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Abstract:

Background:

Retinitis pigmentosa is an eye hereditary disease caused by photoreceptor death. One of the biggest problem is represented by its
genetic heterogeneity, which has not yet allowed us to found all causative genes and how known ones could influence each other,
leading to retinitis etiopathogenesis.

Objective:

To propose the possible relation between the “functional cluster” of vision dark adaptation, made of five phototransductional genes
(RCVRN, GNB1, GNGT1, GRK7 and ARRB1), and retinitis pigmentosa onset.

Methods:

A bioinformatic approach was exploited: the starting point  was searching through online database as PubMed and EMBASE to
acquire information about the state of art of these gene. This step was followed by an in-silico analysis, performed by softwares as
Cytoscape and Genecards Suite Plus, articulated in three phases: I) identification of common pathways and genes involved in; II)
collection of previously detected genes; III) deep analysis of intersected genes and implication into etiopathogenesis of analzyed
disease.

Results:

The whole in-silico analysis showed that all five gene products cooperate during phototransductional activation, expecially in the
dark adaptation. Interestingly, the most exciting aspect regards the direct relation with several known retinitis pigmentosa causative
genes, in form of protein interactions or other pathway correlations.

Conclusion:

Pathway  analysis  permitted  us  to  hypothesize  a  possible  role  of  analyzed  genes  in  retinitis  pigmentosa  etiopathogenesis,  also
considering the key activity of their encoded proteins. Next step will be validating our hypotesis with functional assays to ensure the
real meaning of this possible association, leading to new potential retinitis pigmentosa causative genes.
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1. INTRODUCTION

Retinitis  pigmentosa  is  a  genetic  disease  involving  the  retina,  the  back  portion  of  the  eye,  photosensitive  and
appointed to focus light  signals  towards the optical  nerve first,  then towards brain,  after  their  transduction into the
electrical  stimuli  [1].  It  is  an  uncommon  condition  affecting  about  1  in  4,000  people  in  the  United  States,  and
1-5/10.000 in Italy [2], with an incidence just slightly lower than other rare genetic pathologies like Cerebral Cavernous
Malformations (CCMs) [3, 4].

1.1. Biological Features of Retinitis Pigmentosa

The  term  “pigmentosa”  deals  with  the  characteristic  appearance,  during  the  advanced  states  of  the  disease,  of
abnormal  areas  of  pigment  into the retina.  Degeneration involves  both eyes and affects  photoreceptors  and Retinal
Pigment  Epithelium (RPE)  [5],  inducing  a  slow  and  progressive  death  in  these  cells  and  leading  to  lose  ability  to
transmit  brain  the  visual  informations.  Photoreceptors  are  particular  light-sensitive  cells:  cones,  so  called  for  their
characteristic  shape,  incorporate  image and color  details,  and are  mainly  localized  in  the  retina  central  part,  called
macula; rods, elongated and tapered, are involved in night vision and low light conditions, as well as in object motion
perception, and are predominantly distributed in the peripheral zone [6]. Thanks to these receptors, for example, we can
realize  the  danger  that  comes  close  to  the  corner  of  the  eye,  even  if  we  are  not  able  to  perceive  the  details.  Rods
represent retinitis first and most involved photoreceptor system (cones are involved in advanced stages of disease, even
if with a currently unknown mechanism): they undergo apoptosis, with a loss rate evidenced by ONL (Outer Nuclear
layer, the retinal layer which contains them) decrease and retinal accumulation of pigment (rhodopsin) [7]. Generally, it
can be assumed that the mere presence of the rods provides survival signals needed to keep “alive” cones.

1.2. Clinical Features of Retinitis Pigmentosa

About the clinical picture, the first symptom is (but not always) the decrease of crepuscular nocturnal visual acuity
(difficulty in driving at night or move in dimly illuminated rooms), until you come to a narrowing of the peripheral
visual field (difficulty in perceiving objects placed laterally or seeing the steps going down the stairs) and, in the final
stage of the disease, the loss of central vision and blindness [8]. It can also be accompanied by cataract or deafness,
events directly related to retinitis pigmentosa. Diagnosis [9] consists of fundus examination and visual field, followed
by visus, electroretinogram and fluorescein angiography.

1.3. Genotypic – Phenotypic Features of Retinitis Pigmentosa

The disease  progression  rate  and  the  age  of  symptom onset  [10]  vary  according  to  many factors,  including  the
pattern of genetic transmission. Today, it is known that a wide range of retinitis pigmentosa forms is caused by about 60
genes (Table 1), the most of them involved in phototransduction, canonical retinoid cycle in rods (twilight vision) and
cones (daylight vision),  inactivation, recovery and regulation of phototransduction cascade, cargo trafficking to the
periciliary  membrane  and  signal  transduction  [11].  A  special  mention  goes  to  oxidative  stress  which,  as  for  other
hereditary pathologies [12], could determine the onset of retinitis pigmentosa [13].

Table 1. Different known forms of retinitis pigmentosa and related causative genes.

RETINITIS PIGMENTOSA INHERITANCE GENE LOCALIZATION

1 Autosomal Recessive
Autosomal Dominant RP1 8q11–q13

2 Autosomal Recessive RP2 Xp11.23

4 Autosomal Recessive
Autosomal Dominant RHO 3q21-q24

7 Autosomal Dominant ROM1, PRPH2 11q13, 6p21.1-cen
9 Autosomal Dominant RP9 7p14.2
10 Autosomal Dominant IMPDH1 7q31.3-q32
11 Autosomal Dominant PRPF31 19q13.4
12 Autosomal Recessive CRB1 1q31-q32.1
13 Autosomal Dominant PRPF8 17p13.3
14 Autosomal Recessive TULP1 6p21.3
15 X - Linked RPGR Xp11.4
17 Autosomal Dominant CA4 17q23
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RETINITIS PIGMENTOSA INHERITANCE GENE LOCALIZATION
18 Autosomal Dominant PRPF3 1q21.2
19 Autosomal Recessive ABCA4 1p22.1
20 Autosomal Recessive RPE65 1p31
25 Autosomal Recessive EYS 6q12
26 Autosomal Recessive CERKL 2q31.2-q32.3
27 Autosomal Dominant NRL 14q11.1-q11.2
28 Autosomal Recessive FAM161A 2p15
30 Autosomal Dominant FSCN2 17q25
31 Autosomal Dominant TOPORS 9p21
33 Autosomal Dominant SNRNP200 2q11.2

35 Autosomal Recessive
Autosomal Dominant SEMA4A 1q22

36 Autosomal Recessive PRCD 17q22

37 Autosomal Recessive
Autosomal Dominant NR2E3 15q23

38 Autosomal Recessive MERTK 2q14.1
39 Autosomal Recessive USH2A 1q41
40 Autosomal Recessive PDE6B 4p16.3
41 Autosomal Recessive PROM1 4p15.3
42 Autosomal Dominant KLHL7 7p15.3
43 Autosomal Recessive PDE6A 5q31.2-q34
44 Autosomal Dominant RGR 10q23
45 Autosomal Recessive CNGB1 16q13
46 Autosomal Recessive IDH3B 20p13
47 Autosomal Recessive SAG 2q37.1
48 Autosomal Dominant GUCA1B 6p21.1
50 Autosomal Dominant BEST1 11q13
51 Autosomal Recessive TTC8 14q32.1
54 Autosomal Recessive C2orf71 2p24.1-p23.1
56 Autosomal Recessive IMPG2 3q11.2
58 Autosomal Recessive ZNF513 2p24.1-p22.3
59 Autosomal Recessive DHDDS 1p36.11
60 Autosomal Dominant PRPF6 20q13.33
62 Autosomal Recessive MAK 6q22
64 Autosomal Recessive C8orf37 8922.1

Bothnia Retinal Distrophy Autosomal Recessive RLBP1 15q26
Juvenile Retinitis Pigmentosa, AIPL1-Related Autosomal Recessive AIPL1 17p13.2

Leber congenital amaurosis 3 Autosomal Recessive SPATA7 14q31.3
Leber congenital amaurosis 13 Autosomal Recessive RDH12 14q23.3

Mutations of these genes may be autosomal recessive (50-60%), dominant (30-40%) [14]; [15], X-linked (5-20%;
the first gene linked to the RP phenotype was discovered twenty-six years ago on the X chromosome) [16] or sporadic
(30%). Although these known genes cause the most of retinitis pigmentosa forms, there are many other ones that are
still  unidentified  nowadays  [11,  17  -  27],  and  several  regulative  aspects  have  to  be  discovered  [28].  This  scenario
suggests that new genes could contribute to the genesis of pathology, and should be investigated in order to improve
treatment for this disabling disease. Our approach is based on an in-silico analysis.

2. MATERIALS AND METHODS

The research was carried out looking for causative genes of eye – related pathologies in the following databases:
PubMed, EMBASE and Web of Science. The following keywords were employed: retinitis pigmentosa, eye disease,
cone  -  rode  dystrophy,  Leber's  congenital  amaurosis,  in  different  combinations.  Cross  references  were  manually
searched when needed. Due to space limits, not all references were quoted here; comprehensive reviews were quoted
instead.

An in-silico analysis was, then, exploited to detect new genes related to retinitis pigmentosa, and it was performed

(Table 1) contd.....
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in  three  different  steps:  I)  identification  of  common  pathways  and  genes  involved  in;  II)  collection  of  previously
obtained genes; III) deep analysis of intersected genes and implication into etiopathogenesis of retinitis pigmentosa. In
details:

Identification of common pathways and genes involved in: in order to detect possible related functions and newI.
related genes, an intersection of known causative genes and a research of common pathways were performed by
Cytoscape  software  (http://www.cytoscape.org)  and  the  three  different  plugins  GeneMANIA
(http://apps.cytoscape.org/apps/genemania), CytoKEGG (http://apps.cytoscape.org/apps/cytokegg) and BinGO
(http://apps.cytoscape.org/apps/bingo).
Collection of previously obtained genes: genes were collected from Kegg pathway database (www.kegg.jp),II.
setting “Homo Sapiens” as organism and “phototransduction”, “retinitis”, “apoptosis”, “rod”, and “vision” as
keywords.
Deep  analysis  of  selected  genes  and  implication  into  etiopathogenesis  of  retinitis  pigmentosa:  all  candidateIII.
genes  have  been  added  to  “Pathway  Analysis”  query  research  of  Reactome  Pathway  Database
(www.reactome.org), BioGraph (www.biograph.be) and STRING (https://string-db.org), in order to establish
relationship  level  between  physiological  and  pathological  functions,  and  between  known  causative  genes.
Finally,  the  job  was  completed  with  the  help  of  Genecards  Suite  Plus,  made  of  GeneAnalytics
(https://ga.genecards.org/),  PathCards  (http://pathcards.genecards.org)  and  VarElect
(http://varelect.genecards.org/), which provided a categorized list of matched tissues, cells, diseases, pathways,
compounds and Gene Ontology (GO) terms to enhance gene set interpretation.

Moreover,  in  order  to  analyze  common nodes  related  to  each  cellular  process  considered,  a  research  of  related
phenotypes was performed in Malacards Human Disease Database (www.malacards.org).

3. RESULTS AND DISCUSSION

3.1. Cytoscape Analysis

Intersection of about 50 causative genes for retinitis pigmentosa by Cytoscape and its plugins gave us about 30
proximal  correlated  genes,  from  witch  we  extracted  5  ones  that  are  involved  into  phototransduction  pathway,
specifically in dark adaptation phases, which result the most altered one in pathological retinitis phenotype [29] (Figs.
1-3).

3.2. Phototransduction and the G-Protein Cascade [30]

In  order  to  understand  at  what  level  the  filtered  5  genes  could  be  involved  in  retinal  function  alterations,  it  is
necessary to explain briefly the main phases of phototransduction. The transduction of light into a neural signal takes
place  in  the  outer  segment  of  photoreceptors:  in  our  study  we  underline  what  happens  in  rods,  which  are  retinitis
pigmentosa  most  involved  cells.  Rod  outer  segment  shows  a  lipid  bilayer  membrane  arranged  as  flattened  “discs”
(optical discs), which is strictly packed with the photopigment rhodopsin. Rhodopsin is a member of the superfamily of
seven-helix,  G-Protein–Coupled  Receptor  proteins  (GPCRs).  Differently  from  chemosensing  GPCRs,  rhodopsin
presents its ligand, the light-absorbing “chromophore” retinaldehyde, prebound. The bound form, 11-cis retinal, acts as
a strong antagonist, holding rhodopsin in its completely inactive state. Absorption of a photon of light isomerizes the
chromophore to the the all-trans configuration, which rapidly triggers a conformational change in the protein, activating
rhodopsin as an enzyme. The conformational change triggered by light causes rhodopsin absorption spectrum to shift
into the UV, so that the pigment loses its visible color and is said to “bleach.” Long after the end of signaling, the
Schiff-base bond that attaches the all-trans retinal is hydrolyzed, permitting the retinoid to dissociate from the apo-
protein, opsin. In addition to rhodopsin (R), which is packed into the disc membrane at high density, three other classes
of proteins cooperate into activation of the photoresponse: 1) an heterotrimeric G - protein (G), called transducin in
rods, with a 1:10 stechiometry to rhodopsin; 2) the cyclic nucleotide phosphodiesterase (PDE), which hydrolyzes cyclic
GMP (cGMP), the second cytoplasmic messenger, present at about 100 units per rhodopsin one; and (3) the Cyclic
Nucleotide – Gated Channels (CNGCs) of the plasma membrane, which control the flow of electrical current into the
outer segment. The first three steps involve proteins associated with the disc membrane (rhodopsin, which is integral,
and the G-protein and PDE, which are connected by acyl groups), whereas the final two involve the cGMP, and its
action at the plasma membrane (Fig. 4 summarize all five steps).

http://www.cytoscape.org
http://apps.cytoscape.org/apps/genemania
http://apps.cytoscape.org/apps/cytokegg
http://apps.cytoscape.org/apps/bingo
http://www.kegg.jp
http://www.reactome.org
http://www.biograph.be
https://string-db.org
https://ga.genecards.org/
http://pathcards.genecards.org
http://varelect.genecards.org/
http://www.malacards.org
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Fig. (1). Intersection pathways of 50 known causative genes of retinitis pigmentosa. This image shows the Cytoscape pathways
analysis, supported by GeneMANIA plug-in, with nodes and edges reflecting relationships between query genes involved in retinitis
pigmentosa  etiopathogenesis.  Edge  colors:  Co-expression  (light  purple),  physical  interaction  (antique  pink),  genetic  interaction
(green), shared protein domains (golden yellow), pathway (light blue), predicted (orange) and common function (grey).

Fig.  (2).  Five  genes  extracted  from the  whole  intersection  of  fifty  causative  ones,  with  the  common  feature  of  involvement  in
phototransduction. This figure shows the most relevant pathway common to five clustered genes, highlighting the importance of
phototransduction function.
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Fig. (3). BinGO particular of five genes in exam. Graph evidences the close relationship between them and physiological activities of
vision ones (most of which included into fifty causatives of retinitis pigmentosa, in comparison with Fig. 3).

3.3. The Five Genes “Functional Cluster”: RCVRN, GNB1, GNGT1, GRK7 and ARRB1

RCVRN: this gene encodes a member of the recoverin family of neuronal calcium sensors, which contains three
calcium-binding EF-hand domains. It may delay phototransduction cascade termination in the retina by blocking the
phosphorylation of photo-activated rhodopsin [31, 32]. Recoverin may be the antigen responsible for cancer-associated
retinopathy [33].

GNB1 and GNGT1: heterotrimeric guanine nucleotide-binding proteins (G proteins), which transduce extracellular
signals received by transmembrane receptors to effector proteins [34]. They are membrane bound GTPases that are
linked to 7-TM receptors.  Each G protein contains an α-,  β-  and γ-subunit  and is  bound to GDP in the “off” state.
Ligand-receptor  binding  results  in  detachment  of  the  G  protein,  switching  it  to  an  “on”  state  and  permitting  Gα

activation of second messenger signalling cascades. Transducin is one of these proteins, found specifically in rod outer
segments, where it mediates the activation of a cyclic GTP-specific guanosine monophosphate phosphodiesterase by
rhodopsin  [35].  GNB1  encodes  a  β  subunit,  while  GNGT1  the  gamma  one  [36,  37].  The  α  subunit  is  encoded  by
GNAT1 gene. The β and γ chains are required for the GTPase activity, for replacement of GDP by GTP, and for G
protein-effector interaction (provided by RefSeq, Sep 2013).

GRK7: This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase
subfamily of the Ser/Thr protein kinase family (GRK) [38]. It is a retina-specific kinase involved in the shutoff of the
photoresponse and adaptation to changing light conditions via cone opsin phosphorylation, including rhodopsin (RHO)
[39]. It is believed that the movements of intracytoplasmic loop of activated RHO are responsible for the activation of
the GRK7, in a way similar to GRK1 [40] (Fig. 5)).
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Fig. (4). Phototransduction steps. 1) activation of the receptor protein in rods, that is rhodopsin (1 photon → 1 rhodopsin); 2) the
activated receptor  protein  stimulates  the  G-protein  transducin,  with  GTP converted to  GDP in  the  process  (1  rhodopsin  → 100
transducins); 3) in turn, activated transducin activates the effector protein phosphodiesterase, converting cGMP to GMP (1 transducin
→ 100 PDE/s); 4) Falling concentrations of cGMP cause the transduction channels to close, decreasing Na+ current (1 PDE → 1000
GMP/s).
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Fig. (5). Molecular mechanisms of GRK1 activation. GRK1 is a membrane – associated enzyme that has low affinity for Rho. After
photoactivation, due to conformational changes in the receptor, GRK1 forms a complex with Rho* by associating with the secondo
and third cytoplasmic loops of the receptor. According to one model, GRK1 becomes activated, dissociates, and phosphorilates the C
- terminal region of many Rho. According to a second model, GRK1 remains bound and phosphorilates the nearby C – termini of
Rho and Rho* at Ser334, Ser338 or Ser343.

ARRB1:  Members  of  arrestin/beta-arrestin  protein  family  are  thought  to  participate  in  agonist-mediated
desensitization of G-protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as
hormones, neurotransmitters, or sensory signals [41]. Arrestin beta 1 is a cytosolic protein and acts as a cofactor in the
beta-adrenergic receptor kinase (BARK) mediated desensitization of beta-adrenergic receptors. During homologous
desensitization, beta-arrestins bind to the GPRK-phosphorylated receptor and sterically preclude its coupling to the
cognate G – protein (Fig. 6); the binding appears to require additional receptor determinants exposed only in the active
receptor conformation [42]. The beta-arrestins target many receptors for internalization by acting as endocytic adapters
(CLASPs, clathrin-associated sorting proteins) and recruiting the GPRCs to the adapter protein 2 complex 2 (AP-2) in
clathrin-coated pits (CCPs). However, the extent of beta-arrestin involvement appears to vary significantly depending
on the receptor, agonist and cell type. Internalized arrestin-receptor complexes traffic to intracellular endosomes, where
they remain uncoupled from G-proteins [43].  Beta-arrestins function as multivalent adapter proteins that can act as
signaling scaffold for MAPK pathways, like several other proteins as CCM proteins [44, 45], in the so-called beta-
arrestin signalosomes [46]. Moreover, they can be involved in IGF1-stimulated AKT1 signaling leading to increased
protection from apoptosis, in activation of the p38 MAPK signaling pathway and in actin bundle formation, in F2RL1-
mediated cytoskeletal rearrangement and chemotaxis, and in AGTR1-mediated stress fiber formation by acting together
with GNAQ to activate RHOA [47].

3.4. Common Pathways and Possible Involvment in Retinitis Pigmentosa

3.4.1. Reactome Analysis

As highlighted by the pathway database Reactome, all  five gene products cooperate during phototransductional
activation  (Fig.  7),  expecially  in  the  dark  adaptation,  as  confirmed  by  KEGG  (Fig.  8).  In  darkness,  the  G  protein
transducin (Gt)  is  attached to the disk membrane surface with a GDP bound to it  and it  is  inactive.  Photoactivated
rhodopsin (R*) catalyzes the exchange of GTP (present in a higher concentration than GDP) for GDP bound to Gt.
Upon GTP/GDP exchange, Gt is released from R* and the Gtα with GTP bound (GNAT1 GTP) dissociates from Gtβ-Gtγ

subunits  (GNB1:GNGT1).  This  mechanism was deciphered from bovine experiments  [48].  R* proceeds to activate
additional Gt molecules, making this reaction the first amplification step in the phototransduction cascade. A single
activated rhodopsin molecule activates tens of Gt molecules. R* must be deactivated to terminate the single photon
response, and it happens after R* binds a rhodopsin kinase family member (as GRK7), a serine/threonine protein kinase
[49]. GRK is activated by R* whereupon it phosphorylates R* at multiple serine and threonine sites (six in total) on its
C terminus. Increasing phosphorylation progressively reduces the rate at which R* can activate transducin, but complete
deactivation occurs only after arrestin (ARRB1) binds to and sterically caps R* [50]. A substantial fraction of GRK is
bound to recoverin (RCVRN) in darkness, when internal Ca2+ levels are high (Fig. 9).
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Fig. (6). Arrestin molecular mechanism. First, it binds to the cytoplasmic tip of the phosphorilated receptor, occluding the binding
site for the heterotrimeric G – protein, preventing its activation (desensitization). Second (not in figure), arrestin links the receptor to
elements of the internalization complex, clathrin and its adaptor AP2, which promote receptor mediated endocytosis and subsequent
transport to endosomes.

Fig. (7). Reactome diagram of metabolic pathway involving five analyzed genes. Figure represents biochemical pathways of five
selected genes, from Reactome database. Legend is present on the right.
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Fig. (8). KEGG scheme of phototransduction reactions during dark and light adaptation. The whole phototransduction reactions
could be divided in two main phases, regarding dark and light adaptation, and involving selected genes. During phototransduction,
photoreceptor  cells  convert  light  into  electrical  signals.  The  vertebrate  cascade  starts  with  the  absorption  of  photons  by  the
photoreceptive pigments, the rhodopsins, isomerizing 11-cis-retinal to all-trans-retinal and inducing a structural change that activates
the opsin. Such biochemical reaction triggers hydrolysis of cGMP by activating a transducinphosphodiesterase 6 (PDE6) cascade,
resulting in membrane cGMP-gated cation channels (CNG) closure. This event implies photoreceptor membrane hyperpolarization,
modulating the release of neurotransmitters to downstream cells. Recovery from light involves photolyzed rhodopsin phosphorilation
by rhodopsin kinase (RK) and subsequent capping off by arrestin. Finally, GTP-binding transducin alpha subunit is deactivated by
RGS9.

RCVRN is an EF-hand protein [50] that functions as a myristoyl switch. With Ca2+ bound, the myristoyl group is
exposed to attach RCVRN to the membrane. When Ca2+ levels drop with light exposure, Ca2+ dissociates from RCVRN
and GRK is released. Higher levels of free GRK1 accelerate the phosphorylation and shutoff of photoexcited rhodopsin
(R*). However, this feedback mechanism proceeds too slowly to impact the single photon response that was responsible
for causing the fall in Ca2+. Instead, it operates during light adaptation, where the light-induced fall in Ca2+ primes the
rod to release GRK1 to act after subsequent photoisomerizations of rhodopsin. RCVRN also serves as a Ca2+ buffer
within the rod outer segment.
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Fig. (9). Dark adaptation mediated by selected five genes. Phototransductional activation with dark adaptation is mediated by five
clustered  genes  (adapted  from  Reactome).  R*  (here  called  MII)  catalyzes  GDP/GTP  exchange  (a),  triggering  GNAT1  –  GTP
complex, which binds and activates PDE6 (b). GRK (here GRK1) inhibition by recoverin promotes such activation (c).

3.4.2. BioGraph Analysis

Thanks to BioGraph web service, we could conjecture how these genes should be involved into etiopathogenesis of
retinitis pigmentosa. All five analyzed genes share annotation or pathways with already known causative ones: in detail,
they are TULP1 (required for normal photoreceptor function and for long-term survival of photoreceptor cells, interacts
with  cytoskeleton  proteins  and  may  play  a  role  in  protein  transport  of  these  cells),  PROM1  (during  early  retinal
development acts as a key regulator of disk morphogenesis; it is also involved in regulation of MAPK and Akt signaling
pathways), RP1 (encoding a MAP needed for the correct stacking of disc in the outer segment of photoreceptor), RPGR
(guanine-nucleotide  releasing  factor,  which  plays  a  role  in  ciliogenesis  and  in  intraflagellar  transport  processes  by
regulating actin stress filaments and cell contractility), CNGA1 (the encoded protein can be activated by cyclic GMP
which leads to an opening of the cation channel and thereby causing a depolarization of rod photoreceptors), GUCA1B
(calcium-binding protein that activates photoreceptor guanylate cyclases; this Ca2+-sensitive regulation of GC is a key
event in recovery of the dark state of rod photoreceptors following light exposure), PDE6A-B (these genes encode alfa
and beta subunits of the phosphodiesterase 6 holoenzyme, which regulate the rod cGMP concentration, an important
regulator  of  cell  membrane  current),  and  CNGB1  (subunit  of  cyclic  nucleotide-gated  channels,  nonselective  cation
channels, involved in the regulation of ion flow into the rod photoreceptor outer segment (ROS) in response to light-
induced  alteration  of  cGMP  intracellular  levels).  GNGT1  shares  many  targets  of  GNB1,  but  also  shows  a  protein
interaction with RHO and involvement in eye photoreceptor cell development and light signal transduction, annotating
with RGR  (putative retinal G-protein coupled receptor for all-trans- and 11-cis-retinal;  it  binds preferentially to the
former and may catalyze the isomerization of the chromophore by a retinochrome-like mechanism). RCVRN stands for
the calcium sensitive guanylate cyclase activator activity, requested for its fine molecular regulation. GRK7 evidenced a
protein interaction with PDE6D (another subunity of the PDE complex, that also binds to prenyl groups of proteins to
target them to subcellular organelles called cilia) and annotation with genes appointed to vision, FAM161A (involved in
ciliogenesis) and SPATA7 (required for the stable assembly and localization of the ciliary RPGRIP1 protein complex in
the connecting cilium). ARRB1, instead, shows a fundamental protein interaction with SAG (member of arrestin/beta-
arrestin protein family, is a major soluble photoreceptor protein that is involved in desensitization of the photoactivated
transduction cascade) and DPY30, component of a multiprotein histone methyltransferase complex, which regulates the
causative PRPF3 gene (participates in pre-mRNA splicing). Summarizing, the five clustered genes are mainly involved
in phototransduction, eye photoreceptor cell development and calcium sensitive guanylate cyclase activator activity
pathways, medianting interactions with light signal transduction key proteins. Alterations in these processes could lead
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to retinitis pigmentosa (Fig. 10).

Fig.  (10).  BioGraph  adapted  branched  schemes  of  relationship  between  five  clustered  gene  and  their  connection  with  retinitis
pigmentosa. This graph represents the connection between GNB1 (a), GNGT1 (b), RCVRN (c), GRK7 (d) and ARRB1 (e) and retinitis
pigmentosa (in form of gene, localization and shared functions).
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3.4.3. STRING Analysis

All  these cooperative genes  are  also related on String phototransductional  pathway graphical  scheme (Fig.  11),
which highlights how they give rise to “functional clusters”, units that support the same biological activity. The five
analyzed genes result are mainly involved in G – protein signaling modulation, as evidenced by interaction with G –
protein  subunits  and  signaling  regulators  families,  together  with  phosphoducin  –  like  protein  (PDCL),  G –  protein
signaling modulator 1 (GPSM1) and adrenoceptor beta 2 (ADRB2). Moreover, the connection between the considered
five gene cluster and cyclic nucleotide gated channel family seems to be very interesting, as proven by interactions with
cyclic nucleotide gated channel family proteins. It is evident that all considered genes, directly or not, share the final
target RHO, which presents the highest frequency of autosomal dominant retinitis pigmentosa known mutations found
until today (Fig. 12).

Fig. (11). STRING connection pathway. It results evident how close is the interactions between five genes in exam and rhodopsin
one. Colored points and lines represent interaction types: green for “activation”, blue for “binding”, light blue for “phenotype”, black
for  “reaction”,  red  for  “inhibition”,  dark  purple  for  “catalysis”,  light  purple  for  “post-translational  modification”,  yellow  for
“transcriptional regulation”.
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Fig. (12). Pie chart frequencies of main autosomal dominant retinitis pigmentosa mutations in causative genes. The highest frequency
of retinitis pigmentosa causative mutation is distributed in still unknown genes, while RHO results at first place of known causative
genes, with about 28% of frequency representation.

3.4.4. GeneAnalytics and VarElect Analyses

To  further  substantiate  the  possible  relation  between  examined  genes  and  retinitis  pigmentosa,  we  used  the
Genecards Plus Suite, made of several modules. The Gene Analytics gave us positive scores about tissue (eye = 0.83)
and cells (retinal cells = 1.35 and mature rod cells = 0.91) where their encoded proteins are expressed. Based on the
function, other useful scores came from gene ontology biological processes (phototransduction = 25.14, regulation of
rhodopsin mediated signal pathway = 24.71, signal transduction = 19.41) and from superpathways filtered by Reactome
itself,  Qiagen,  GeneGo,  BioSystems,  KEGG  and  PharmGKB  (the  phototransduction  cascade  =  43.08  and  diseases
associated  with  visual  transduction  =  19.97).  The  last  evidence  from  Gene  Analytics  regards  compounds  or  small
molecules related to query gene set, in order to deliver possible therapeutic approaches against certain pathology: in our
case, farnesyl (19.03), guanosine monophosphate (10.33), guanosine diphosphate (9.60) and metarhodopsin II (9.44)
have the best scores. The other main module of the suite is VarElect, which associates a phenotype to a list of candidate
genes. The five query genes were correlated with retinitis pigmentosa phenotype, and results were encouraging: three of
them (GNB1,  GNGT1  and RCVRN)  were  already objects  of  study in  query disease  researches,  while  the  other  two
(GRK7 and ARRB1) have never been associated until now.

CONCLUSION

In  this  work,  we  tried  to  relate  a  “functional  cluster”  made  of  five  genes  (GNB1,  GNGT1,  GRK7,  RCVRN  and
ARRB1)  with retinitis  pigmentosa pathology.  We chose this  group of  genes due to  their  correlation with dark light
adaptation, the most severe consequence of query disease. Pathway analysis, with the help of many qualified online
databases, permitted us to hypothesize their possible role into etiopathogenesis of retinitis pigmentosa, also considering
the key activity of  their  encoded proteins (rhodopsin kinase and transducin with own inhibitors).  Next step will  be
validating our hypothesis with functional assays to ensure the real meaning of this possible association, with the final
purpose of discovering new retinitis pigmentosa causative genes. Such proposal will be very useful to develop new
personalized diagnostic approaches, followed by new therapeutic ones.
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