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Abstract:

Aims:

Present a novel machine learning computational strategy to predict the neuroprotection potential of nicotine analogs acting over the behavior of
unpaired signaling pathways in Parkinson's disease.

Background:

Dopaminergic  replacement  has  been  used  for  Parkinson’s  Disease  (PD)  treatment  with  positive  effects  on  motor  symptomatology  but  low
progression  and  prevention  effects.  Epidemiological  studies  have  shown  that  nicotine  consumption  decreases  PD  prevalence  through
neuroprotective  mechanisms activation associated with  the  overstimulation of  signaling pathways (SP)  such as  PI3K/AKT through nicotinic
acetylcholine receptors (e.g α7 nAChRs) and over-expression of anti-apoptotic genes such as Bcl-2. Nicotine analogs with similar neuroprotective
activity but decreased secondary effects remain as a promissory field.

Objective:

The objective of this study is to develop an interdisciplinary computational strategy predicting the neuroprotective activity of a series of 8 novel
nicotine analogs over Parkinson's disease.

Methods:

We present a computational strategy integrating structural bioinformatics, SP manual reconstruction, and deep learning to predict the potential
neuroprotective activity of 8 novel nicotine analogs over the behavior of PI3K/AKT. We performed a protein-ligand analysis between nicotine
analogs and α7 nAChRs receptor using geometrical conformers, physicochemical characterization of the analogs and developed manually curated
neuroprotective datasets to analyze their potential activity. Additionally, we developed a predictive machine-learning model for neuroprotection in
PD through the integration of Markov Chain Monte-Carlo transition matrix for the 2 SP with synthetic training datasets of the physicochemical
properties and structural dataset.

Results:

Our model was able to predict the potential neuroprotective activity of seven new nicotine analogs based on the binomial Bcl-2 response regulated
by the activation of PI3K/AKT.

Conclusion:

Hereby, we present a robust  novel strategy to assess the neuroprotective potential  of  biomolecules based on SP architecture.  Our theoretical
strategy can be further applied to the study of new treatments related to SP deregulation and may ultimately offer new opportunities for therapeutic
interventions in neurodegenerative diseases.
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1. INTRODUCTION

Parkinson’s  Disease  (PD)  is  the  second  most  common
neurodegenerative  disorder,  mainly  affecting  the  population
over 60 years of age [1]. As a complex multifactorial disease,
PD is caused by the accumulation of unfolded proteins, genetic
predisposition,  mitochondrial  dystrophies,  epigenetic
imbalance  and  environmental  factors  that  increase  the
degeneration of dopaminergic neurons in the substantia nigra
of  the  brain  [2  -  7].  Traditional  approaches  of  dopaminergic
replacement,  such  as  levodopa,  carbidopa,  and  dopamine
agonists  (apomorphine,  amantadine,  cabergoline,  pergolide,
etc)  restore direct  or indirect  dopaminergic supply,  modulate
dopaminergic  neuron  activity  and  stimulate  postsynaptic
receptors  [2,  8].  However,  classical  therapeutics  are  directed
towards treating PD symptoms (dyskinesia, motor fluctuations
and systemic complications) in exchange for reducing disease
progression coupled with a lack of long-term efficacy [1, 2, 9].

Epidemiological  studies  demonstrated  an  inverse
association between cigarette smoking and PD risk [10 - 12].
Pre-clinical studies using in vivo and in vitro models showed
that  nAChR agonists  protect  nigrostriatal  and other  neuronal
cell  populations  against  cytotoxic  damage,  suggesting  a
neuroprotective activity [12 - 15]. nAChRs are ligand-gated ion
channels  capable  to  respond  to  several  ligands  such  as
acetylcholine  and  nicotine  [16].  Classified  between  neuronal
and muscle subtype receptors, only one pentameric subtype of
nAChR  (2α1,  β1,  γ/ε,  δ)  has  been  reported  for  muscles
compared with the 12 subtypes in  the neural  system (α2–10,
β2–4).  Neuroprotective  activity  of  nicotine  and  nicotine
agonists has been linked to the activation of α7-nAChRs [14,
17].  Highly  expressed  in  dopaminergic  neurons,  α7-nAChRs
activation increases calcium flow and activates downstream SP
such  as  ERK/MAPK,  JAK2/STAT3,  calmodulin  and
PI3K/AKT.  SP  activation  has  been  related  with  neuronal
survival, synaptic plasticity and decreased apoptosis due to the
overexpression of cell survival proteins such as Bcl-x, CREB
and Bcl-2 [17 - 19]. In parallel, tumor suppressor p53 directly
regulates  cell  survival  by  modulating  Bax:Bcl-2  expression,
influencing  the  apoptotic  fate  of  a  cell  in  response  to  stress
[20]. Bcl-2 has been suggested as a candidate for the nicotine-
mediated  neuroprotection  activity  in  neurons.  For  example,
nicotine  induces  the  phosphorylation of  Bcl-2  through either
protein kinase C (PKC) and the MAPKs ERK1 and ERK2 or
through  PI3K-induced  phosphorylation  of  AKT  causing  the
inhibition  of  apoptosis  in  neuronal  cultures  [14,  17,  18,  21  -
25]. Additionally, overexpression of Bcl-2 Prevents neuronal
death in Mus musculus models and Bcl-2 inhibition results in
viability  loss  in  dopaminergic  cells  through  the  induction  of
caspase-3 [26, 27].

2. METHODS

In this sense, nAChRs agonists can reduce secondary
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effects  of  classical  therapies  such  as  levodopa-induced
dyskinesia,  increased  dopamine  release  and  improve
cytochrome  P450  activity  [28,  29].  Nicotine  usage  as  a
pharmacological  agent  is  limited  considering  toxicity  and
addiction  [30].  Nicotine  analogs  retaining  neuroprotective
activity, but reducing toxicity and addiction offer an excellent
pharmacological  alternative  in  PD  [31  -  35].  We  have
previously  the  antioxidant  potential  of  two  nicotine  analogs
against  rotenone-induced  ROS  generation  in  a  PD  in  vitro
model  founding  that  10  µM  of  (E)-Nicotinaldehyde  O-
Cinnamyloxime  was  able  to  reduce  superoxide  anion  and
hydrogen  peroxide  production  in  neuronal  SH-SY5Y  cells
treated with rotenone for 24h [10]. Consistently, other studies
showed  that  nicotine  analogs  decrease  superoxide  anion
generation and oxidative stress in rodents Mus musculus  and
Rattus  rattus,  as  well  as  primates  Macaca  fascicularis  and
Saimiri  sciureus  through  the  activation  of  α7  nAChRs  and
PI3K/AKT [17,  35  -  38].  Computational  methods  have  been
used to infer the activity of candidate molecules but, due to the
intrinsic PD complexity, is important to improve drug scanning
efficiency by integrating structural and systemic data [39 - 40].
The development of holistic computational methodologies for
SP and their modulatory mechanisms can lead to the discovery
of new pharmacological agents [40, 41]. In this aspect, the use
of Artificial neural networks (ANN) have been previously used
in  a  simplified  model  of  the  Toll-like  receptor  signaling
pathway, and the PI3K/AKT pathway in the context of cancer
[42]. Nevertheless, the absence of integrative modeling in PD
has  led  to  a  decrease  in  drug  discovery  efficiency.  In  the
present  study,  we  predicted  the  effect  of  8  novel  nicotine
analogs  as  possible  neuroprotective  agents  acting  on
PI3K/AKT by integrating structural bioinformatic methods, SP
manual reconstruction and ANN (Fig. 1).

3. RESULTS

3.1. Geometry and Structure Analysis

Structures  of  (3R,5S)-1,  methyl-5-(piridine-3-yl)  pirro-
lidine-3-ol (A1), 3-(1,3-dimethyl-4,5-dihidro-1h-pirazole-5-yl)
piridine (A2),  3-(3-methyl-4,5-dihidro-1h-pira-zole-5-yl)  piri-
dine (A3),  3(((2S-4R)-1,4-dimethylpirrolidine-2-yl))  (A4),  3-
((2S,4R)-4-(fluoromethyl)-1-methylpirrolidine-2-il)piridine
(A5),  3-((2S,4R)-4-methoxi-1-methylpirrolidine-2-yl)  piridine
(A6),  3-((2S,3S)-1,3-dimethylpirrolidine-2-yl)  piridine  (A7)
and 5-methyl-3-(piridine-3-yl)-4,5-dihidroisoxazole (A8) were
used for subsequent methods (Table 1). The neutral molecules
optimized  at  the  B3LYP/631G  level  and  conformationally
analyzed  at  the  PM6  level  showed  rotations  around  C1-
C1´bonds  and  bonds  between  radical  atoms  and  rings.  The
minimum  energy  geometry  found  was  used  as  input  for
subsequent  analysis  and  the  corresponding  energy  values
(kJ/mol) for the local minimum geometrical conformers were
reported in Table 1. Geometrical rotations around the bonds of
the rings and the radicals were categorized as true minima of
the  potential  energy  of  the  surface  based  on  the  absence  of
imaginary vibrational frequencies.
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Fig.  (1).  Diagrammatic  workflow  of  the  computational  strategy  for  ligand  prediction  over  SP  architecture.  The  pipeline  for  the  strategy
implementation uses a receptor crystallographic structure, structure of the unknown ligands, known ligands data interacting with the receptor of
interest and SP architecture. The SP must interact with the receptor by signaling cascade of secondary messengers and be triggered by the interactions
of known and unknown ligands with the receptor. A) Input of biological information B) Computational methods to predict the activity of a series of
ligands. Subgroups of computational methods aim to represent biological stages of the SP response to external ligands: 1) Structural validation,
energy minimization, conformational search and molecular docking stand as protein ligand complex and 2) Markov Chain Monte Carlo and Artificial
neural network as methods to generate a quantitative model with SP architecture embedded. Physico-chemical featuring, dimensional minimization
and training/testing datasets were implemented to integrate the structural data with the systemic model of the SP and the machine learning model.

Table 1. Nicotine and nicotine analogs studied. 2D structure of each one of the ligands and energy values of each compound
(kJ/mol) are presented. Structural similarity with nicotine was based upon energy values and the pyridine and pyrrolidine
rings present in their structures. Nicotine analogs have modifications across the pyrrolidine ring of the nicotine backbone
focusing in the addition of methylations, hydroxyl groups or highly electronegative elements. All the corresponding structures
were provided by the laboratory of chemistry at the Pontificia Universidad Javeriana. Further analysis of all nicotine analogs
will reference the ID provided ranging from A1 to A8.

Molecule IUPAC Name Structure Minimum Energy Value (kJ/mol)
Nicotine Nicotine 105.636

A1 (3R,5S)-1, methyl-5-(piridine-3-yl) pirrolidine-3-ol 199.330

A2 3-(1,3-dimethyl-4,5-dihidro-1h-pirazole-5-yl) piridine 120.593

A3 3-(3-methyl-4,5-dihidro-1h-pirazole-5-yl) piridine 82.944
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Molecule IUPAC Name Structure Minimum Energy Value (kJ/mol)
A4 3(((2S-4R)-1,4-dimethylpirrolidine-2-yl)) 130.095

A5 3-((2S,4R)-4-(fluoromethyl)-1-methylpirrolidine-2-il)piridine 111.131

A6 3-((2S,4R)-4-methoxi-1-methylpirrolidine-2-yl) piridine 216.058

A7 3-((2S,3S)-1,3-dimethylpirrolidine-2-yl) piridine 127.645

A8 5-methyl-3-(piridine-3-yl)-4,5-dihidroisoxazole 174.670

3.2.  Nicotine  Analogs  Docking  and  α7-nAChR  Binding
Interaction

α7  nAChR  has  5  active  pockets  located  at  each  subunit
interactions  of  the  protein  complex.  Considering  that  the
homopentamer has 5 identical active pockets, we modeled the
interaction  within  one  of  the  pockets  considering  all  the  5
pockets  in  the  homopentamer  subunits  interaction  region are
identical. AChBP ligand-binding structure possesses conserved
domain  residues  forming  a  narrow  hydrophobic  pocket
including A (Tyr91), B (Trp145), C (Tyr184 and Tyr191), D

(Trp53), E (Leu106, Gln114 and Leu116). Whereby A, B, and
C are present in a different AChBP ligand-binding subunit than
D and E (Fig. 2). Following the structural analysis, the nicotine
analogs were set to interact with the active pocket within the
interaction of the α7 nAChR homo-subunits. Nicotine structure
resulted  in  a  geometrical  docked  conformation  in  which  the
pyrrole ring is oriented towards the C loop favoring Van der
Waals  interactions  with  amino  acids  TYR91,  TRP145,  and
TYR184 of the chain A, in addition to LEU106 and TRP53 of
the chain B (Table 2).

Table 2. Diagrammatic representation of receptor interaction, residues involved in the receptor interaction with analogs and
nicotine. Dark shaded cells mean the presence of the interaction between the ligand and the receptor. Discrimination between
hydrogen bonds and hydrophobic interactions are shown.

Molecule
Hydrogen Bonds Hydrophobic Interactions

Tyr91 Thr145 Tyr184 Tyr191 Trp53 Tyr91 Leu106 Leu116 Trp145 Thr146 Tyr184 Cys186 Cys187 Tyr191
Nicotine

A1
A2
A3
A4
A5
A6
A7
A8

(Table 1) contd.....
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Fig. (2). Structural composition of the active site of α7 nAChR. Green and blue represent the two α7 nAChRs subunits composing the active pocket.
All α7 nAChRs have 5 identical active sites across the intersections of the α7 homosubunits. Additionally, the localization of the residues composing
the active site of the pentameric α7 nAChR is presented highlighting the geometrical orientation.

Table  3.  Energy  and  RMSD  values  for  the  molecular  docking  between  analogs  and  nicotine.  For  RMSD  there  is  a
differentiation between α7 nAChRs interacting with nicotine and α7 nAChRs (unbonded) receptor without ligand. For the
chimera optimization, the charges for the steepest descent minimization of the ligand were manually added. RMSD values
represent  the  average  distance  between  atoms,  in  this  case,  backbone  atoms,  between  protein  structures.  The  lower  the
RMSD value, the more geometrical similarity between the proteins.

Molecule Charge of Interaction Energy of Interaction (kJ/mol) RMSD
Unbonded Nicotine

Nicotine +1 -5.5 0,049 -
A1 +1 -5.6 0,069 0,033
A2 0 -5.5 0,013 0,054
A3 0 -5.6 0,039 0,075
A4 +1 -5.1 0,053 0,014
A5 +1 -4.7 0,052 0,030
A6 +1 -5.5 0,047 0,016
A7 +1 -5.5 0,051 0,020
A8 0 -5.5 0,020 0,052

Docking  models  were  performed  with  the  top  ligand
conformations and the energy interaction values are presented
in Table 3. Evaluated nicotine analogs, except for A1 and A3,
have minor binding energy compared with nicotine (Table 3).
Energetically  minimized  protein  structures  interacting  with
nicotine and analogs were used to calculate Root-Mean-Square
Deviation  of  atomic  positions  (RMSD)  in  a  comparative
manner against the unbonded receptor and α7 nAChR docked
with nicotine (Table 3).  Such an unbonded model was set  as
the  minimized  structure  of  α7  nAChR without  ligand  on  the
active side.

3.3. Clustering of Similarity

Two manually curated groups of compounds with known
α7 nAChR agonistic  and antagonistic  activities  were used as
input  for  the cluster.  The first  group consisted of  α7 nAChR
agonists  SAK3 [43],  Nicotine,  Acetylcholine,  TC-1698 [44],
PNU-282987  [45],  DMXB  [46],  and  ABT-107  [47].  The
second  group  was  composed  of  receptor  α7  antagonists  and
included  methyllycaconitine  [48],  mecamylamine  [49],
neostigmine [50], anisodamine [51] and bupropion [52]. To the
best  of  our knowledge,  these are all  the compounds reported
with  agonistic neuroprotective  activity and  agonistic  activity
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Fig.  (3).  PI3K/AKT  Signaling  pathway  network  reconstruction.  Each  node  represents  the  proteins  selected  for  the  SP  modulating  the
activity/expression of Bcl-2. Positive response to proliferation and cell survival was modulated by PI3K/ATK core SP and repression of Bcl-2 was
added to the model by including P53. Such a network has a repressive activity over the binomial output. Worth noticing, the network is directional
and with feature specific edges, meaning that green edges have a positive modulation of the ending node and red have a negative regulation of the
nodes across the network.

over  α7  nAChR.  In  this  sense,  we  set  a  positive  response  of
PI3K/AKT  for  the  first  group  and  we  hypothesized  a  null
activation of PI3K/AKT SP or repression by other molecular
mechanisms,  and  therefore  no  neuroprotective  activity  [53].
The  same  procedure  previously  mentioned  was  applied  to
obtain the optimized conformers for each group and all were
categorized considering general descriptors of physicochemical
properties [54, 55]. Surprisingly, the dendrogram of similarity
was found to be related to the variables and the neuroprotective
activity  but  with  inconclusive  scores  for  similarity
(Supplementary  Fig  S1).  Nevertheless,  cluster  values  of
similarity  for  PaDEL-Descriptors  structural,  physical  and
chemical values were used to enrich the known experimental
data of the ligands.

3.4.  Signaling  Pathway  Reconstruction  and  Predictive
Model of Interaction-Response

The reconstructed model of PI3K/AKT SP presented both
activation  or  inhibition  of  Bcl-2,  as  it  occurs  within  the  cell
[20].  The  network  is  composed  of  28  nodes  (proteins)  that
represent  relevant  components  of  the  pathway  (α7  nAChR,
PI3K, AKT, CREB, etc), 2 final states (activation/inhibition)
and 43 interactions between the nodes (Fig.  3).  The network
was  constructed  using  nodes  with  biological  relevance
associated  with  PI3K/AKT  and  P53  proliferative  regulatory
activity.

With  previously  mentioned  clustering  and  PaDEL-

Descriptors data, 1848 variables were obtained characterizing
physico-chemical and pharmacological properties for each one
of the molecules, both agonist/antagonist and nicotine analogs.
Reducing  the  number  of  variables  for  subsequent  analysis,
principal  component  analysis  (PCA,  Supplementary  Fig  S2)
and K-mean decomposition (Supplementary Fig S3) were used
maintaining  data  variance  explanation.  First  PCA  three
dimensions  explained  98.9%  of  variance  across  the  original
dataset  (Supplementary  Fig  S2)  while  the  K-mean  showed  a
variance  explanation  of  57.1%  for  two-dimensions  and  the
corresponding coordinate values (Supplementary Fig S3).

Based on the PI3K/AKT architecture the resulting MCMC
topology  representing  probabilities  of  transition  within  the
network  (Fig.  4).  In  this  case,  the  resulting  Markov  Chain
Monte  Carlo  (MCMC)  model  was  able  to  quantify  the
transitions between the directed network resulting in a model
capable to determine the ANN architecture. The most effective
number  of  hidden  layers  of  the  ANN  was  determined  by
iterative topology generation and convergence was reached at
100.000  iterations.  Such  an  approach  resulted  in  a  multi-
perceptron ANN with 4 hidden layers with 5, 1, 4 and 5 nodes
respectively (Fig. 5). In general, the resulting topology lack a
canonical hidden layer architectures considering these models
tend to reduce the number of nodes per layer across the model
[56].

Training  datasets  from  the  PCA  and  K-mean  were
evaluated for  each of  the ANN learning with 1000 iterations
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with randomized series and reported values of misclassification
(Table 4). Backpropagation with weight tracking coupled with
PCA model was capable of generating consistent results. In this
sense, the consistency of resilient backpropagation with weight
backtracking and PCA was 100% but resilient backpropagation
without weight backtracking and K-mean showed 98%. These

results  suggest  that  both  methods  were  able  to  predict  the
binomial  output  for  the  training  and  testing  datasets.
Nevertheless, throughout the iterations not all the predictions
were  identical  in  resilient  backpropagation  without  weight
backtracking  and  K-mean.

Fig. (4). Graphical representation of the probability transitions in the MCMC model of the PI3K/AKT directed network. Optimization was reached
when the model stabilizes the probabilities between nodes. In general, each node represents a state involved in the SP and the edges in the graph
establish a relationship between the states.

Fig. (5). ANN multi-perceptron architecture obtained with the MCMC SP topology. The layers and the number of neurons related to each one of the
layers are correlated to the architecture of the MCMC optimal topology. The output of the ANN was set as an activation or repression binomial
response.
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Table  4.  Values  of  misclassification  error  for  all  different  ANN  methods  and  dimensional  minimization  approaches.
Normalized  data  is  shown  (0-1).

Learning algorithm Dimensional reduction method
Principal Component Analysis K-mean

Backpropagation 0.5 0.5
Resilient backpropagation with weight backtracking 0.25 0.5

Resilient backpropagation without weight backtracking 0.375 0.25
Smallest absolute derivative 0.5 0.5

Smallest learning rate 0.5 0.5

The  resulting  best  ANN  model  implementing  resilient
backpropagation  with  weight  backtracking  is  based  on  the
evolving adaptation rule with a learning process based on error
function [57].

(A)

(B)

and

(C)

Briefly,  for  the  adaptation  rule  each  update-value  
changes depending on the sign for each partial derivative of ùij

at point t (A). If the values are too big then the algorithm skips

a local minimum and the function decreases by . Once 

adapts,
 

 changes according to   results (B). Positive

values of the derivative mean an error increase; therefore, the

function  is  decreased  by  its  .  Finally,  the  exception
presented deals with changes in partial derivative sign (C) [57].
In that case, the step was too large and missing the minimum,

so the previous  is reverted. Finally, with the best trained
structure method with PCA and Resilient backpropagation with
weight  backtracking  and  the  MCMC  derived  ANN  multi-
perceptron  architecture  it  was  possible  to  predict  the
neuroprotective potential of the nicotine analogs. This model
predicted  A1,  A2,  A3,  A4,  A6,  A7  and  A8  as  potential
neuroprotective agents. In this aspect, our model predicted that
7 out of 8 analogs had putative neuroprotective activity due to
the  association  of  the  binomial  output  of  the  ANN  with  the

activation of Bcl-2.

4. DISCUSSION

4.1. Conformer Geometry and Ligand-Receptor Interaction

Even though research efforts have been done regarding the
pharmaceutical potential of nicotine analogs, little assessment
of some critical aspects of their conformational variability has
been studied [15, 58]. Recently, the crystallographic structure
of  the  extracellular  domain  of  the  nicotinic  receptor  α7  in
complex  with  epibatidine  was  reported  [59].  Although
interactions described for the complex agree with our results, it
was found that THR146, CYS187, and CYS186 could also be
involved in the protein complex due to molecular  proximity.
Docking with analog A5 had a high-affinity score (-4.7) with
respect  to  nicotine  (-5.5)  (Table  3).  A5  affinity  can  be
attributed  to  the  geometrical  conformation  establishing
hydrogen  bonds  and  radicals  orientation  towards  TRP145,
similar to epibatidine. The high affinity of epibatidine has been
related to large inter-nitrogen distance previously reported as
4.6 Ǻ [34].

Considering H-bond acceptors and donors number, analogs
and nicotine had similar values. Specifically, A2, A3, A4 and
A7 have two H-bond donors in comparison with three for A1,
A5, A6 and A8. In terms of routable bonds, A5 and A6 differ
from the  single  bond in  nicotine  considering the  presence of
radicals across the pyrrole ring (Table 1). Fluorine radical of
A5 and the methyl group attached to the oxygen radical of A6
are rotation-capable bonds relative to the ring plane. Distinct
similarity values in the clustering analysis for analogs A3 and
A8 (Supplementary Fig S1) are not reflected in the values of
energy affinity or interacting residues. Interestingly, A3 and A8
are the only analogs with a single methyl group addition to the
pyrrolidine ring. In this sense, the group generated between A3
and  A8  can  be  associated  with  the  presence  of  the  methyl
group  and  the  double  bond  with  nitrogen  in  the  pyrrolidine
ring.  Nevertheless,  clustering  was  capable  of  generating
patterns  based  on  atom  pair  descriptors  and  molecular
fingerprints,  the  model  is  inefficient  to  replicate  the  docking
data. All analogs clustered with nicotine and TC-1698 with a
node value of 0.4 in the dendrogram, but A3 and A8 showed
significant similarity with TC-1698, suggesting agonistic and
neuroprotective activity. Interestingly, A3 and A8 also have a
null  net  charge  of  interaction  with  the  protein  (Table  3).
Nevertheless,  further  in  vitro  and  in  vivo  experiments  are
necessary to assess the neuroprotective capacity of the tested
molecules  and  in  silico  modeling  must  be  performed  to
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establish  a  correlation  between  structural  signatures  and
biological  activity.

Besides  affinity  energy,  the  type  and  amount  of
interactions are crucial to determine the role of the docking in
the protein function [13]. In this case, nicotine interacts with
TRP53, Tyr91, Leu116, Trp145, Tyr184, Cys186, Cys187 and
Tyr191  through  hydrophobic  interactions  and  without
hydrogen bonds (Table 2).  Compared with nicotinic receptor
α7  in  complex  with  epibatidine  interaction,  only  residues
Leu106  and  Gln114  were  absent  in  the  interaction  [60].
Compared  with  the  analogs,  hydrophobic  interactions  with
Leu106 were present in the analogs A1, A5, A6, and A8, but
no  hydrophobic  interactions  or  hydrogen  bonds  were  found
with Gln114 (Table 2). The rest of the residues interacting with
nicotine were found interacting at least once with any analog in
similar  geometrical  orientations.  Interestingly,  none  of  the
analogs  presented  the  same  interactions  as  nicotine,  but  the
energy changes were not higher than 0.4 kJ/mol, except for A5
with 0.8 kJ/mol. Such values of A5 could be attributed to the
highly electronegative fluorine radical interacting with Thr146.
An  increase  in  Affinity  energy  could  be  associated  with  the
presence of hydroxyl radical in the polar sidechain. Moreover,
fluorine has been associated with secondary effects in humans
and, if consumed in higher doses, has been reported to be toxic,
thus suggesting that A5 is not a suitable neuroprotective agent
[61, 62]. However, further studies must be performed in order
to  identify  the  role  of  specific  residues  in  the  activity  of  the
complex and specific analog modifications effect over protein
interactions.

Additionally, taking into account the comparison of RMSD
values,  after  depuration  of  25%  of  the  misplaced  atoms,
unbonded protein and interacting complex with nicotine were
lower  than  0,1.  Nicotine  and  analogs  with  the  unbonded
protein, RMSD validated our docking result (Table 3). RMSD
for  A2,  A3 and A8 are  higher  than the  rest  of  analogs  when
compared  with  the  bounded  complex  with  nicotine  meaning
that the geometrical modifications of the protein are higher. In
this sense, A3 and A8 have the potential of interacting with the
receptor  similar  to  other  neuroprotective  compounds  but
changing the receptor response when compared with nicotine.
The  similar  biological  activity  could  be  deduced  also  by
considering the residues interacting, A3 and A8 as well as A6
and A7 present hydrogen bond interactions similar to nicotine
(Table  2).  With  the  structural  and  geometrical  analysis  is
possible  to  conclude  that  all  analogs  except  for  A5  have
neuroprotective  potential  and  that  A3  and  A8  have  an
interesting behavior that must be addressed with in vitro and in
vivo experiments. For A5, we present evidence of difference in
energy affinity, interacting residues and fluoride radicals lead
to the potential toxicity of A5.

Nevertheless,  inconclusive  relations  between  ligand
structure,  complex  bonding  and  neuroprotective  response
occurred  within  the  clustering.  Even  though  consistent
aggrupation occurred for  all  the  neuroprotective  compounds,
antagonists generate a disperse distribution in the graph. The
clustering  FOF  method  was  able  to  discriminate  between
biological effects but only strong aggrupation occurred only for
neuroprotection positive molecules (Supplementary Figure S1).

Acetylcholine  was  discarded  considering  divergence  and
ubiquitous  neurotransmitter  distribution  coupled  with  no
associated neuroprotective function [63]. Worth noticing, the
potential toxicity of the other analogs should be addressed by
experimental methods considering no information is available
in cell culture or animal models neither in silico testing

4.2. Neuroprotective Prediction Modeling

Only  a  few studies  have  employed  ANN in  the  study  of
signaling pathways [42,  64].  For instance,  a 3-layered multi-
perceptron  with  backpropagation  learning  and  sigmoid
activation  function  was  implemented  across  96  genes  to
identify  biomarkers  in  children  sarcomas  [64].  Moreover,  a
simplified neural network comprising two microenvironmental
input  nodes  (growth  factor  and  death  signal),  and  two
phenotype output nodes (pro-growth and pro-death) was used
to  integrate  environmental  and  molecular  characteristics  of
cancer  progression  [42].  However,  to  the  best  of  our
knowledge, this is the first study that combines structural data,
docking  simulations,  MCMC  and  ANN  evaluating  the
modulation  of  PI3K/AKT  allowing  the  prediction  of
neuroprotective new compounds. By including a higher set of
variables, analogs cluster near to nicotine for both PCA and K-
mean  decomposition  analysis  (Supplementary  Figs  2  &  3).
Nevertheless, the absence of strong groups in the PCA and K-
mean analysis showed that synthetic data was not conclusive to
predict the biological activity by themselves. With this in mind,
the  ANN  model  was  essential  to  discriminate  between  the
groups and underline the fundamental properties of the analogs
based  on  the  SP  structure,  using  both  PCA  and  K-mean
synthetic  values

SP are dynamic systems in which crosstalk with neighbor
paths  is  essential  to  modulate  signal  intensity  [65].  P53
negative  feedback  increased  the  robustness  of  the  model  by
modifying Bcl-2 binomial output and information flow across
the model supporting network regulation (Fig. 3). Additionally,
ionotropic channels, such as α7-nAChR acting over PI3K/AKT
lead  to  an  activation  without  explicitly  acknowledging  the
presence  of  JAK  [14].  MCMC  PI3K/AKT-derived  model
considered a matrix of transition representing network structure
and  probabilities  of  transition  across  PI3K/AKT  leading  to
robust computational inferences [66]. By applying MCMC to
the network topology it was possible to transfer the biological
structure  of  the  network  to  a  quantitative  model  capable  to
modulate ANN architecture. The resulting non-canonical multi
perceptron structure resulted as biological-based discrimination
of  ANN  architectures  through  iterations  using  the  MCMC
matrix.  Similar  approaches  such  as  the  drop-out  technique
allow  to  drop  units  from  the  neural  network  during  training
hence preventing an excessive coadaptation and overfitting of
the network [12]. Iterative processes converged at the minimal
topology  with  a  significant  predictive  capacity  of  the  ANN
model  reducing  layer  and  nodes  number  [67].  The  hidden
layers were locked according to the MCMC product (Fig. 4),
ensuring  that  the  subsequent  topology  represented  the
biological information contained in the SP. In this aspect, the
synthetic  iterative  randomized  data  sets  integrated  with
dimensional  minimization  and  ANN,  allowed  the
determination of the best predictive method reducing error and
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ensuring consistent predictions during training.

PCA and K-mean dimensional reduction showed to be an
effective  way  to  effectively  decrease  sample  variability  to  a
low number of synthetic values [68]. By reducing the number
of variables from 1848 variables to a small non-autocorrelated
dataset, PCA and K-mean reproduced clustering results. This
approach  was  implemented  in  order  to  optimize  the
performance  of  the  strategy  and  reduce  overfitting  of  the
trained ANN model. Through variable reduction, we increased
the  sensibility  and  reliability  of  the  model  to  predict  the
binomial neuroprotective signal output. This data was used as
training/testing  for  the  ANN  model  evaluating  some  of  the
developed learning algorithms [69]. Identical split differences
in  misclassification  for  smallest  absolute  derivative,
backpropagation and smallest learning rate with PCA and K-
mean, and resilient backpropagation with weight backtracking
with  K-mean  were  identified  (Table  4).  Improvement  was
found  for  25%  misclassification  for  both  resilient
backpropagation  with  weight  backtracking  with  PCA  and
resilient backpropagation without weight backtracking with K-
mean.  With  this  last  method  inconsistency  in  the  predicting
output was found meaning the output change through 2% of the
iterations. Resilient backpropagation with weight backtracking
with PCA resulted as the best combination for neuroprotection
prediction, considering 100% of the predictions were consistent
along with the iterations. The resulting model was based on the
implementation of an adaptation rule with a learning based on
error values [57]. By predicting the binomial neuroprotective
output  of  the  ANN  with  synthetic  PCA  data  from  structural
conformational,  docking  analysis  and  physicochemical
featuring, made possible to determine that A1, A2, A3, A4, A6,
A7 and A8 have potential neuroprotective agents. In general,
the results are consistent with the experimental data available
for some of the compounds [10, 47 - 52].

Even though this model considers the main aspects of SP
response  to  external  stimuli,  some  key  considerations  are
necessary.  Structurally,  the  number  of  reference  compounds
used  was  low,  making  it  necessary  to  improve  α7-nAChR
agonist/antagonist  data  through  identification  and  screening.
Data  restriction  can  lead  to  predicting  bias  of  the  model,
overfitting or fixed prediction. In this matter, we recommend
implementing  both  agonist  and  antagonist  in  silico  and
experimental  screening  to  increase  the  training  dataset.
Although, the inclusion of synthetic molecules, such as SAK3,
PNU-282987  and  allosteric  modulators  allowed  to  improve
predictions  considering  previously  reported  induction  of
neuroprotection  through  the  modulation  of  PI3K/AKT/Bcl-2
[14].  Furthermore,  the  model  can  be  used  to  address  the
secondary effects of nicotine analogs by increasing the dataset
with  addiction/reward  molecules  like  nicotine  and  methylly-
caconitine [48].

Correcting  inner  functions  for  noisy  data  needs  to  be
coupled  with  further  testing,  essential  to  determine  the  true
potential of nicotine analogs and antagonists for PD therapy. In
this regard, we propose a mathematical in silico model that has
to be used integrated with in vitro and in vivo data, either on
dopaminergic neuronal cell lines, cerebral organoids or animal
models.  Database  cluster  enrichment  with  experimental  data

allows  to  increase  the  reference  compounds  and  therefore
reducing possible prediction bias and overfitting. Even so, the
model  strategy  was  in  accordance  with  previously  published
experimental data [10, 47 - 52] proving to be robust enough as
a testing method for further research. Worth noticing, SP are
dynamic  systems,  therefore  we  suggest  that  continuous
parameters  need  to  be  addressed  to  consider  essential
intermediate states [65]. Finally, this strategy opens the door to
improve neuroprotection prediction in the future by integrating
protein  dynamics,  partial  differential  equations  and  other
machine  learning  approaches.  These  type  of  approaches  are
necessary to improve drug scanning efficiency in PD and any
other disease founded upon SP.

4.3.  Conformational  Analysis  and  Protein  Structure
Preparation

8 novel nicotine analogs (Table 1) were used in the present
study:  (3R,5S)-1,  methyl-5-(piridine-3-yl)  pirrolidine-3-ol
(A1),  3-(1,3-dimethyl-4,5-dihidro-1h-pirazole-5-yl)  piridine
(A2), 3-(3-methyl-4,5-dihidro-1h-pirazole-5-yl) piridine (A3),
3(((2S-4R)-1,4-dimethylpirrolidine-2-yl))  (A4),  3-((2S,4R)-4-
(fluoromethyl)-1-methylpirrolidine-2-il)piridine  (A5),  3-
((2S,4R)-4-methoxi-1-methylpirrolidine-2-yl) piridine (A6), 3-
((2S,3S)-1,3-dimethylpirrolidine-2-yl)  piridine  (A7)  and  5-
methyl-3-(piridine-3-yl)-4,5-dihidroisoxazole  (A8).  Molecular
structures  were  sketched  on  Avogadro  using  MMFF94s
forcefield, correcting atom type and chirality [70]. Calculations
were carried out with Gaussian 16 [71], using B3LYP level of
theory and cc-PVDZ basis set.  In order to find the minimum
energetic  conformation,  the  structures  were  optimized  at  the
DFT  B3LYP/6-31G  level.  The  conformational  analysis  was
carried  out  on  minimized  rotating  bonds  between  pyrrole,
derivate rings, and pyridine rings, including the bonds of all the
radicals  of  the  pyrrole  ring  for  each  ligand.  The  maximum
number of conformers for each molecule was set  to 30,  with
the  10  lowest  energy  conformations  used  for  the  docking
simulations.

The  crystal  structure  of  α7-nAChR  in  complex  with
lobeline was obtained from the RCSB Protein Data Bank (PDB
ID: 5AFJ) [60]. AutoDockTools [72] was used to assign polar
hydrogens  and  add  Gasteiger  charges.  The  geometry  of  the
receptor was optimized using the MM2 molecular mechanics
force field.  The neutral  and ionized states  of  aliphatic  amine
and carboxylic acid groups of compounds to be docked were
protonated and deprotonated separately.

4.4. Molecular Docking

To  determine  the  interaction  between  the  studied
molecules  and  the  receptor,  docking  simulations  were
performed with AutoDock4 (version 4.2) [72]. The active site
of  the pentameric structure of  α7-nAChR was defined as  the
interfaces  between  subunits  that  were  within  12  Å  from  the
geometric centroid of the ligand [60]. Within the 3 domains of
the protein (extracellular, intracellular and transmembrane), the
pocket is located in the extracellular side of the receptor with
residues from loops A-C of the principal subunit and loops D-E
of  the  complementary  subunit.  Default  settings  for  small
molecule-protein  docking  were  used  throughout  the
simulations.
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Docked  conformations  were  clustered  according  to  the
interacting  energy  combined  with  geometrical  matching
quality. The complexes with the best score were taken as the
lead conformation for each compound. The correlation between
key interactions obtained from the computational simulations
and the interactions reported by the crystallographic structure
of α7-nAChR in complex with lobeline was further explored.
To further analyze the differences between the interaction of
the analogs and the receptor, we calculated the RMSD values
between  analogs,  nicotine  and  the  receptor.  RMSD  was
calculated  using  85%  of  the  atoms  resulted  after  3  outlier
rejection  cycles.  The  energetically  minimized  docked
structures of the α7-nAChR receptor were made with Chimera
[73],  using  10000  steepest  descent  steps,  0.001  Ǻ  steepest
descent  steps  size,  10  conjugate  gradient  steps,  0.001  Ǻ
conjugate gradient steps size, update per 10 intervals, gasteiger
method for charge and Amber ff14sb algorithms for residues.

4.5.  Physicochemical  Clustering  and  Dimensional
Decomposition

To  determine  the  features  for  each  molecule  and  their
structural  similarity,  physicochemical  property  predictions,
classification and clustering of  structures were performed on
ChemmineR, R package [54].  Structural  similarities between
analogs  were  compared  to  a  manually  curated  dataset  of  7
agonists  and  5  antagonists  of  α7-nAChR  with  reported
neuroprotective activity [43 - 52]. This method allowed us to
increase  the  size  of  the  available  data,  robustness  and
reproducibility.  In  the  dataset,  agonists  of  α7-nAChR  were
associated  with  the  induction  of  a  neuroprotective  pathway,
either expressed through the induction of cell proliferation or
apoptotic prevention. Antagonists were set to block either the
proliferative activity by PI3K/AKT of the signaling pathway or
the  associated  Ca2+  mobilization  of  the  receptor  [51,  52,  74,
75].

Clustering  analysis  was  based  on  molecular  descriptors,
such as molecular formula, molecular weight, atom frequency
and  functional  groups.  To  determine  the  optimal  cluster,  a
matrix  of  molecular  descriptors  for  all  molecules  was  used,
categorizing  the  ligands  according  to  the  structural,  physical
and  chemical  variables.  To  increase  the  robustness  of  the
clustering  model,  additional  physicochemical  data  from  de-
novo  featurization  was  included  [55].  To  ensure  a  proper
physicochemical  featurization  and  increase  the  number  of
variables  available  for  further  analysis,  data  from  de-novo
characterization  using  PaDEL-Descriptors  [55]  was  also
included. Dimensionality reduction of the dataset was done by
principal  component  analysis  (PCA)  and  k-mean
decomposition.  The  mentioned  approaches  were  used  to
identify  the  multiparametric  data  capable  to  describe  the
agonistic and antagonistic function and the relation between the
activity and structure of the ligands in the dataset.

4.6. Signal Reconstruction

To establish a reliable topology of the SP related with the
neuroprotective capacity of nicotine, a manually reconstructed
network  for  the  PI3K/AKT  SP  was  developed  using
information  from  KEGG  [76  -  78]  and  PantherDB  [79].  To
ensure the biological coherence of the network, our model was

enriched  with  additional  protein-protein  interactions  that  are
present  in  the  PI3K/AKT/mTOR  interactive  pathway  [80].
Finally,  this  PI3K/AKT  SP  was  integrated  with  a  manually
curated  model  of  p53  to  generate  a  negative  feedback  over
Bcl-2.  In  this  aspect,  the  model  included  6  specific  proteins
(Myc, Bim, P53, Bax, Noxa, Puma) associated with the partial
inhibition  of  the  Bcl-2,  which  emulates  the  SP  biological
behavior  [66].

4.7. Activity Prediction and Interaction-Response Model

In order to elucidate the quantitative relationship between
α7-nAChR  receptor  and  the  activation  of  Bcl-2,  a  Markov
Chain Monte Carlo (MCMC) model for the whole network was
implemented.  This  model  was  based  on  the  reconstructed
PI3K/AKT SP network and was generated using the R package
MCMCpack [81]. A matrix of transitional stages predicting the
most suitable path across the nodes was associated with the end
stages  of  the  MCMC  that  represented  Bcl-2  expression  as  a
binomial  logical  argument.  The construction of the Artificial
Neural  Network  model  (ANN)  was  performed  with  the
NeuralNet  package  in  R  [82].  To  determine  the  canonical
architecture  for  the ANN we used an optimization algorithm
using 100.000 iterations using the MCMC transition matrix as
an input. A stable multi-perceptron structure was set to have a
minimal  number  of  hidden  layers  with  the  capacity  of
representing  the  MCMC  transition  matrix,  as  shown  below:

Briefly, a matrix x is used as input in the first layer of the
multiperceptron. Each node of the hidden layer computes f(x) to
finally generate a binomial y output.

The dimensional reduction methods were used to train the
ANN  using  the  coordinates  in  the  PCA  and  K-mean.  One
thousand  randomized  training  datasets  were  selected  and
associated with the binomial activity of the ligand dataset. To
optimize  the  predictive  capability  of  the  model  using  the
training  datasets,  four  ANN  algorithms  were  compared:
Backpropagation  with  a  learning  rate  of  0.001,  Resilient
backpropagation  with  weight  backtracking,  Resilient
backpropagation  without  weight  backtracking,  smallest
absolute  derivative  model  and  smallest  learning  rate.
Additionally,  for  each  possible  combination  of  dimensional
minimizations  and  ANN  methods,  the  random  data  subsets
used as training were iteratively generated, after excluding the
testing  values.  To  ensure  the  robustness  of  the  prediction,
values  for  misclassification  error  were  obtained  for  each
training and testing combination. In this aspect, the best model
acquired was set to minimize the error to reduce the amount of
false-positive predictions.

CONCLUSION

We  present  a  novel  computational  strategy  as  a  novel
quantitative  approach  used  to  predict  the  potential
neuroprotective activity of 7 nicotine analogs in the context of
PD therapeutics (A1, A2, A3, A4, A6, A7 and A8). To the best
of  our  knowledge,  this  is  the  first  machine  learning
neuroprotective  computational  strategy  for  ligand  activity
prediction  over  α7-nAChR  activating  PI3K/AKT/Bcl-2.  By
conformational analysis, molecular docking, the use of PaDEL
variables  and  geometrical  optimization,  we  obtained  robust
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evidence suggesting nicotine analogs activity  compared with
nicotine.

The model also showed the potential of ANN integrations
with  a  dimensional  reduction  to  avoid  overfitting  by
autocorrelation.  Resilient  backpropagation  with  weight
backtracking with PCA showed to be the best combination for
ANN  training  to  validate  the  neuroprotective  activity.
Nevertheless,  additional  data  is  needed  to  ensure  model
robustness,  decrease  the  error  of  misclassification  and  avoid
fixing predictions. Nicotine analogs have promissory future as
candidates  for  PD treatment  if  future  improvements  to  these
strategies are performed. Nevertheless, further studies must be
performed  to  identify  the  potential  of  nicotine  analogs  as
neuroprotective  compounds  and  the  application  of  these
methods  in  neurodegenerative  research.

LIST OF ABBREVIATIONS

PD = Parkinson’s Disease

DN = Dopaminergic Neurons

PI3K/AKT = Phosphatidylinositol-4,5-bisphosphate
 3- kinase/Protein  kinase  B

α7-nAChRs = alpha7 nicotinic Acetylcholine Receptor

MCMC = Markov Chain Monte Carlo

PCA = Principal Component Analysis

ANN = Artificial Neural Networks

SP = Signaling Pathway
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