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Abstract:

Background:

Rice contributes to the staple food of more than half of the world’s population. However, its productivity is influenced by various biotic and abiotic
stresses. Genetic engineering and plant breeding tools help to overcome the adverse effects of environmental stresses. The advanced bioinformatics
tools provide information for a better understanding of the mechanisms underlying stress tolerance, gene expression profiles and functions of the
important genes and cis-regulatory elements involved in better performance under abiotic stresses.

Objective:

To identify the key genes involved in the tolerance mechanism for abiotic stresses and their regulatory networks in rice (Oryza sativa L.).

Methods:

A  total  of  152  various  microarray  datasets  associated  with  nine  rice  trials  were  retrieved  for  expression  meta-analysis  through  various
bioinformatics tools.

Results:

The results indicated that 29593, 202798, 73224 and 25241 genes represented significant differential expression under cold, drought, salinity and
heat stress conditions compared with the control condition, respectively.  Twenty three highly overexpressed genes were identified under the
evaluated abiotic stresses. The transcription regulatory activity of differentially expressed genes was mainly due to hormone, light and stress-
responsive cis-acting regulatory elements among which ABRE, ARE, CGTCA-motif, GARE-motif, TGACG-motif, G-box, G-Box, GAG-motif,
GA-motif, TCT-motif, Box 4, Sp1, HSE, MBS and TC-rich repeats were the most important in the promoter sites of the identified up-regulated
genes. The results of cis-acting regulatory analysis suggest that 15 cis-acting regulatory elements were contributed to the tolerance mechanisms for
abiotic stresses.

Conclusion:

The result of expression meta-analysis in this study provides an insight for plant breeders for better understanding the function of the genes and
their  regulatory  mechanism in  plants  (especially  cereals)  exposed  to  different  abiotic  stresses.  The  outcome  of  this  study  suggests  practical
approaches for designing unified breeding programmes to breed multi-abiotic stress-tolerant species.
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1. INTRODUCTION

Agriculture  is  affected  by  environmental  abiotic  stresses
including  drought,  high  salinity,  low  and  high  temperatures.
Responses of plants to abiotic stresses are being increasingly
addressed on a genome-wide scale in order to find novel gene
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targets involved in the tolerance mechanisms [1]. The share of
rice to the diet of almost half of the worlds’ population and its
popularity  as  a  post-genomic  model  crop  has  made  it  an
important crop for meta-analysis of stress tolerance associated
genes [2, 3]. The response of gene families to abiotic stresses
has been assessed by transcriptome-wide analyses suggesting
their role in response to multiple environmental stresses [4 - 7].
Genetic  analysis  of  the  tolerance  mechanisms  against
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environmental  stresses  in  plants  reveals  that  specific  genes
respond to such stresses at the transcriptional level [8 - 15]. At
the  molecular  level,  environmental  stresses  affect  the
expression of stress-responsive genes [16 - 21]. The products
of  the  stress-inducible  genes  have  been  classified  into  two
classes:  one  that  directly  protects  against  environmental
stresses and the other that is associated with gene expression
and signal transduction pathways. Detection of stress-inducible
genes helps to improve the stress tolerance in plants through
cross-breeding and genetic engineering tools [8 - 10, 14, 15, 22
-  24].  Identification  of  stress-inducible  genes  and expression
changes  in  response  to  environmental  stresses  and  a  better
understanding  of  the  regulatory  mechanism  behind
differentially  expressed  genes  are  important  for  the
improvement  of  crop  plants  under  abiotic  stress  conditions.

Regulation  of  gene  expression  in  various  tissues  during
physiological  processes  is  controlled  at  the  transcriptional,
post-transcriptional and post-translational levels. Regulation at
the transcriptional level that plays an important role in response
to abiotic stresses is mainly associated with promoters and their
contributing  cis-acting  regulatory  elements  (CARE)  [25].
Promoters are DNA sequences located at the upstream of the
gene  coding  region  and  included  the  CAREs  as  the  binding
sites  for  proteins  in  transcription  events.  In  higher  plants,
CAREs  act  as  enhancers,  silencers  or  insulators  [26].
Promoters have a core segment of 40 bp at the upstream of the
transcription  initiation  site  that  compromises  the  TATA-box
[27, 28]. Proximal and distal regions located at the upstream of
the core promoters (regulatory sequence and cis-elements) play
a significant role in the regulation of gene expression [28, 29].
Promoter analysis provides valuable information to identify the
function  and  signalling  of  genes.  Furthermore,  CARE  is  the
appropriate  goal  to  dissect  the  molecular  mechanisms  of
responses to abiotic stresses [30]. As a result,  access to gene
expression  data  helps  to  better  understand  the  expression
pattern of gene families or single genes at whole genome level
and  accommodates  to  identify  the  gene(s)  contributed  to
biological processes [31]. DNA microarray representing high-
throughput gene expression profiling has been used to discern
the tolerance mechanisms in plants [32 - 41]. Besides, the gene
expression databases and various bioinformatics tools help to
determine cis-regulatory sites in coding and non-coding DNA
sequences [42].

Analysis of expression patterns of stress responsive genes
in  rice  associated  trials  resulted  in  a  large  volumes  of
expression  data  that  are  available  as  online  databases.
However,  the  exact  molecular  mechanism  underlying  stress
responses  is  still  poorly  understood.  Hence,  there  is  a  great
demand  to  assess  expression  data  through  meta-analysis  and
identify  commonly  expressed  genes  under  various  abiotic
stresses  conditions  that  can  be  used  in  engineering  stresses
tolerance  in  rice.  The  aims  of  the  present  study  were  to  (1)
assess  subsets  of  expression  data  associated  with  stress
tolerance retrieved from online databases using bioinformatics
tools;  (2)  meta-analysis  of  common  expressed  genes
contributing  to  cold,  heat,  drought  and  salinity  tolerance  in
rice;  and  to  (3)  uncover  and  characterize  the  regulatory
mechanisms of abiotic tolerance responsive genes (Table 1).

2. METHODS

2.1. Database Development and Expression Meta-Analysis

A database containing 152 microarray expression data sets
corresponding  to  nine  rice  trials  associated  with  cold,  salt,
drought  and  heat-stressed  conditions  was  developed
(Supplementary Table 1).  The rice microarray data sets were
retrieved from the ArrayExpress and NCBI GEO DataSets [43,
44].  The  expression  data  have  been  annotated  to  the
ArrayExpress and NCBI GEO DataSets. All the data sets, title,
experiment  type  and  the  overall  design  for  downloading  the
data can be found on the ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/)  and  NCBI  (http://www.ncbi.nlm.nih.gov/)
documentation pages [45 - 53]. Furthermore, the library (.CDF:
rice_libraryfile)  and  annotation  (.CSV:  Rice.na35.annot.csv)
files  were  retrieved  from  the  Affymetrix  database
(http://www.affymetrix.com/technology/mip_technology.affx).
Selection of these data files was based on the type of Chips that
have been used in microarray experiments. The Affymetrix raw
data (.CEL) files were analyzed by FlexArray software version
1.6.3. Firstly, the CEL data and the library file were imported
to  the  FlexArray  software.  The  CEL  data  were  normalized
based on the Robust Multiarray Average (RMA) algorithm [54]
and the RMA signal values were transformed into Log2.  The
RMA  is  a  preprocessing  algorithm  used  for  background
correction  and  data  normalization  in  Affymetrix  and
Nimblegen  gene  expression  microarray  trials.  In  order  to
identify  Differentially  Expressed  Genes  (DEGs),  the  RMA
expression  values  were  analyzed  based  on  a  two-sample
student’s  t-test.  Finally,  the  gene  list  of  the  expression  data
identified  using  t-test  and  the  annotation  for  each  gene  were
added  based  on  a  new rice  annotation  file.  The  up-regulated
genes  with  above  1-  symmetrical  raw  fold  change  (FC),  the
down-regulated genes of less than 0-symmetrical raw FC and
the over-expressed genes with above 30- symmetrical raw FC
were selected for further data analysis (Table 2). The P-values
were  adjusted  in  the  false  discovery  rate  (FDR)  of  less  than
0.05.

2.2. Differentially Expressed Genes (DEGs)

To  compare  the  results  of  expression  data  analyses,  the
UpSetR  R  package  was  used  to  identify  the  interrelationship
between the DEGs and the representing interactions among the
gene sets identified under cold, heat, salinity and drought stress
conditions.

2.3. Gene Ontology (GO) and Functional Categorization

Annotations  of  gene  for  overexpressed  genes  and  clus-
tering  functions,  location  and  biological  roles  were  accomp-
lished  by  the  GO  Tutorial-TAIR  at  https://www.arabidopsis.
org/help/tutor-ials/go6.jsp. Furthermore, the GO annotation and
the  functional  categorizations  derived  from  the  TAIR
(https://www.arabidopsis.org/tools/bulk/go/index.jsp) database.
Functional  categorization  was  performed  followed  by  the
below  equation:

                          ( )  [
                                                 

                                                    
] 

https://www.ebi.ac.uk/arrayexpress/)
https://www.ebi.ac.uk/arrayexpress/)
http://www.ncbi.nlm.nih.gov/)
http://www.affymetrix.com/technology/mip_technology.affx
https://www.arabidopsis.org/help/tutor-ials/go6.jsp
https://www.arabidopsis.org/help/tutor-ials/go6.jsp
https://www.arabidopsis.org/tools/bulk/go/index.jsp


Meta-Analysis of Expression of the Stress Tolerance Associated Genes The Open Bioinformatics Journal, 2020, Volume 13   41

Table 1. The list of genes overexpressed under various stress conditions.

Condition Probeset Gen Bank Acc. Fold Change T Statistic P-value

Cold Stress
Os.52451.1.A1_at AK067195.1 83.19 11.17 3.60E-04
Os.32366.1.S1_at AK105196.1 78.70 15.90 1.99E-08
Os.52280.1.S1_at AK066054.1 33.45 33.07 4.98E-06

Drought Stress

Os.25497.1.S1_at CA765994 955.99 306.68 1.06E-05
Os.51718.1.S1_at AK063517.1 926.56 36.38 3.41E-06
Os.47732.1.S1_at BI809490 797.08 61.51 2.60E-04
Os.49245.1.S1_at AK063685.1 746.08 74.90 1.90E-07
Os.5325.1.S1_at AK107930.1 738.38 20.21 3.54E-05

Os.8668.1.S1_x_at AK066459.1 637.73 163.33 3.75E-05
Os.12551.1.S1_s_at U57641.1 585.38 142.02 1.47E-08
Os.12633.1.S1_s_at U60097.2 553.39 41.28 1.35E-08
Os.42784.1.S1_at NM_189885.1 521.36 22.12 5.58E-07

Os.28200.1.S1_x_at AK099709.1 511.55 39.61 1.73E-08
Os.37717.1.A1_s_at BU673746 473.89 6.87 2.30E-03

Os.11271.2.S1_at CB666821 374.63 138.28 5.23E-05
Os.12415.1.S1_at AK063582.1 335.29 44.93 4.90E-04
Os.11260.1.S1_at AK102039.1 156.35 237.82 1.77E-05

Os.47625.1.A1_s_at BX901098 117.62 8.18 1.40E-02

Salt Stress

Os.49245.1.S1_at AK063685.1 413.38 62.04 4.04E-07
Os.23092.1.S1_at CA755805 319.17 126.75 6.22E-05
Os.5325.1.S1_at AK107930.1 154.66 32.22 5.53E-06

Os.12633.1.S1_s_at U60097.2 100.73 26.57 1.19E-05
Os.56004.1.S1_at AK109114.1 99.61 29.87 1.22E-08
Os.12415.1.S1_at AK063582.1 81.91 26.16 1.27E-05
Os.12703.1.S1_at AK070417.1 63.08 15.75 1.01E-06
Os.51718.1.S1_at AK063517.1 62.40 24.61 1.62E-05

Heat Stress

Os.11039.3.S1_at AK105370.1 661.77 193.18 4.31E-09
Os.11039.1.S1_s_at AK063751.1 619.97 75.44 1.85E-07
Os.47625.1.A1_s_at BX901098 112.82 7.19 1.18E-02
Os.10038.1.S1_s_at AU082861 100.98 10.83 8.40E-03

Table 2. Identified Cis-regulatory elements and associated function in the promoter region of abiotic stress responsive genes.

Cis-Regulatory Element Sequence Function
AAGAA-motif GAAAGAA Unknown

A-box CCGTCC Cis-acting regulatory element
ABRE TACGTG Cis-acting element involved in the abscisic acid responsiveness
ACE AAAACGTTTA Cis-acting element involved in light responsiveness
ARE TGGTTT Cis-acting regulatory element essential for the anaerobic induction
Box 4 ATTAAT Part of a conserved DNA module involved in light responsiveness

CAAT-box CAAT Common cis-acting element in promoter and enhancer regions
CAT-box GCCACT Cis-acting regulatory element related to meristem expression

CCGTCC-box CCGTCC Cis-acting regulatory element related to meristem specific activation
CGTCA-motif CGTCA Cis-acting regulatory element involved in the MeJA-responsiveness

Circadian CAANNNNATC Cis-acting regulatory element involved in circadian control
GAG-motif GGAGATG Part of a light responsive element
GA-motif AAAGATGA Part of a light responsive element

G-box TACGTG Cis-acting regulatory element involved in light responsiveness
G-Box CACGTA Cis-acting regulatory element involved in light responsiveness
HSE AAAAAATTTC Cis-acting element involved in heat stress responsiveness
MBS TAACTG MYB binding site involved in drought-inducibility

O2-site GATGATATGG Cis-acting regulatory element involved in zein metabolism regulation



42   The Open Bioinformatics Journal, 2020, Volume 13 Shariatipour and Heidari

Cis-Regulatory Element Sequence Function
SKn-1-motif GTCAT Cis-acting regulatory element required for endosperm expression

Sp1 CC(G/A)CCC Light responsive element
TATA-box TATAAA Core promoter element around -30 of transcription start

TC-rich repeats ATTTTCTTCA Cis-acting element involved in defense and stress responsiveness
TCT-motif TCTTAC Part of a light responsive element

TGACG-motif TGACG Cis-acting regulatory element involved in the MeJA-responsiveness

Fig. (1). The upset plot of up-regulated genes differentially expressed in response to drought, cold, salinity and heat stresses.

Where,  GO slims  (subsets)  are  cut-down versions  of  the
gene ontology containing a subset of the terms. This structure
represents  a  subset  of  the  ontology  that  was  designed
specifically for plants and can be used for organizing sets of
genes  according  to  broad  GO  ontology  categories.  The
nominator  of  the  equation  represents  annotation  count  of  a
specific functional category (nucleus, cell, nuclease activity) in
each GO category (cellular component, molecular function or
biological  process)  and  the  denominator  stands  for  the  total
annotation  count  of  the  functional  category  in  each  GO
category.

2.4. Analysis of Cis-Acting Regulatory Element (CAREs)

The  accession  numbers  of  the  complete  nucleotide
sequence  (FASTA  format)  of  the  over-expressed  genes
contributing to transcription regulatory activities were obtained
from  the  National  Center  for  Biotechnology  Information
(NCBI) (https://www.ncbi.nlm.nih.gov/) database. For CAREs
analysis,  the  1.5  kbp sequences  of  5´  upstream of  each  gene
were  retrieved  from  the  Phytozome  (http://www.phytozome.
net/)  database  and  subsequently  were  subjected  to  the
PlantCare  (http://bioinformatics.psb.ugent.be/webtools/plant
care/html/)  database  to  identify  common  CAREs  in  the

responsive  genes  against  the  abiotic  stresses  [55].

3. RESULTS AND DISCUSSION

3.1. Identification of DEGs

The results of the t-test in meta-analysis suggested 29593,
202798,  73224  and  25241  gene  accessions  with  significant
differential  expression  under  cold,  drought,  salinity  and  heat
stresses,  respectively  (Supplementary  Table  2).  These  data
suggested  that  drought  and  salinity  stresses  were  more
restrictive  than  cold  and  heat  stresses  for  rice  growth.

Differences  and  cross-talk  of  gene  expression  among
drought, salinity, cold and heat stress responses were analyzed
using Upset plots. As shown in Fig. (1), 10363, 4399, 1660 and
901 gene accessions represented up-regulation under drought,
salt,  cold  and  heat  stresses,  respectively.  Furthermore,  the
expression of 1238 genes in the four stresses was increased. A
number of 8550, 2417, 520 and 130 genes showed an increase
in  expression  level  under  drought-salinity,  drought-cold,
salinity-heat and cold-heat stress conditions, respectively (Fig.
1)  suggesting  the  existence  of  greater  crosstalk  between
drought  and  salinity  stress  signaling  processes  in  rice.
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Fig. (2). The upset plot of down-regulated genes differentially expressed in response to drought, cold, salinity and heat stresses.

Analysis of down/up-regulated stress related genes helps a
better  understanding  of  the  basis  of  molecular  responses  to
abiotic  stresses  [38].  In  the  present  study,  the  results  of  the
meta-analysis revealed that  a total  of 11328, 2982, 1613 and
845  gene  accessions  were  down-regulated  under  drought,
salinity, cold and heat stresses (Fig. 2).  The results indicated
that  8258,  2713,  503  and  187  DEGs  showed  crosstalk  in
response  to  drought-salinity,  drought-cold,  salinity-heat  and
cold-heat  stress  combinations,  respectively.  The  number  of
down-regulated  genes  was  higher  than  that  of  up-regulated
showing the majority of genes have been switched off  under
drought  and  salinity  stresses  in  rice  (Figs.  1  and  2).  Similar
results  were  obtained  in  arabidopsis  tested  under  stressed
conditions  [38].

Of  the  up-regulated  genes,  47%  were  associated  with
potential  candidate  genes  contributed  to  abiotic  stress
tolerance.  Some  of  the  key  genes  involved  in  stress-induced
proteins,  brassinosteroid-regulated proteins,  binding proteins,
pathogenesis-related  proteins,  transcription  factors,  photo-
synthetic proteins and transporter proteins. The up-regulation
of  these  genes  under  drought,  cold  and  salinity  stresses  has
been  reported  previously  [38].  A  number  of  24  genes  over-
expressed  in  various  environmental  conditions  were  selected
for  further  analysis  to  provide  a  valuable  resource  of
information for use in breeding programs under abiotic stresses
(Table 1).

3.2. GO and Functional Annotation of DEGs

Functional  groups  of  overexpressed  genes  in  the  four
stresses  tested  are  presented  in  Fig.  (3).  The  results  of  the
functional annotation of DEGs showed that the nucleus, other
membranes and plasma membrane gene groups had the highest

percentages in cellular component category. Several genes with
specific  products  in  certain  places  of  cell  (cell  membranes)
showed  up-regulation  in  response  to  abiotic  stresses.  The
results of gene expression analysis revealed that trehalose that
protects membranes and proteins in cells  exposed to drought
stress  conditions  was  accumulated  under  various  abiotic
stresses  [56,  57].

Transporter activity, DNA and RNA-binding, transcription
factor activity and kinase activity were the most prevalent gene
groups  among  the  identified  over-expressed  genes  (Fig.  3)
demonstrating their roles in alleviating the adverse effects of
abiotic stress conditions in rice. RNA-binding proteins have an
important role in post-transcriptional gene regulation. Most of
the  RNA-binding  proteins  are  plant-specific  with  known
functions.  RNA-binding  proteins  that  regulate  pre-mRNA
splicing, polyadenylation, RNA stability and RNA export are
important for the adaptation of plants to various environments
[58, 59]. The functional gene group for DNA binding activity
contributes  to  tolerance  to  multiple  stresses,  generally  in  an
ABA-independent manner through DRE/CRT cis-elements and
the AP2/ERF DNA binding domain [60].

Various  products  of  genes  with  kinase  activities  (Fig.  3)
contribute to abiotic stress tolerance. Among the protein kin-
ases involved in stress signal transduction, mitogen-activated
protein kinases (MAPKs) [61 - 63], glycogen synthase kinase 3
(GSK3)  [64,  65],  S6  kinase  (S6K)  [55],  calcium-dependent
protein  kinases  (CDPKs)  [66  -  68]  and  most  of  the  SNF1-
related  kinases  (SnRKs)  are  common  among  all  eukaryotic
organisms  [69].  Furthermore,  SnRK2  family  members  are
plant-specific  serine/threonine  kinases  contributed  to  plant
response to abiotic stresses and abscisic acid (ABA)-dependent
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plant development [69].

Some of the identified overexpressed genes belonged to the
Transcription Factors (TF) category (Fig. 3). It has been shown
that  TFs  belonging  to  the  dehydration-responsive  element-
binding  proteins  (DREB),  C-repeat-binding  factors  (CBF),
ABA-Binding  Factors  (ABF),  myelocytomatosis  oncogenes
(MYC)  and  myeloblastosis  oncogenes  (MYB)  respond  to
drought stress conditions [70 - 72]. Genes involved in kinase
activity help plants deal with abiotic stresses. One of the most
important plant TFs is DREB that regulates the expression of
many  stress-inducible  genes  mostly  in  an  ABA-independent
manner.  The  DREBs  play  a  critical  role  in  improving  the
abiotic  stress  tolerance  of  plants  by  interacting  with  a
DRE/CRT  cis-element  present  in  the  promoter  regions  of
various  abiotic  stress-responsive  genes  [60].  The DREB TFs
contain  a  highly  conserved  AP2/ERF  DNA-binding  domain
across the plant kingdom including arabidopsis, rice, soybean,
chickpea,  tomato,  tobacco,  and millets  [73].  Busk and Pages
[74]  also  reported  that  phosphorylation  is  necessary  for  the
activation  of  proteins  under  drought-stress  conditions,  thus
enhancing  the  DNA-binding  activity  of  several  transcription
regulators. Furthermore, a large portion of biological processes
of the overexpressed genes under abiotic stresses was related to
response  to  stress,  response  to  abiotic  and  biotic  stimuli,
developmental processes and other cellular processes (Fig. 3).
These results suggest the role of key genes responsible for the
regulation  of  the  most  important  biological  processes  under
various abiotic stress conditions.

3.3.  Identification  of  CAREs  in  the  Promoter  Region  of
Transcription Factors

The detected CAREs at the upstream of the DEGs under
drought,  heat,  cold  and  salinity  stress  conditions  were
associated with a light response, hormonal regulation and stress
responses in rice (Table 2 and Fig. 4). The hormonal regulatory
elements included methyl jasmonate (MeJA) and abscisic acid
(ABA) responsive  motifs  such as  ABRE,  CGTCA-motif  and
TGACG- elements were presented in the majority of the DEGs
identified  under  salinity,  cold,  heat  and  drought  stress
conditions  (Table  2).

Phytohormones play a key role in response to prioritization
stresses [75]. Phytohormone signaling mediated by ABA is an
evolutionarily  conserved  mechanism  that  promotes  abiotic
stress tolerance in plants [76]. The process of plants perceives,
response  and  adaptation  to  abiotic  stresses  are  controlled
mainly  by  ABA  that  regulates  plant  water  situation  as  an
endogenous  messenger  [77].  Abscisic  acid  is  a  plant  stress
hormone  because  it  induces  under  various  stresses  [78,  79].
Induction of the ABA hormone often relies on the presence of
a cis-acting element called ABRE (ABA-responsive) element
[8, 10, 80]. The ABRE elements play a key role in abscisic acid
response  that  induced  abiotic  stresses,  seed  dormancy  and
maturation processes [1]. The ABRE elements are one of the
most important CRE in rice and located near the transcription
start site (TSS) [81, 82].

Fig. (3). Functional categorization by GO annotation for (A) cellular components, (B) molecular function and (C) biological process of common
over-expressed genes in rice in response to drought, salinity, cold and heat stresses.
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Both MeJA and Jasmonic acid (JA) contribute  to  a  wide
range  of  environmental  conditions  and  physiological  events
comprising  of  seed  germination  and  leaf  senescence  [83].
Jasmonic  acid  participates  in  plant  growth  and  plays  critical
roles in both biotic and abiotic stress responses [84 - 86]. The
application  of  MeJA  alleviates  the  adverse  effects  of
environmental  stresses  [87].  The  MeJA  suppresses  the
absorption  of  toxic  ions,  and  reduces  the  adverse  effects  of
osmotic stress through regulating inorganic penetrating ions or
organic  [87].  The  results  of  the  current  study  suggest  that
TGACG and CGTCA motifs  are involved in MeJA response
and  regulation  of  plant  defense  against  abiotic  stresses.  The
MeJA  activates  antioxidant  systems  to  detoxify  Reactive
Oxygen Species (ROS) in stressed plants [87, 88]. It has been
shown  that  the  signaling  networks  related  to  ABA  and  JA
hormones are correlated [89].

The  light-responsive  elements  (LREs)  including  ACE,
BOX4, GAG-motif, G-box, G-Box, GA-motif, TCT-motif  and
Sp1 were identified in the promoter regions of the expressed
salinity,  cold,  heat  and  drought-responsive  genes  (Table  2).
These regulatory elements play a critical role in the regulation
of  transcriptional  activity  [90].  The  LREs  such  as  G-box,
Box-4,  GAG,  GAP,  GA  motifs  have  been  identified  in  the
regulatory regions of the light-regulated genes that are needed
for light-controlled transcriptional activities [91, 92]. The role
of  the G-Box element  in arabidopsis;  as  part  of  the response
mechanism against  abiotic  stresses  has  been  uncovered.  The
role of GAG motif and G-Box element in response to abiotic
stresses has been reported in studies with tobacco and wheat
[93, 94].

A circadian element was detected in the drought, cold, heat
and  salinity  responsive  genes  (Table  2).  The  circadian  clock

coordinates the responses of plants to multiple environmental
challenges. The results of the present study indicated that the
circadian clock may reinforce the plant’s ability to reduce the
adverse  effects  of  abiotic  stresses.  Results  of  transcriptomic
analyses  have  shown  that  circadian  clock  controls  several
genes  associated  with  response  to  salinity,  drought  and  cold
stresses [95, 96].

The  stress-responsive  elements  such  as  TC-rich  repeats,
heat  shock  elements  (HSE)  and  the  myeloblastosis  binding
sequence (MBS) were presented in the majority of responsive
genes  (Table  2).  The  role  of  TC-rich  repeats  in  responses  to
environmental  stresses  has  been  documented  in  previous
reports [97 - 100]. Heat shock element is a transcription factor
that binds to HSE cis-acting elements in the promoter of stress-
inducible  genes  and  plays  central  roles  in  the  acquisition  of
plant tolerance against abiotic stresses [101]. MBS, which is a
binding  site  for  MYB  transcription  factors,  controls  many
abiotic  stress  responses  [102,  103].  Molecular  approaches
discerned  the  functional  characterization  of  MYB  domain
proteins, particularly the R2R3-type members in various plant
species,  including  rice,  maize  and  soybean  [103,  104].  A
genome-wide  comparative  analysis  of  MYB  genes  and  their
expression in arabidopsis and rice suggested the potential role
of  MYB  domain  proteins  in  plant  stress  responses  [105].
Several members of R2R3-type MYB transcription factors are
involved in the regulation of the phenylpropanoid pathway and
the  production  of  various  secondary  metabolic  compounds
under  abiotic  stress  conditions.  The  role  of  MBS  elements
against drought stress in common bean [106] and maize [107]
has been previously reported. Furthermore, the effects of MYB
TFs  in  low-temperature,  light  and  osmotic  stress  induction
responses have been uncovered [108 - 111].

Fig. (4). Distribution of major cis-acting regulatory elements in the promoter site of stress responsive genes.
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The  results  of  the  present  study  showed  that  ARE
regulatory elements are essential for the induction of anaerobic
respiration (Table 2). Moreover, the Skn-1 motif and the O2-
site  were  present  in  the  majority  of  responsive  genes
specifically those that act in the endosperm or involved in the
zein metabolism regulation events. The role of these elements
against abiotic stresses is restricted. However, the results of our
study indicated the possibility of the role of these elements in
tolerance against abiotic stresses in rice.

CONCLUSION

The expression pattern and regulation network of rice as a
post-genomic crop under different abiotic stresses (heat, salt,
cold and drought) were assessed on the basis of meta-analysis
methods. The higher number of differentially expressed genes
(DEGs) in drought and salinity environments compared to heat
and cold stresses suggested greater crosstalk between drought
and  salinity  stress  signalling  processes  in  rice.  The  higher
number  of  co-expressed  genes  under  drought  and  salinity
stresses  demonstrated  strong  correlations  between  the
responses of rice to these stresses compared to the other cross-
talks  tested.  Furthermore,  24  common  over-expressed  genes
were  identified  in  response  to  cold,  drought,  heat  and  salt
stresses. These uncovered genes had DNA and RNA-binding
role, transcription factor activity and kinase activity that were
associated with both abiotic and biotic stimuli. Moreover, the
identified  CAREs  at  the  upstream  of  common  DEGs  under
drought, heat, cold and salinity stress conditions were related to
light  response,  hormonal  regulation  and  stress-related
responses in rice. Overall, the outcome of this study helps to
better  understand  the  regulation  mechanisms  of  stress
responses  at  the  transcriptional  level.
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