/dc15-S003]

[25] Hall MA. 1999. Correlation-based feature selection for machine learning PhD dissertation. Hamilton, NZ: University of Waikato, 1999

[26] Senliol B, Gulgezen G, Yu L, Cataltepe Z. Fast Correlation Based Filter (FCBF) with a different search strategy. Computer and Information
Sciences. 2008 ISCIS'08 23rd International SymposiumIstanbol, Turkey: IEEE, 2008.

[27] Witten IH, Frank E. Data Mining: Practical machine learning tools and techniques. Berlington, MA: Morgan Kaufmann 2005.

[28] Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Mach Learn 1997; 29(2): 131-63.

[29] John GH, Langley P, Eds. Estimating continuous distributions in Bayesian classifiers. Proceedings of the Eleventh conference on Uncertainty
in artificial intelligence. Berlington, MA: Morgan Kaufmann Publishers Inc.338-45.

[30] Schmidt M, Roux NL, Bach F. Minimizing finite sums with the stochastic average gradient. Math Program 2017; 162(1-2): 83-112.

[31] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]

[32] Wu T-F, Lin C-J, Weng RC. Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 2004; 5: 975-1005.

[33] Ruck DW, Rogers SK, Kabrisky M. Feature selection using a multilayer perceptron. J Neural Netw Comput 1990; 2(2): 40-8.

[34] Loh W-Y. Improving the precision of classification trees. Ann Appl Stat 2009; 3(4): 1710-37.
[http://dx.doi.org/10.1214/09-AOAS260]

[35] Holte RC. Very simple classification rules perform well on most commonly used datasets. Mach Learn 1993; 11(1): 63-90.
[http://dx.doi.org/10.1023/A:1022631118932]

[36] Tapak L, Mahjub H, Hamidi O, Poorolajal J. Real-data comparison of data mining methods in prediction of diabetes in Iran. Healthc Inform
Res 2013; 19(3): 177-85.

http://dx.doi.org/10.1136/postgradmedj-2013-132068
http://www.ncbi.nlm.nih.gov/pubmed/24225940
http://dx.doi.org/10.14236/jhi.v22i2.79
http://www.ncbi.nlm.nih.gov/pubmed/26245239
http://dx.doi.org/10.1111/j.1464-5491.2009.02917.x
http://www.ncbi.nlm.nih.gov/pubmed/20546265
http://dx.doi.org/10.9778/cmajo.20130095
http://www.ncbi.nlm.nih.gov/pubmed/25485250
http://dx.doi.org/10.3399/bjgp08X277302
http://www.ncbi.nlm.nih.gov/pubmed/18318973
http://dx.doi.org/10.1001/jama.2015.16455
http://www.ncbi.nlm.nih.gov/pubmed/26881376
http://www.ncbi.nlm.nih.gov/pubmed/22828580
http://dx.doi.org/10.1002/pds.2203
http://www.ncbi.nlm.nih.gov/pubmed/22020900
http://www.csdmruk.imshealth.com/index.html
http://dx.doi.org/10.1136/bmj.326.7399.1130
http://www.ncbi.nlm.nih.gov/pubmed/12763987
http://www.ncbi.nlm.nih.gov/pubmed/19807953
http://dx.doi.org/10.1016/S2213-8587(15)00082-0
http://www.ncbi.nlm.nih.gov/pubmed/25935880
http://dx.doi.org/10.2337/dc15-S003
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1214/09-AOAS260
http://dx.doi.org/10.1023/A:1022631118932


Cohort Identification from Primary Care Database The Open Bioinformatics Journal , 2017, Volume 10   27

[http://dx.doi.org/10.4258/hir.2013.19.3.177] [PMID: 24175116]

[37] Mani S, Chen Y, Elasy T, Clayton W, Denny J. Type 2 diabetes risk forecasting from EMR data using machine learning. AMIA Annu Symp
Proc 2012. 606-15.

[38] Zheng T, Xie W, Xu L, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med
Inform 2017; 97: 120-7.
[http://dx.doi.org/10.1016/j.ijmedinf.2016.09.014] [PMID: 27919371]

[39] Razavian N, Blecker S, Schmidt AM, Smith-McLallen A, Nigam S, Sontag D. Population-level prediction of type 2 diabetes from claims data
and analysis of risk factors. Big Data 2015; 3(4): 277-87.
[http://dx.doi.org/10.1089/big.2015.0020] [PMID: 27441408]

[40] Thomas  G,  Klein  K,  Paul  S.  Statistical  challenges  in  analysing  large  longitudinal  patient-level  data:  The  danger  of  misleading  clinical
inferences with imputed data. J Indian Soc Agric Stat 2014; 68(2): 39-54.

[41] Khunti  K,  Davies  M,  Majeed  A,  Thorsted  BL,  Wolden  ML,  Paul  SK.  Hypoglycemia  and  risk  of  cardiovascular  disease  and  All-cause
mortality in insulin-treated people with type 1 and type 2 diabetes: A cohort study. Diabetes Care 2015; 38(2): 316-22.
[PMID: 25492401]

© 2017 Owusu Adjah et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a
copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.4258/hir.2013.19.3.177
http://www.ncbi.nlm.nih.gov/pubmed/24175116
http://dx.doi.org/10.1016/j.ijmedinf.2016.09.014
http://www.ncbi.nlm.nih.gov/pubmed/27919371
http://dx.doi.org/10.1089/big.2015.0020
http://www.ncbi.nlm.nih.gov/pubmed/27441408
http://www.ncbi.nlm.nih.gov/pubmed/25492401
https://creativecommons.org/licenses/by/4.0/legalcode

	Data Mining Approach to Identify Disease Cohorts from Primary Care Electronic Medical Records: A Case of Diabetes Mellitus 
	[Background:]
	Background:
	Objective:
	Methods:
	Results:
	Conclusion:

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Data Source
	2.2. Challenges in Identifying Disease Cohort
	2.2.1. Differentiating Between Disease Subtypes
	2.2.2. Longitudinally Overlapping Disease Subtypes
	2.2.3. Absence of Codes for Patients with Disease and Presence of Codes for Patients without Disease

	2.3. Clinically Guided Cohort Selection Algorithms
	2.4. Supervised Machine Learning Techniques
	2.4.1. Feature Selection
	2.4.2. Training Dataset
	2.4.3. Classification Algorithm Selection


	3. RESULTS
	4. DISCUSSION
	CONCLUSION
	LIST OF ABBREVIATIONS
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




