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Abstract:

Background:

As sepsis is one of the life-threatening diseases, predicting sepsis with high accuracy could help save lives.

Methods:

Efficiency and accuracy of predicting sepsis can be enhanced through optimal feature selection. In this work, a support vector machine model is
proposed to automatically predict a patient’s risk of sepsis based on physiological data collected from the ICU.

Results:

The support vector machine algorithm that uses the extracted features has a great impact on sepsis prediction, which yields the accuracy of 0.73.

Conclusion:

Predicting sepsis can be accurately performed using the main vital signs and support vector machine.
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1. INTRODUCTION

Sepsis  occurs  when  the  patient  body  releases  chemicals
into  the  bloodstream  to  fight  an  infection  triggering  an
inflammatory  response  that  causes  tissue  damage,  organ
failure, or death [1 - 3]. Sepsis is thought to be present in more
than  half  of  ICU  patients  in  hospitals  that  lead  to  death  [4].
Early  sepsis  prediction  and  detection  would  likely  have  an
impact  on  mortality  rates.  As  reported  widely,  the  mortality
rates  increase  with  each  hour  of  delay  in  receiving  the
antibiotics  treatment  [5].

In this paper, we propose a machine learning approach to
predict  sepsis,  where  machine  learning  techniques  can  help
improving Sepsis prediction [6]. The used performance metrics
are accuracy, precision, and recall. The used dataset is prepared
by  the  PhysioNet  Challenge  2019  [7  -  9]  collected  from  the
ICU Patients. The dataset is highly imbalanced, so that’s why
we used the under-sampling method.
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This  paper  is  presented  as  follows:  Section  2  contains  a
brief description of the dataset used, and the features selected,
section 3 includes the proposed sepsis prediction methodology,
section  4  presents  the  results,  and  section  5  contains  the
conclusion  and  future  work.

2. DATASET AND FEATURE EXTRACTION

The  PhysioNet  challenge  2019  provided  two  publicly
available datasets (A and B) collected from ICU patients in two
different  hospitals.  Dataset  A  includes  20,336  patients,  and
dataset  B  includes  20,000  patients.  Each  file  in  the  datasets
contains  the  records  of  one  patient  during  the  stay  in  ICU
where samples were collected every hour. These features (total
40  features)  consist  of  three  groups  which  are:  Vital  signs,
laboratory  values,  and  demographics  [7  -  9].  Data  extracted
from the Electronic Medical Record (EMR) underwent a series
of  preprocessing  steps  prior  to  formal  analysis  and  model
development. All patient features were condensed into hourly
bins simplifying model development and testing, e.g., multiple
heart  rate  measurements  in  an  hourly  time  window  were
summarized as the median heart rate measurement [7]. In this
paper, only the vital signs features were used as these features
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can be easily obtained near the bed of the ICU patient [10, 11].
These  features  are  Heart  Rate  (HR),  Pulse  oximetry  (O2Sat),
Temperature  (Temp),  Systolic  BP  (SBP),  Arterial  Pressure
(MAP), Diastolic BP (DBP), and Respiration Rate (Resp). A
histogram for each of these features selected from dataset A is
represented in Fig. (1).

A  histogram  for  each  of  these  features  selected  from
dataset  B  is  represented  in  Fig.  (2).

3. METHODOLOGY

The aim of  this  paper  is  to  develop  an  automated  model

that  can  predict  sepsis  accurately  using  vital  signs.  The
developed methodology is applied to dataset A and dataset B
from  the  PhysioNet  Challenge  2019.  This  methodology  is
represented  in  Fig.  (3).  The  first  step  in  this  methodology  is
data preprocessing. The second step is feature selection. The
third  step  is  applying  the  supervised  machine  learning
approach, evaluating the methodology using the test set A, and
validating the methodology using dataset B. Each of these steps
will be explained in the following sub-sections. The proposed
methodology is implemented by the Python language, version
3.8, using the libraries: SckitLearn, Pandas, Matplotlib, Numpy
through Anaconda 3.

Fig. (1). Histogram plots for each input variable used from dataset A.

Fig. (2). Histogram plots for each input variable used from dataset B.
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Fig. (3). The proposed sepsis prediction methodology.

3.1. Data Preprocessing

For  each  one  of  the  vital  sign  features,  data  values  were
standardized by subtracting the mean of all values from each
feature  value  and  dividing  by  the  standard  deviation  of  each
feature.

The dataset is highly imbalanced, where only 1.8% of the
patient  records  have  sepsis.  In  order  to  handle  the  dataset
imbalance,  the  under-sampling  method  was  used,  where  the
class  (does  not  have  sepsis)  was  down-sampled  to  the  class
(have  sepsis);  so  that  both  classes  have  the  same  number  of
records which is 17136 records.

The missing values were imputed using the mean value of
the population, calculated from both datasets A and B.

After data preprocessing phase, dataset A’s shape report is
presented in Table 1.

After data preprocessing phase, dataset B’s shape report is
presented in Table 2.

3.2. Feature Selection

Seven features were selected, which are Heart Rate (HR),
Pulse Oximetry (O2Sat), Temperature (Temp), Systolic Blood
Pressure  (SBP),  Mean  Arterial  Pressure  (MAP),  Diastolic
Blood  Pressure  (DBP),  and  Respiration  rate  (Resp).  These
features  are  selected  using  forests  of  trees  to  evaluate  the
importance  of  our  dataset  features.  The  tree-based  feature
selection used in our experiment computes the impurity-based
feature  importance,  which  in  turn  can  be  used  to  discard
irrelevant  features  when  coupled  with  the  Extremely
Randomized  Tree  (Extra  Trees)  classifier  [12].  The  feature
selection technique is applied to dataset A, resulted in eleven
features  which  are  HR,  O2Sat,  Temp,  SBP,  MAP,  DBP,
Respiration rate, Age, ICU length of stay, hospital admit time,
Fraction  of  inspired  oxygen.  It  is  noted  that  seven  of  these
eleven features represent vital signs. In this paper, we selected
the  features  of  the  vital  sign  as  these  features  are  easily
captured  at  the  bedside  by  ICU  equipment.

3.3. Machine Learning

Dataset A was divided into training and testing sets, then a
machine learning algorithm is trained using the training set A,
then  this  learning  algorithm is  evaluated  through  calculating
the accuracy using the testing set A, and finally validating the
methodology  using  dataset  B.  Experiments  were  made,  and
Support  Vector  Machine  [13]  proved  to  get  the  highest
accuracy.  The  following  machine  learning  approaches  were
used  in  those  experiments;  K-Nearest  Neighbor  [14],  Naïve
Bayes  [15],  Logistic  Regression  [16],  Linear  Discriminant
Analysis  [17],  Decision  Tree  [18],  Random  Forest  [19].

4. RESULTS AND DISCUSSION

Precision,  recall,  and F1-score are three metrics used for
evaluating  the  proposed  methodology.  The  precision  is  the
ratio of correctly classified positive records (True Positive) to
the  total  classified  positive  records  (True  Positive  +  False
Positive). The recall is the ratio of correctly classified positive
records (True Positive) to all records in a class (True Positive +
False Negative).  The F1-score conveys the weighted balance
between the precision and the recall [20].

Various  experiments  were  conducted  before  getting  the
final  results  and  proving  that  SVM  is  best  suitable  for  this
work. These results can be found in Table 3. These results are
for evaluating these experiments using the testing set A.

The support vector machine proved to be the best learning
model. The accuracy obtained from running SVM is 62%. The
total number of records that were correctly predicted to have
sepsis  is  1836,  the  number  of  records  that  were  wrongfully
predicted  to  have  sepsis  is  1046,  the  number  of  records  that
were correctly predicted to do not have sepsis is 2342, and the
number  of  records  that  were  wrongfully  predicted  to  do  not
have sepsis is 1631.

The results for validating these experiments using dataset
B are found in Table 4.
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Table 1. Dataset A statistics after preprocessing.

- Heart Rate Pulse Oximetry Temperature Systolic Blood Pressure Mean Arterial Pressure Diastolic Blood
Pressure

Respiratory Rate

Count 790215.00 790215.00 790215.00 790215.00 790215.00 790215.00 790215.00
Mean 0.056750 0.062320 0.108375 -0.183601 -0.405718 -0.229251 0.008720
Std. 0.922067 0.904777 0.674996 0.819226 0.867168 0.680114 1.089660
Min -3.620497 -25.54520 -23.06817 -4.289265 -3.982404 -3.282423 -3.769108
25% -0.560903 -0.348772 0.000000 -0.749996 -1.038736 -0.583004 -0.792601
50% 0.000000 0.000000 0.000000 -0.091527 0.437988 0.000000 0.000000
75% 0.572280 0.645824 0.000000 0.196553 0.000000 0.000000 0.483045
Max 11.11088 0.977356 7.852792 6.369697 12.83856 16.46596 10.68821

Table 2. Dataset B Statistics after preprocessing.

- Heart Rate Pulse Oximetry Temperature Systolic Blood Pressure Mean Arterial Pressure Diastolic Blood
Pressure

Respiratory Rate

Count 761995.00 761995.00 761995.00 761995.00 761995.00 761995.00 761995.00
Mean 0.012067 0.018718 0.059284 0.013265 0.003915 0.001651 -0.009594
Std. 0.941526 0.910823 0.643600 0.936755 0.930428 0.938199 0.891222
Min -3.620497 -25.54520 -9.870196 -4.371574 -3.381656 -3.282423 -3.769108
25% -0.617562 -0.348772 0.000000 -0.626533 -0.618212 -0.583004 -0.579994
50% 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 0.515621 0.645824 0.000000 0.525787 0.463135 0.447038 0.270437
Max 7.201401 0.977356 19.13633 7.151629 12.83856 16.60804 17.27905

Table 3. The results of running various machine learning techniques on training set A and evaluating it using test set A.

Machine Learning Model Class/Label Precision Recall F1-Score
K-Nearest Neighbor, K = 9 Don’t Have Sepsis patients 0.99 0.62 0.76

Have Sepsis patients 0.04 0.64 0.07
Naïve Bayes Don’t Have Sepsis patients 0.56 0.73 0.63

Have Sepsis patients 0.62 0.43 0.51
Logistic Regression Don’t Have Sepsis patients 0.58 0.65 0.61

Have Sepsis patients 0.61 0.53 0.57
Linear Discriminant Analysis Don’t Have Sepsis patients 0.58 0.66 0.61

Have Sepsis patients 0.61 0.53 0.57
Decision Tree Don’t Have Sepsis patients 0.56 0.62 0.59

Have Sepsis patients 0.58 0.52 0.55
Random Forest Don’t Have Sepsis patients 0.61 0.66 0.64

Have Sepsis patients 0.64 0.59 0.62
SVM Don’t Have Sepsis patients 0.59 0.69 0.64

Have Sepsis patients 0.64 0.53 0.58

Table 4. Results of running various Machine learning techniques on the training set A and validating it using dataset B.

Machine Learning Model Class/Label Precision Recall F1-Score
K-Nearest Neighbor, K = 9 Don’t Have Sepsis patients 0.99 0.62 0.76

Have Sepsis patients 0.02 0.50 0.04
Naïve Bayes Don’t Have Sepsis patients 0.99 0.73 0.84

Have Sepsis patients 0.02 0.46 0.04
Logistic Regression Don’t Have Sepsis patients 0.99 0.72 0.83

Have Sepsis patients 0.02 0.45 0.04
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Machine Learning Model Class/Label Precision Recall F1-Score
Linear Discriminant Analysis Don’t Have Sepsis patients 0.99 0.72 0.84

Have Sepsis patients 0.02 0.45 0.04
Decision Tree Don’t Have Sepsis patients 0.99 0.59 0.74

Have Sepsis patients 0.02 0.47 0.03
Random Forest Don’t Have Sepsis patients 0.99 0.62 0.76

Have Sepsis patients 0.02 0.50 0.04
SVM Don’t Have Sepsis patients 0.99 0.70 0.82

Have Sepsis patients 0.02 0.49 0.04

After  the  support  vector  machine  was  trained  using  the
training set A and evaluated using the test  set A, it  was then
reevaluated (to validate the results) using dataset B. The results
are still considering the SVM best learning model, where the
accuracy  obtained  is  73%.  The  total  number  of  records  that
were correctly predicted to have sepsis is 5258, the number of
records  that  were  wrongfully  predicted  to  have  sepsis  is
223754, the number of records that were correctly predicted to
do not have sepsis is 527461, and the number of records that
were wrongfully predicted to do not have sepsis is 5522.

CONCLUSION AND FUTURE WORK

Predicting  Sepsis  is  still  a  challenging  problem  as  its
manifestation cannot be determined till the last stages. In this
paper,  a  methodology is  proposed for  predicting sepsis.  This
methodology is composed of three stages; data pre-processing,
feature  selection,  and  machine  learning.  From  the  results
obtained, we can conclude that the main vital signs can be used
to  predict  sepsis,  where  the  methodology  proved  to  be  an
effective predictor for sepsis by obtaining an accuracy of 73%.

In  future  work,  we  are  going  to  apply  the  proposed
methodology  to  predict  sepsis  to  different  datasets  using
different  features,  and  enhance  the  accuracy.
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