
1875-0362/20 Send Orders for Reprints to reprints@benthamscience.net

137

DOI: 10.2174/1875036202013010137, 2020, 13, 137-145

The Open Bioinformatics Journal
Content list available at: https://openbioinformaticsjournal.com

LETTER

Extraordinary Command Line: Basic Data Editing Tools for Biologists Dealing
with Sequence Data

Magda Mielczarek1,2,* , Bartosz Czech1 , Jarosław Stańczyk1 , Joanna Szyda1,2 and Bernt Guldbrandtsen3

1Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences; Kozuchowska 7, 51-631Wroclaw, Poland
2National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
3Department of Animal Science, University of Bonn, Endenicher Allee 15, 53115Bonn, Germany

Abstract:

The command line is a standard way of using the Linux operating system. It contains many features essential for efficiently handling data editing
and analysis processes. Therefore, it is very useful in bioinformatics applications. Commands allow for rapid manipulation of large ASCII files or
very numerous files, making basic command line programming skills a critical component in modern life science research. The following article is
not a guide to Linux commands. In this manuscript, in contrast to many various Linux manuals, we aim to present basic command line tools
helpful in handling biological sequence data. This manuscript provides a collection of simple and popular hacks dedicated to users with very basic
experience in the area of the Linux command line. It includes a description of data formats and examples of editing of four types of data formats
popular in bioinformatics applications.

Keywords: Bash, Command line, Data manipulation, DNA, Linux, Sequence data.

Article History Received: September 07, 2020 Revised: November 18, 2020 Accepted: November 30, 2020

1. INTRODUCTION
Basic programming skills are critical in life science

research [1 - 5]. Among computing environments used by
scientists for years, the UNIX and the Linux operating systems
have been used the most. Linux can be used via Graphical User
Interfaces (GUI). However, using Linux textually from the so-
called Command-Line Interface (CLI) is far more efficient.
This is due to the philosophy that guided the creators of these
systems. According to Gancarz [6], the philosophy of Unix can
be subsumed into three statements: (i) make each program do
one thing and do it well, (ii) write programs to work together,
and (iii) write programs to handle text streams (e.g., from text
files), because that is a universal interface. The second factor of
the popularity of the Linux operating system, or rather, more
correctly GNU/Linux [7], is that it is open source software with
many free distributions developed by an international
community. GUIs tend to constrain interactions to specific
workflows and inhibit the integration of tools into pipelines.
Therefore, it is still worth dealing with the command line in
times of an all-embracing picture culture and graphic
interfaces. The CLI gives the user full control over commands
issued from the command line. Exploiting the CLI’s capacity
for the integration of tools makes automation of quite complex

* Address correspondence to this author at Biostatistics Group, Department of
Genetics, Wroclaw University of Environmental and Life Sciences;
Kozuchowska 7, 51-631 Wroclaw, Poland;
E-mails: magda.mielczarek@upwr.edu.pl

tasks accessible to the average user. Additionally, the CLI
allows the user to integrate bioinformatics analysis tools with
automated data transformations using both specialized tools
and Linux’s native tools and to integrate transparently and
efficiently with queue systems in high-performance computing
environments. A final advantage of the CLI is that the set of
tools available from the CLI level has been developed for years
and is very extensive. Hence, most of the activities performed
on the command line can be done in many ways.

The CLI is an environment available on computing
clusters. The following article is not a guide to Linux
commands. Numerous entry-level guides can easily be found
on the internet; instead, we primarily focus on the interaction
with GNU/Linux via the command line and present a few of
the most popular tools useful in processing biological sequence
data, especially in processing large-scale text files confirming
that bash scripting language is appreciated for solving simple,
everyday tasks in bioinformatics [8]. Since Bash programming
skills are required to efficiently analyse and present sequence
data, which may be a barrier for many researchers [9, 10], this
manuscript provides a collection of simple and popular hacks
dedicated to users with very basic experience in the area of the
Linux command line. It includes a description of elemental
biological data formats and examples of how to manipulate this
kind of data. All examples (data files, scripts) presented in this

https://openbioinformaticsjournal.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1875036202013010137&domain=pdf
http://orcid.org/0000-0002-1086-9119
http://orcid.org/0000-0002-9908-3007
http://orcid.org/0000-0001-8404-6863
http://orcid.org/0000-0001-9688-0193
http://orcid.org/0000-0003-1764-135X
mailto:magda.mielczarek@upwr.edu.pl
mailto:reprints@benthamscience.net
http://dx.doi.org/10.2174/1875036202013010137

138 The Open Bioinformatics Journal, 2020, Volume 13 Mielczarek et al.

manuscript are available online (https://github.com/bczech/
bio-cli).

2. LINUX COMMAND LINE AVAILABILITY

Running or connecting to the GNU/Linux CLI may be
done in multiple ways. (1) On a local computer, the easiest way
is to install the GNU/Linux operating system and to run a
terminal, which is a text-based input and output device for all
operations. There is a whole range of distributions (i.e.,
versions of the operating system) that can be used. (2)
Windows operating systems users can run GNU/Linux as a
Virtual Machine (VM). There are several virtualization tools
available; the most popular are the Oracle VirtualBox
(www.virtualbox.org), and the VMWare Workstation
(www.vmware.com). Another method is to use a container –
operating system virtualization with dedicated software. The
most popular platform of the container is Docker
(https://www.docker.com/) with a dedicated bioinformatics
repository called BioContainers (https://biocontainers.pro/). (3)
Nevertheless, since the increasing number of institutions begins
to collect large biological datasets, the amount of biological
data is huge; therefore often, instead of being stored and
processed locally, cloud-based solutions are used [11, 12].
Most GNU/Linux systems run OpenSSH, a Secure Shell
service, which represents an application that allows a user to
connect remotely to the UNIX-based operating system. On
Windows, the PuTTY software is recommended (www.
putty.org) to establish OpenSSH connections, as it is free and
easy to use. On macOS and Linux, simply entering an ssh
command in a terminal window followed by server name or IP
address in the terminal is sufficient.

3. SELECTED BIOLOGICAL DATA FORMATS

Numerous biological text-based data formats exist to keep
data readable for humans and software. In this chapter, we
describe four data formats widely used in bioinformatics
applications, which are used here as input in command line
data processing. In contrast to regular text, formatted data has
to adhere to strict rules of formatting. This allows for
automated processing by standard tools.

3.1. FASTA Format

FASTA is one of the most popular and one of the simplest
formats in bioinformatics. FASTA is used to store DNA, RNA
or protein sequence information (we use DNA information
here) as plain text. Sequences can be of any length – from a
few bases to whole chromosomes. A typical use of the FASTA
format is to contain a whole genome assembly. Chromosomes
are listed consecutively. Each chromosome is listed first with a
name followed by one or more lines with sequence
information. Each sequence starts on a line by itself with the
greater-than character (“>”) followed by the identification
number or name and description of the sequence. The next line
is the first line with the actual nucleotide or amino-acid
sequence, with each letter representing one nucleotide or one
amino acid. Additional lines of sequence usually follow. The
typical extension of a file in FASTA format is “.fasta” or “.fa”
[13]. In contrast to Windows, command line applications under
Linux do not rely on file extensions; however, the use of

extensions is still common in order to identify the format of the
file content. An example of a nucleotide sequence belonging to
Ursus arctos (GenBank ID: AM411403.1) [14] is shown below
(Case 1). The presented file has only one sequence, a multi-
sequence FASTA file is created in Section 4.1 (Case 12).

>AM411403.1 Ursus arctos mitochondrial D-loop, isolate
TAK4

ACTACTATTTTACTCCATGTCCTATTCATTTCATAT
ATACCATTCTATGTACTGTACTATCACAGTATGT

CCTCGAATACTTTCCCCCCCCTATGTATATCGTGC
ATTAATGGCGTGCCCCATGCATATAAGCATGTACA

TACTGTGCTTGGTCTTACATGAGGACCTGCATTTT
AGAAGTTTATCTCAGGTGTATAGTCTGCAAGCATG

TATTTCACTTAGTCCGGGAGCTTAATCACCAGGCC
TCGAGAAACCATCAATCCTTGCGAGT

3.2. FASTQ Format

FASTQ [15] is the most popular format used to store high
throughput sequencing data and the corresponding nucleotides
qualities. This format contains information about short
sequences (called reads) and their features. Each read is
represented by four lines. The first line begins with a “@”
character followed by information about the read (identifier,
sequencing process features). The second line contains the
actual nucleotide or protein sequence. The third line begins
with a “+” optionally followed by information duplicated from
the first line. The fourth line contains information on the phred-
scaled quality score of each base in the read, encoded as a
single ASCII character. The quality is expressed as the
probability of incorrectly called base. The typical extension of
a FASTQ file is “.fq” or “.fastq”. Moreover, due to the huge
size of sequencing data, FASTQ files are often compressed
using the gzip or bzip2 tools, such that the final extension is
“.fq.gz”, “.fastq.gz”, “.fq.bz2”, or “.fastq.bz2”. An example of
a single read in the FASTQ format (NCBI ID: SRR5078057)
[16] is shown below (Case 2).

@SRR5078057.1 HWI-ST:6:1101:1149:1947/1

NGCGACCTGAACCTCTACAACAAGGAGTCCAAGC
TGTCCTACTTCACCGA

+

#4=DDFFFHHGHHJJJJJJJJJJIJJJHIIJIJJJJJIJJJJJJJJJJJB

3.3. Variant Call Format (VCF)

Variant Call Format (VCF) [17] is a standard for storing
information about DNA polymorphisms (e.g., SNPs, insertions,
deletions and structural variants), and information on
individuals’ genotypes. The actual list of polymorphisms is
preceded by several lines forming a header starting with a “##”
string. The header includes descriptions of the chromosomes
and provides a definition for variables used to describe
polymorphisms in the INFO fields. The header is followed by a
single line starting with “#”, which defines the record layout
for the following columns consisting of data lines, each with
information on one polymorphism. These data lines contain
eight tab-delimited, mandatory columns: chromosome or

https://github.com/bczech/bio-cli
https://github.com/bczech/bio-cli
http://www.virtualbox.org
http://www.vmware.com
https://www.docker.com/
https://biocontainers.pro/
http://www.putty.org
http://www.putty.org

Dealing with Sequence Data Using A Command Line The Open Bioinformatics Journal, 2020, Volume 13 139

scaffold identifier (CHROM), the variant position expressed in
base pairs (POS), variant ID (ID), a nucleotide(s)
corresponding to the reference allele(s) (REF), a nucleotide
representing alternative allele(s) (ALT), a quality score
quantifying the polymorphism being a false positive (QUAL),
filter status (FILTER), and additional information (INFO). The
content of the last column is software dependent, but typically,
it contains information about the type of polymorphism (e.g.,
SNP, SNV, indel, duplication). Missing values are coded by a
dot character. An example of the VCF format (NCBI ID:
GCA_000001405.27) is provided below (Case 3).

##fileformat=VCFv4.1

##fileDate=20180307

##source=ensembl;version=92;url=http://e92.ensembl.org/
Homo_sapiens

##reference=ftp://ftp.ensembl.org/pub/release-92/fasta/Ho
mo_sapiens/dna/

[further header lines]

#CHROM POS ID REF ALT QUAL FILTER INFO

1 10177 rs367896724 A AC . .
dbSNP_150;TSA=insertion;E_Freq;E_1000G;MA=C;MAF=0.
425319;MAC=2130;EAS_AF=0.3363;EUR_AF=0.4056;AMR
_AF=0.3602;SAS_AF=0.4949;AFR_AF=0.4909

1 10235 rs540431307 T TA . .
dbSNP_150;TSA=insertion;E_Freq;E_1000G;MA=A;MAF=0.
00119808;MAC=6;EAS_AF=0;EUR_AF=0;AMR_AF=0.0014
;SAS_AF=0.0051;AFR_AF=0

[further body file lines]

3.4. Variant Effect Predictor Software Input and Output
Formats

The Variant Effect Predictor (VEP) tool predicts the
functional consequences of a polymorphism [18, 19]. The
default input format is a whitespace-separated file containing
the following columns: chromosome, variant start position and
variant end position, both expressed in base pairs, variant
polymorphism and optional information such as the strand and
the name of the variant. The example below (Case 4) shows an
indel variant (line 1), SNPs (lines 2-7), and a structural
polymorphism (line 8). The example comes from the official
VEP manual website
(www.ensembl.org/info/website/upload/var.html).

1 881907 881906 -/C +

5 140532 140532 T/C +

12 1017956 1017956 T/A +

2 946507 946507 G/C +

14 19584687 19584687 C/T -

19 66520 66520 G/A + var1

8 150029 150029 A/T + var2

1 160283 471362 DUP

The default output format consists of a header starting with

a “#” character. The body of the file contains 14 tab-delimited
columns including: the variant polymorphism from the input,
variant position, variant allele used to assign the consequence,
gene ID containing or closest to the variant, transcript ID,
Sequence Ontology [20] term assigned to the variant, and the
predicted biochemical consequence of the variant. Missing
values are indicated by '.'. The example below (Case 5)
presents the first three lines of a VEP output file. It contains the
header (starting with #) and genomic annotation for the
structural duplication variant. Based on the presented fragment,
the duplication is located close to the gene ENSG00000222623
(“upstream_gene_variant”) and overlaps with the gene
ENSG00000236601
(“non_coding_transcript_exon_variant,intron_variant”). The
output was generated by VEP based on the input shown in the
previous example (Case 4).

#Uploaded_variation Location Allele Gene Feature
Feature_type Consequence cDNA_position CDS_position
Protein_position Amino_acids Codons Existing_variation
Extra

1_160283_duplication 1:160282-471362 duplication
ENSG00000222623 ENST00000410691 Transcript
upstream_gene_variant - - - - - -
IMPACT=MODIFIER;SYMBOL=RNU6-1100P;BIOTYPE=s
nRNA;DISTANCE=2396;STRAND=-1;SYMBOL_SOURCE
=HGNC;HGNC_ID=HGNC:48063

1_160283_duplication 1:160282-471362 duplication
ENSG00000236601 ENST00000412666 Transcript
non_coding_transcript_exon_variant,intron_variant - - - - - -
IMPACT=MODIFIER;SYMBOL=AL732372.1;BIOTYPE=lin
cRNA;EXON=1-2/2;INTRON=1/1;STRAND=1;SYMBOL_S
OURCE=Clone_based_ensembl_gene;TSL=1

[further body lines]

4. COMMAND LINE TOOLS

A description of most commands can be displayed directly
in the terminal using the man command. As the example below
(Case 6) shows, when a terminal is opened, a command prompt
(typically) consisting of a “$” character appears, indicating
readiness to accept commands. In the example presented, the
man command is used to display the manual of the ls
command. Normally, the manual page is displayed by means of
a program called less. One can exit less using the q key and
move one page forward or backward using the f and b keys,
respectively.

username@hostname:~$ man ls

In the following, we show the usage of example commands
useful for biological data editing.

4.1. Example 1: Merging Multiple Files Into One (The
FASTA Format)

A reference genome is the complete sequence of an official
genome of a given species. FASTA files containing a reference
genome can be downloaded from publicly available databases,
e.g., NCBI (www.ncbi.nlm.nih.gov) or Ensembl
(www.ensembl.org). Often separate chromosomes are stored in

http://e92.ensembl.org/Homo_sapiens
http://e92.ensembl.org/Homo_sapiens
ftp://ftp.ensembl.org/pub/release-92/fasta/Homo_sapiens/dna/
ftp://ftp.ensembl.org/pub/release-92/fasta/Homo_sapiens/dna/
http://www.ensembl.org/info/website/upload/var.html
http://www.ncbi.nlm.nih.gov
http://www.ensembl.org

140 The Open Bioinformatics Journal, 2020, Volume 13 Mielczarek et al.

separate files, each containing unmasked, masked and soft-
masked genomic DNA sequences for a chromosome or a
region not (yet) assigned to any chromosome. Although the
files can be downloaded using a web browser, it is usually
more convenient and faster to use the wget command followed
by the web address of the file we want to download. An
example of using the wget command can be found below (Case
7). The command downloads a FASTA file for mouse
chromosome 1 from the Ensembl database. The output
“Resolving…” shows that wget is trying to connect to the
remote server and about to start the download. The progress
bar keeps informing about the status of the process. The last
output line indicates that the file is saved.

username@hostname:~$ wget ftp://ftp.ensembl.org
/pub/release-

94/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.
chromosome.1.fa.gz

Resolving ftp.ensembl.org (ftp.ensembl.org)... 193.62.
193.139

Connecting to ftp.ensembl.org (ftp.ensembl.org)|193.
62.193.139|:21... connected.

Logging in as anonymous ... Logged in!

==> SYST ... done. ==> PWD ... done.

==> TYPE I ... done. ==> CWD (1)
/pub/release-94/fasta/mus_musculus/dna ... done.

==> SIZE Mus_musculus.GRCm38.
dna.chromosome.1.fa.gz ... 58345453

==> PASV ... done. ==> RETR
Mus_musculus.GRCm38.dna.chromosome.1.fa.gz ... done.

Length: 58345453 (56M) (unauthoritative)

100%[=====================================
===
===========>] 58,345,453 47.9MB/s in 1.2s

2020-10-27 10:12:08 (47.9 MB/s) -
‘Mus_musculus.GRCm38.dna.chromosome.1.fa.gz’ saved
[58345453]

The wget command may be modified to save more files
(Case 8). The example below downloads all unmasked
chromosomes, excluding other genomic elements (e.g.,
mitochondrial DNA). The chromosome names are provided in
curly braces ({}), while [1-9XY] matches any one character
between the brackets ([]). The sequence “1-9” matches any one
digit. Thus, the command downloads autosomes from 1 to 9
and sex chromosomes X and Y. “?” is a wild card. It matches
any single character. Therefore, all autosomes whose names
begin with “1” (e.g., 13), followed by any single character, are
retrieved. Here, the reference genome files in the FASTA
format are named according to the following pattern:
(Species).(reference_genome_version).(molecule_type).chrom
osome.(chromosome name).fa.gz. Thus, the file
Mus_musculus.GRCm38.dna.chromosome.1.fa.gz represents
the DNA sequence of the entire first chromosome of the house
mouse corresponding to the GRCm38 version of the reference
genome.

username@hostname:~$wget
ftp://ftp.ensembl.org/pub/release-94/fasta/mus_musculus/dna/
Mus_musculus.GRCm38.dna.chromosome.{[1-

9XY],1?}.fa.gz

The file names end with .gz. which indicates that the files
are compressed. After downloading, the gunzip command must
be used to uncompress the files (Case 9).

username@hostname:~$ gunzip
Mus_musculus.GRCm38.dna.chromosome.*.fa.gz

The asterisk (“*”) is a wildcard, which matches zero or
more occurrences of any characters. All files with names
starting with “Mus_musculus.GRCm38.dna.chromosome.” and
ending with “.fa.gz” will be uncompressed. Tools that allow
processing and viewing of compressed files exist (e.g., the zcat
command). Listing of the content of the current directory is
done by the ls command (Case 10).

username@hostname:~$ ls

Mus_musculus.GRCm38.dna.chromosome.10.fa
Mus_musculus.GRCm38.dna.chromosome.2.fa

Mus_musculus.GRCm38.dna.chromosome.11.fa
Mus_musculus.GRCm38.dna.chromosome.3.fa

Mus_musculus.GRCm38.dna.chromosome.12.fa
Mus_musculus.GRCm38.dna.chromosome.4.fa

Mus_musculus.GRCm38.dna.chromosome.13.fa
Mus_musculus.GRCm38.dna.chromosome.5.fa

Mus_musculus.GRCm38.dna.chromosome.14.fa
Mus_musculus.GRCm38.dna.chromosome.6.fa

Mus_musculus.GRCm38.dna.chromosome.15.fa
Mus_musculus.GRCm38.dna.chromosome.7.fa

Mus_musculus.GRCm38.dna.chromosome.16.fa
Mus_musculus.GRCm38.dna.chromosome.8.fa

Mus_musculus.GRCm38.dna.chromosome.17.fa
Mus_musculus.GRCm38.dna.chromosome.9.fa

Mus_musculus.GRCm38.dna.chromosome.18.fa
Mus_musculus.GRCm38.dna.chromosome.X.fa

Mus_musculus.GRCm38.dna.chromosome.19.fa
Mus_musculus.GRCm38.dna.chromosome.Y.fa

Mus_musculus.GRCm38.dna.chromosome.1.fa

If the genome sequence of all chromosomes is required as
a single file, the chromosome-specific (as is typically the case
for whole genome sequence analysis) FASTA files can be
merged using the cat command, where the asterisk (“*”)
denotes “any characters” (Case 11).

username@hostname:~$ cat
Mus_musculus.GRCm38.dna.chromosome.*fa >
M.musculus.GRCm38.ref.fa

By default, the merged files would be written to the
terminal. Given the size of a typical genome, this is not
desirable. Instead, the “>” character redirects the output to a
file, Mus_musculus.GRCm38.dna.ref.fa merging all files with
names starting by “Mus_musculus.GRCm38.dna.chromosome.

ftp://ftp.ensembl.org/pub/release-
ftp://ftp.ensembl.org/pub/release-
ftp://ftp.ensembl.org
ftp://ftp.ensembl.org
ftp://ftp.ensembl.org
ftp://ftp.ensembl.org
ftp://ftp.ensembl.org/pub/release-94/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.chromosome
ftp://ftp.ensembl.org/pub/release-94/fasta/mus_musculus/dna/Mus_musculus.GRCm38.dna.chromosome

Dealing with Sequence Data Using A Command Line The Open Bioinformatics Journal, 2020, Volume 13 141

” and ending with the “.fa” extension. By default, the cat
command concatenates files in alphabetical order, so particular
chromosomes will be ordered as: 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 1, 2, 3, 4, 5, 6, 7, 8, 9, X, Y. In order to arrange the files
in chromosome order, a for loop can be used. An example is
provided below (Case 12).

username@hostname:~$ for chr in {1..19} X Y; do cat
Mus_musculus.GRCm38.dna.chromosome.$chr.fa done >
M.musculus.GRCm38.ref.num.order.fa

The first command says: in the first iteration of the loop,
display the content of the Mus_musculus.GRCm38.dna.
chromosome.1.fa file, in the next iteration, display the content
of the file Mus_musculus.GRCm38.dna. chromosome.2.fa, and
so on. As the files are displayed in the terminal, save them in
the new file called M.musculus.GRCm38.ref.num.order.fa. The
newly created file is in multi-sequence FASTA format.

4.2. Example 2: File Content Searching (The FASTA
Format)

The regular expression is a very useful tool for pattern
matching in a sequence of characters. The simplest example
may be a string of characters such as “bioinfo” which would
match, e.g., “bioinfo” or “bioinformatics”, but not
“biotechnics”, “Bioinfo” (because of the case sensitivity) or
anything else that does not contain “bioinfo” string. The grep
command searches files for lines containing a pattern of
interest. It may be, for example, used to check the
chromosomes order by displaying only those lines of
M.musculus.GRCm38.ref.num.order.fa which contain a greater
than (“>”) character, which corresponds to lines containing
sequence description (only the first five lines are shown here).
Please note, that special characters such as a greater-than
character (“>”) have to be given in quotes (Case 13).
Otherwise, it indicates a redirection of output as in the previous
example (Case 12).

username@hostname:~$ grep ’>’ M.musculus.GRCm38.
ref.num.order.fa

>1 dna:chromosome chromosome:GRCm38:1:1:195471
971:1 REF

>2 dna:chromosome chromosome:GRCm38:2:1:182113
224:1 REF

>3 dna:chromosome chromosome:GRCm38:3:1:160039
680:1 REF

>4 dna:chromosome chromosome:GRCm38:4:1:156508
116:1 REF

>5 dna:chromosome chromosome:GRCm38:5:1:151834
684:1 REF

4.3. Example 3: File Reformatting By Column Extraction
(The VCF Format)

The file used in this example was downloaded from the
Ensembl database
(ftp://ftp.ensembl.org/pub/release-94/variation/vcf/homo_sapie
ns/). It contains all known short DNA polymorphisms in Homo
sapiens. In the example, we use the first 100,000 lines of this

file. Different programmes for data analysis require different
inputs, so reformatting the original file is an essential skill.
Assume we need some information about SNPs kept in the
VCF file (Case 14).

username@hostname:~$ grep -v “^#” 1000GENOMES-
phase_3.100000.vcf | awk '$5 !~/,/ && $8 ~/SNV/ {print
$1,$2,$2,$4”/”$5}' > 1000GENOMES-
phase_3.100000.edited.txt

username@hostname:~$ head -n 5 1000GENOMES-
phase_3.100000.edited.txt

1 10505 10505 A/T

1 10506 10506 C/G

1 10511 10511 G/A

1 10539 10539 C/A

1 10542 10542 C/T

The pipe character (|) directs the output of a command to
the left of the pipe to become the input of the command to the
right of the pipe. In the first command, the file header is
removed, by ignoring all lines, which start with a “#”. It is
done using the grep -v command. The ^ character denotes the
beginning of a line, so the pattern “^#” only matches lines
starting with a “#” character. The output of the grep command
is not displayed; instead, it forms the input for the next
command awk. Next, only lines containing polymorphisms
classified as “SNV” (meaning Single Nucleotide Variant) are
kept by awk, which checks if column 8 contains the “SNV”
pattern ($8 ~/SNV/). Moreover, awk excludes (!~) those lines
where column 5 includes the comma character being a
separator of alternative alleles ($5 !~/,/). In practice, SNVs
with more than one allele are excluded. Columns containing
information about chromosome location (column 1), SNV
position (column 2), and genotype (columns 4 and 5) are
extracted by awk and saved into a new file named
1000GENOMES-phase_3.100000.edited.txt. This file contains
two copies (as start and end positions) of column 2; columns
are separated by a space character (by default, awk separates
fields by a comma). The alleles are separated by a “/”
character. The newly created file is in one of the input formats
accepted by Variant Effect Predictor (VEP) software. In order
to check the file content, five lines (-n flag) of the newly
created file are displayed on the terminal by the head
command.

4.4. Example 4: Information Extraction (The VEP Output
Format)

From the file in the VEP output format, the list of genes
(column 6) containing polymorphisms can easily be extracted
by awk. Nevertheless, since one polymorphism may be located
in multiple transcripts of the same gene, gene names may occur
multiple times. To select unique gene names, the sort and uniq
commands are used. In the following example (Case 15), gene
names are sorted alphabetically, then unique gene names are
saved to a file. The uniq command removes all but one copy of
adjacent identical lines. To remove all duplicates, the file,
therefore, needs to be sorted. This is done using the sort
command.

ftp://ftp.ensembl.org/pub/release-94/variation/vcf/homo_sapiens/
ftp://ftp.ensembl.org/pub/release-94/variation/vcf/homo_sapiens/

142 The Open Bioinformatics Journal, 2020, Volume 13 Mielczarek et al.

username@hostname:~$ grep -v “^#” 1000GENOMES-
phase_3.100000.edited.vep | awk '{print $4}' | grep -v “-” | sort
| uniq > 1000GENOMES-phase_3.100000.genes.vep

username@hostname:~$ head -n 5 1000GENOMES-
phase_3.100000.genes.vep

ENSG00000008128

ENSG00000008130

ENSG00000067606

ENSG00000078369

ENSG00000078808

The wc –l command counts the number of lines in the
input. This can be used to count the number of genes
containing polymorphisms without saving them to a file first.
As the following example (Case 16) shows, the newly created
list of genes is not saved to a file, but rather piped to the
command wc -l. This counts the number of lines (genes). It
works because, in this particular dataset, each line corresponds
to one gene due to the use of sort | uniq.

username@hostname:~$ grep -v “^#” 1000GENOMES-
phase_3.100000.edited.vep | awk '{print $4}' | grep -v “-” | sort
| uniq | wc -l

4.5. Example 5: Data filtering (the VEP output format)

In the following example (Case 17), only genes containing
polymorphisms, causing a frameshift in translation (column 7)
are processed. The awk command displays the name of the
gene (column 4) with the consequence assigned to
“frameshift_variant” (column 7). The sort and uniq commands
remove duplicate gene names from the list.

username@hostname:~$ awk '$7~”frameshift_variant”
{print $4}' 1000GENOMES-phase_3.100000.edited.vep | sort |
uniq

4.6. Example 6: Identifying Variants Shared Between Two
VCF Files

Assume we would like to find SNPs common to two
separate VCF files. Columns defining SNPs are 1 (CHR), 2
(POS), 4 (REF) and 5 (ALT). All of these have to be taken into
account in the comparison (Case 18).

username@hostname:~$ comm -12 <(grep -v '^#'
1000GENOMES-phase_3.100000.vcf | awk '{print
$1,$2,$4,$5}' | sort) <(grep -v '^#' investigated_sample.vcf |
awk '{print $1,$2,$4,$5}' | sort)

1 1000018 G A

1 1000079 A G

1 1000112 G T

1 1000170 C T

1 1000242 C A

For each file, the header (lines starting with a “#”) is
removed by grep –v. Next, columns are extracted by the awk
command. The command comm with flags -12 prints only lines
present in both files “1000GENOMES-phase_3.100000.vcf”

and “investigated_sample.vcf”. Only the five first lines of
output are shown.

4.7. Example 7: Counting The Number Of Reads And
Their Average Length In A FASTQ File

The command below (Case 19) counts the total number of
reads as well as their average length.

username@hostname:~$ awk 'NR%4==2 {reads++;
readlen += length($0)} END {print reads; print readlen/reads}'
SRR5078057_1.fastq

Since a sequence is stored in the second of four lines
corresponding to each read, it may be extracted using modulo
operator ‘%’ (remainder of integer division). ‘NR’ is the line
number of the current line read. By the condition ‘NR%4==2’,
we extract only lines whose remainder after division by 4 (the
number of lines describing a single read) is equal to 2 (i.e., the
line which contains a sequence line). Then, the number of reads
is incremented by reads++. The lengths of reads are summed
(readlen += length($0)). The last thing awk does is execute the
commands following the ‘END’ condition. Here, awk prints
the number of reads (print reads) and the average read length
(print readlen/reads) in a given FASTQ file. Note that for
compressed files, you must first uncompress them or read them
using zcat or bzcat – depending on the type of compression
(Case 20).

zcat SRR5078057_1.fastq.gz | awk 'NR%4==2 {reads++;
readlen += length($0)} END {print reads; print readlen/reads}'

4.8. Example 8: Conversion Of The FASTQ Format To The
FASTA Format

Sed is a stream editor used to transform text. In this
example, it is used to convert FASTQ to FASTA file by
reducing the number of lines corresponding to each nucleotide
sequence. Normally, sed prints the input lines without any
modification. With the ‘-n’ option, sed prints only what is
defined by the ‘p’ option. In the example below, the 1~4
pattern selects the first line out of 4. In this line, the initial ‘@’
character is replaced by a ‘>’, since ‘s’ before the pattern
indicates substitution. After the semicolon, the 2~4p pattern
indicates that every fourth line starting from the second line
(i.e., the line containing the sequence) should be printed. The
effect is written in the new file called SRR5078057_1.fasta
(Case 21).

username@hostname:~$ sed -n '1~4s/^@/>/p; 2~4p'
SRR5078057_1.fastq > SRR5078057_1.fasta

username@hostname:~$ head -n 6 SRR5078057_1.fasta

>SRR5078057.1 HWI-ST:6:1101:1149:1947/1

NGCGACCTGAACCTCTACAACAAGGAGTCCAAGC
TGTCCTACTTCACCGA

>SRR5078057.2 HWI-ST:6:1101:2495:1939/1

NGGCCGTCGGACTGCTCTGTGTATCAGCAGCGCTG
CTGGTGCGACAGCGG

>SRR5078057.3 HWI-ST:6:1101:2340:1969/1

TGCGCTTACAAACTAATTAATAAATTAATAGTTAG

Dealing with Sequence Data Using A Command Line The Open Bioinformatics Journal, 2020, Volume 13 143

CTTAAAAAGAGGCTT

4.9. Example 9: Transformation Of Columns Using A “Key
File”

A common challenge is that one has to update a column in
a text file with information from another source. Awk can be
used to transform values in a given column using information
from a “key file”, which contains pairs of old and new values.
In the following example, the genes.txt file is the “key file”
containing the list of Ensembl gene IDs with corresponding
genes symbols. The file polymorphisms.txt contains SNPs
located in some of these genes, but only Ensembl gene ID is
provided. Awk transforms Ensembl gene IDs to gene symbols
in polymorphism_in_genes.txt file (Case 22).

username@hostname:~$ cat genes.txt

ENSG00000227232 FAM39F

ENSG00000278267 hsa-mir-6859-1

ENSG00000284332 hsa-mir-1302-2

ENSG00000284332 MIRN1302-2

ENSG00000237613 F379

username@hostname:~$ cat polymorphism_in_genes.txt

1 14404 14404 G/A ENSG00000227232

1 34570 34570 C/G ENSG00000237613

username@hostname:~$ awk 'BEGIN{OFS=”\t”};
NR==FNR{k[$1]=$2;next}; {$5=k[$5]; print}' genes.txt
polymorphism_in_genes.txt

The tab character is defined to be an output field separator
by the OFS=”\t” option. The syntax
NR==FNR{k[$1]=$2;next} concerns the “key file” (genes.txt)
and creates the array (k) containing gene symbols from the
second column ($2) indexed by Ensembl gene IDs from the
first column ($1). Therefore, the number of array elements is
the same as the number of lines in the genes.txt file. The syntax
{$5=k[$5]; print} assigns the values from array k indexed by
column 5 of polymorphism_in_genes.txt to this column and
prints the file with new values (gene symbols) instead of
Ensembl IDs.

5. BASH SCRIPTS

All the commands described may be saved in a text file.
Such a file is called a script. The commands in the script are
executed as if they were input on the command line. In
“Example 5,” commands are presented in the form of a script.
A program executes all the commands in a script. Linux
operating system has several shells. The most widely used is
the bash (Bourne-Again Shell). Each bash script starts with the
string “#!/bin/bash”. This indicates that commands in the script
should be executed using the bash shell. The echo command
displays the string of characters defined in quotation marks
(Case 17).

#!/bin/bash

echo “This script looks for frameshifts”

awk '$7~”frameshift_variant” {print $4}' \

1000GENOMES-phase_3.100000.edited.vep| sort | uniq

The above code must be saved in the text file
script_eg5.sh. To execute the commands, the name of the file
must be entered at the command prompt (Case 23). The 2nd line
of the above script is executed printing the string “This script
looks for frameshifts” by the echo command. Then the
execution of the 3rd line of the script results in printing the list
of gene names, which contain a frameshift variant, defined by
the awk command.

username@hostname:~$ bash script_eg5.sh

This script looks for frameshifts

ENSG00000162571

ENSG00000162576

ENSG00000176022

ENSG00000184163

ENSG00000187583

ENSG00000197530

ENSG00000228594

6. BIOAWK

The development of sequencing technology and the huge
need for various types of data collecting resulted in many tools
dedicated to the processing of sequencing data. One of these
tools is bioawk, being an extension of awk programming
language (https://github.com/lh3/bioawk), which enables the
processing of several popular biological formats such as BED
[21], SAM [22], VCF, GFF (http://mblab.wustl.edu/GTF22.
html) and FASTX (FASTA or FASTQ). It is an easy-to-use
awk with predefined separator fields and variables
characteristic for a given biological format. In order to process
FASTX files, the following variables are predefined: ‘name’
(text from ‘>’ character to the first whitespace), ‘seq’
(sequence, i.e., text from the second line to the end of file or to
the next ‘>’ character), ‘qual’ (in FASTQ format, the 4th line
of read), and ‘comment’ (text described in the first line, except
the content of the ‘name’ variable). For the VCF format
following variables are predefined: ‘chrom’, ‘pos’, ‘id’, ‘ref’,
‘alt’, ‘qual’, ‘filter’, and ‘info’. The complete list of all
available file formats and their predefined variables is available
by using ‘bioawk -c help’.

6.1. Example 10: The Sequence Length And Its GC Content
Calculations (FASTX)

This command computes the sequence length and its GC
content. This is useful in the analysis of sequence complexity
(Case 24).

username@hostname:~$ bioawk -c fastx '{print “>” $name
$comment; print “Length:”, length($seq); print “GC%:”,
gc($seq)}' SRR5078057_1.fasta

The -c option ‘fastx’ file format is defined. Then the ‘>’
character is printed together with the sequence ID (‘$name’)
and other information (‘$comment’) stored in the first line of
each sequence header. Then, the length and GC content percent
for each sequence are respectively calculated using ‘length’

https://github.com/lh3/bioawk
http://mblab.wustl.edu/GTF22.html
http://mblab.wustl.edu/GTF22.html

144 The Open Bioinformatics Journal, 2020, Volume 13 Mielczarek et al.

and ‘gc’ functions. Finally, the input file in FASTA format is
provided.

6.2. Example 11: Calculating the Average Quality and the
Proportion of Nucleotides Satisfying a Quality Threshold
(FASTQ)

Quality control is a standard step of high-throughput
sequence data analysis. The following command combination
(Case 25) computes the mean sequencing quality across all
reads in a FASTQ file as well as the proportion of nucleotides
with a quality above a certain threshold (in this case, set to 30).

username@hostname:~$ bioawk -c fastx
'{threshold+=qualcount($qual,30); seqLen+=length($seq)}
END {print meanqual($qual), threshold/seqLen}'
SRR5078057_1.fastq

CONCLUSION

In modern life sciences, handling large-scale datasets is an
important skill. One of the most fundamental issues is learning
how to easily edit and manipulate files using bash command
line tools under the UNIX/Linux operating system. An
important advantage of using the bash programming language
is that it is system independent, so that the vast majority of
commands and scripts are directly portable between computers
running different UNIX or Linux distributions and versions.
Another advantage is that by using the command line, fast
processing of data is possible since it does not have to rely on
graphical software, which itself consumes some is CPU time
and typically requires continuous user interaction. This ensures
a good continuity and portability of the application. We believe
that starting from using the basic commands presented above,
an interested user can easily extend skills and modify them to
meet specific needs of their own analysis, even without deep
knowledge of computer programming.

LIST OF ABBREVIATIONS

ASCII = American Standard Code for Information Interchange

Bash = Bourne-Again Shell

CLI = command-line interface

NCBI = National Center for Biotechnology Information

Ssh = Secure Shell

VCF = Variant Call Format

VEP = Variant Effect Predictor

ETHICS APPROVAL AND CONSENT TO
PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No human and Animal were used for studies that are the
basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or
otherwise.

ACKNOWLEDGEMENTS

This work was supported by Wroclaw Centre of
Biotechnology programme, The Leading National Research
Centre (KNOW) for years 2014-2018, as well as Poznan
Supercomputing and Networking Centre.

REFERENCES

Ekmekci B, McAnany CE, Mura C. An introduction to programming[1]
for bioscientists: A python-based primer. PLOS Comput Biol 2016;
12(6)e1004867
[http://dx.doi.org/10.1371/journal.pcbi.1004867] [PMID: 27271528]
Visser MD, McMahon SM, Merow C, Dixon PM, Record S, Jongejans[2]
E. Speeding up ecological and evolutionary computations in R;
essentials of high performance computing for biologists. PLOS
Comput Biol 2015; 11(3)e1004140
[http://dx.doi.org/10.1371/journal.pcbi.1004140] [PMID: 25811842]
Lee J, Heath LS, Grene R, Li S. Comparing time series transcriptome[3]
data between plants using a network module finding algorithm. Plant
Methods 2019; 15: 61.
[http://dx.doi.org/10.1186/s13007-019-0440-x] [PMID: 31164912]
Kesharwani RK, Chiesa M, Bellazzi R, Colombo GI. CBS-miRSeq: A[4]
comprehensive tool for accurate and extensive analyses of microRNA-
sequencing data. Comput Biol Med 2019; 110: 234-43.
[http://dx.doi.org/10.1016/j.compbiomed.2019.05.019] [PMID:
31207557]
Alberdi A, Gilbert MTP. A guide to the application of Hill numbers to[5]
DNA-based diversity analyses. Mol Ecol Resour 2019; 19(4): 804-17.
[http://dx.doi.org/10.1111/1755-0998.13014] [PMID: 30947383]
Gancarz Linux and the Unix Philosophy. 2nd ed. Digital Press 2013.[6]
Stallman Free Software Free Society: Selected Essays of Richard M.[7]
3rd ed. Stallman 2015.
Mohammed Y, Palmblad M. Using the object-oriented powershell for[8]
simple proteomics data analysis. Methods Mol Biol 2020; 2051:
389-405.
[http://dx.doi.org/10.1007/978-1-4939-9744-2_17] [PMID: 31552639]
Ferrero G, Licheri N, Coscujuela Tarrero L, et al. Docker4Circ: A[9]
framework for the reproducible characterization of circRNAs from
RNA-Seq data. Int J Mol Sci 2019; 21(1)E293
[http://dx.doi.org/10.3390/ijms21010293] [PMID: 31906249]
Perampalam P, Dick FA. BEAVR: A browser-based tool for the[10]
exploration and visualization of RNA-seq data. BMC Bioinformatics
2020; 21(1): 221.
[http://dx.doi.org/10.1186/s12859-020-03549-8] [PMID: 32471392]
Davis-Turak J, Courtney SM, Hazard ES, et al. Genomics pipelines[11]
and data integration: Challenges and opportunities in the research
setting. Expert Rev Mol Diagn 2017; 17(3): 225-37.
[http://dx.doi.org/10.1080/14737159.2017.1282822] [PMID:
28092471]
Griffith M, Walker JR, Spies NC, Ainscough BJ, Griffith OL.[12]
Informatics for RNA sequencing: A web resource for analysis on the
cloud. PLOS Comput Biol 2015; 11(8)e1004393
[http://dx.doi.org/10.1371/journal.pcbi.1004393] [PMID: 26248053]
Lipman D J, Pearson W R. Rapid and Sensitive Protein Similarity[13]
Searches. Science (80) 1985; 227(4693): 1435-41.
[http://dx.doi.org/10.1126/science.2983426.]
Calvignac S, Hughes S, Tougard C, et al. Ancient DNA evidence for[14]
the loss of a highly divergent brown bear clade during historical times.
Mol Ecol 2008; 17(8): 1962-70.
[http://dx.doi.org/10.1111/j.1365-294X.2008.03631.x] [PMID:
18363668]

http://dx.doi.org/10.1371/journal.pcbi.1004867
http://www.ncbi.nlm.nih.gov/pubmed/27271528
http://dx.doi.org/10.1371/journal.pcbi.1004140
http://www.ncbi.nlm.nih.gov/pubmed/25811842
http://dx.doi.org/10.1186/s13007-019-0440-x
http://www.ncbi.nlm.nih.gov/pubmed/31164912
http://dx.doi.org/10.1016/j.compbiomed.2019.05.019
http://www.ncbi.nlm.nih.gov/pubmed/31207557
http://dx.doi.org/10.1111/1755-0998.13014
http://www.ncbi.nlm.nih.gov/pubmed/30947383
http://dx.doi.org/10.1007/978-1-4939-9744-2_17
http://www.ncbi.nlm.nih.gov/pubmed/31552639
http://dx.doi.org/10.3390/ijms21010293
http://www.ncbi.nlm.nih.gov/pubmed/31906249
http://dx.doi.org/10.1186/s12859-020-03549-8
http://www.ncbi.nlm.nih.gov/pubmed/32471392
http://dx.doi.org/10.1080/14737159.2017.1282822
http://www.ncbi.nlm.nih.gov/pubmed/28092471
http://dx.doi.org/10.1371/journal.pcbi.1004393
http://www.ncbi.nlm.nih.gov/pubmed/26248053
http://dx.doi.org/10.1126/science.2983426.
http://dx.doi.org/10.1111/j.1365-294X.2008.03631.x
http://www.ncbi.nlm.nih.gov/pubmed/18363668

Dealing with Sequence Data Using A Command Line The Open Bioinformatics Journal, 2020, Volume 13 145

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger[15]
FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids Res 2010; 38(6):
1767-71.
[http://dx.doi.org/10.1093/nar/gkp1137] [PMID: 20015970]
Hua BL, Bell GW, Kashevsky H, Von Stetina JR, Orr-Weaver TL.[16]
Dynamic changes in ORC localization and replication fork progression
during tissue differentiation. BMC Genomics 2018; 19(1): 623.
[http://dx.doi.org/10.1186/s12864-018-4992-3] [PMID: 30134926]
Danecek P, Auton A, Abecasis G, et al. The variant call format and[17]
VCFtools. Bioinformatics 2011; 27(15): 2156-8.
[http://dx.doi.org/10.1093/bioinformatics/btr330] [PMID: 21653522]
McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect[18]
predictor. Genome Biol 2016; 17(1): 122.

[http://dx.doi.org/10.1186/s13059-016-0974-4] [PMID: 27268795]
McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F.[19]
Deriving the consequences of genomic variants with the Ensembl API
and SNP Effect Predictor. Bioinformatics 2010; 26(16): 2069-70.
[http://dx.doi.org/10.1093/bioinformatics/btq330] [PMID: 20562413]
Eilbeck K, Lewis SE, Mungall CJ, et al. The Sequence Ontology: A[20]
tool for the unification of genome annotations. Genome Biol 2005;
6(5): R44.
[http://dx.doi.org/10.1186/gb-2005-6-5-r44] [PMID: 15892872]
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for[21]
comparing genomic features. Bioinformatics 2010; 26(6): 841-2.
[http://dx.doi.org/10.1093/bioinformatics/btq033] [PMID: 20110278]
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map[22]
format and SAMtools. Bioinformatics 2009; 25(16): 2078-9.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]

© 2020 Mielczarek et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is
available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://dx.doi.org/10.1186/s12864-018-4992-3
http://www.ncbi.nlm.nih.gov/pubmed/30134926
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522
http://dx.doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
http://dx.doi.org/10.1093/bioinformatics/btq330
http://www.ncbi.nlm.nih.gov/pubmed/20562413
http://dx.doi.org/10.1186/gb-2005-6-5-r44
http://www.ncbi.nlm.nih.gov/pubmed/15892872
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://creativecommons.org/licenses/by/4.0/legalcode

	Extraordinary Command Line: Basic Data Editing Tools for Biologists Dealing with Sequence Data
	1. INTRODUCTION
	2. LINUX COMMAND LINE AVAILABILITY
	3. SELECTED BIOLOGICAL DATA FORMATS
	3.1. FASTA Format
	3.2. FASTQ Format
	3.3. Variant Call Format (VCF)
	3.4. Variant Effect Predictor Software Input and Output Formats

	4. COMMAND LINE TOOLS
	4.1. Example 1: Merging Multiple Files Into One (The FASTA Format)
	4.2. Example 2: File Content Searching (The FASTA Format)
	4.3. Example 3: File Reformatting By Column Extraction (The VCF Format)
	4.4. Example 4: Information Extraction (The VEP Output Format)
	4.5. Example 5: Data filtering (the VEP output format)
	4.6. Example 6: Identifying Variants Shared Between Two VCF Files
	4.7. Example 7: Counting The Number Of Reads And Their Average Length In A FASTQ File
	4.8. Example 8: Conversion Of The FASTQ Format To The FASTA Format
	4.9. Example 9: Transformation Of Columns Using A “Key File”

	5. BASH SCRIPTS
	6. BIOAWK
	6.1. Example 10: The Sequence Length And Its GC Content Calculations (FASTX)
	6.2. Example 11: Calculating the Average Quality and the Proportion of Nucleotides Satisfying a Quality Threshold (FASTQ)

	CONCLUSION
	LIST OF ABBREVIATIONS
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES

