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Abstract:

Aims:

The aim of this study was to develop the mathematical models of the linear elasticity theory of biomaterials by taking into account their fractal
structure. This study further aimed to construct a variational formulation of the problem, obtain the main relationships of the finite element method
to calculate the rheological characteristics of a biomaterial with a fractal structure, and develop application software for calculating the components
of the stress-strain state of biomaterials while considering their fractal structure. The obtained results were analyzed.

Background:

The development of adequate mathematical models of the linear elasticity theory for biomaterials with a fractal structure is an urgent scientific
task. Finding its solution will make it possible to analyze the rheological behavior of biomaterials exposed to external loads by taking into account
the existing effects of memory, spatial non-locality, self-organization, and deterministic chaos in the material.

Objective:

The objective of this study was the deformation process of biomaterials with a fractal structure under external load.

Methods:

The equations of the linear elasticity theory for the construction of the mathematical models of the deformation process of biomaterials under
external load were used. Mathematical apparatus of integro-differentiation of fractional order to take into account the fractal structure of the
biomaterial was used. A variational formulation of the linear elasticity problem while taking into account the fractal structure of the biomaterial
was formulated. The finite element method with a piecewise linear basis for finding an approximate solution to the problem was used.

Results:

The main relations of the linear elasticity problem, which takes into account the fractal structure of the biomaterial, were obtained. A variational
formulation of the problem was constructed. The main relations of the finite-element calculation of the linear elasticity problem of a biomaterial
with a fractal structure using a piecewise-linear basis are found. The main components of the stress-strain state of the biomaterial exposed to
external loads are found.

Conclusion:

Using the mathematical apparatus of integro-differentiation of fractional order in the construction of the mathematical models of the deformation
process of biomaterials with a fractal structure makes it possible to take into account the existing effects of memory, spatial non-locality, self-
organization, and deterministic chaos in the material. Also, this approach makes it possible to determine the residual stresses in the biomaterial,
which play an important role in the appearance of stresses during repeated loads.
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1. INTRODUCTION

Solving  the  increasing  reliability  and  strength,  reducing

energetic and economic problems by creating modern materials
and  construction  is  an  urgent  scientific  task.  In  the  area  of
structural  materials,  these  problems  have  been  posed,  and
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methods for their solution are well developed; however, using
natural  bio-composite  materials,  which  include  bone  tissue,
was not sufficiently studied in the rheological deformation area
[1, 2].

The problem of  increasing the  strength  characteristics  of
bone  tissue  is  solved  in  various  ways,  one  of  which  is
preventive reinforcement with metal implants to reduce stress
concentration.  Potential  prospects  for  the  application  of  this
approach are based on reducing the cost of treatment, reducing
the likelihood of fracture, simplicity of the operation compared
to the operation of bone fusion after a fracture, short duration
of postoperative procedures, etc., [3, 4].

To  implement  this  method,  an  integrated  approach  from
medicine,  mathematics,  mechanics,  and  information
technology  is  required.  However,  at  present,  there  are  no
adequate  methods  of  mathematical  modeling  of  the  stress-
strain  state  of  bone  tissue  in  the  process  of  rheological
deformation  to  analyze  and  decrease  the  level  of  stress
concentration  in  the  most  loaded  areas.  There  are  no
appropriate information technologies and software for solving
this class of problems as a consequence [5 - 11].

The surgical methods in the treatment of patients with joint
pathology are dominated. The percentage of complications and
unsatisfactory results reach 30-40%, which negatively affects
the quality of the patient’s life. In recent years, to improve the
methods of operations, mathematical modeling has been used.
One of the advanced technologies for structural analysis of the
stress-strain state of bone tissue is the finite element method.
The bone cross-sections models in stress-strain state studies of
the hip joint,  as  a rule,  are used.  However,  they did not  take
into account the complex structure of the bone material, which
did  not  fully  reflect  the  stress-strain  state  of  the  integral
structure  and  allowed  the  determination  of  optimal  surgical
tactics  [12  -  18].  Also,  the  method  of  finite  differences  is
widely used to obtain the numerical solution of mathematical
models of physical processes. It involves discretization of the
area  and  larger  computing  resources,  but  it  is  easier  to
implement  compared  to  the  finite  element  method.  In
particular, the application of this method is shown [19, 20].

This type of injury is a particular problem in patients over
60 years of age. Prolonged immobilization (more than 14 days)
in  such  patients  causes  a  sharp  deterioration  of  movement
functions  and  decreases  the  potential  for  restoration  of
movements to the minimum of a necessary physiological rate.
Despite the maximum objectivity of the physical experiment, it
is impossible to repeat the experiment on the same material due
to stress overloads and after its complete or partial destruction.
Mathematical modeling or numerical experiment is devoid of
these drawbacks [1, 3].

The problem of determining the mechanical characteristics
of bone tissue in elastic, elastoplastic (nonlinear) areas under
short-term loads and the area of  ​​creep of  this  material  under
long-term  power  loads  remains  unresolved.  The  complex
structure  of  bone  tissue,  insufficient  experimental  material,
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changes  in  bone  characteristics  with  age  complicates  the
process  of  determining  its  mechanical  and  rheological
characteristics.  In addition,  it  can be seen from experimental
experiments that stretching loads is 1.5 times more dangerous
than compression (i.e., fracture under tension occurs at stress
intensities  1.5  times  lower  than  at  stress  intensities  during
compression) [21, 22].

It is impossible to describe the processes of destruction of
bone tissue using only the features of linear elasticity theory.
Using the nonlinear model of the biomaterial behavior under
short-term loads in calculations is rare. Bone can rebuild over
time depending on the load, so this material should exhibit the
effects  of  creep  and  stress  relaxation  under  prolonged  static
loads [8, 23].

Investigation  of  the  symmetric  properties  of  differential
equations  containing  fractional  derivatives  is  currently  an
urgent scientific problem in connection with the increased use
of such equations in mathematical models of various processes
with anomalous kinetics. Moreover, in contrast to the classical
derivative  of  integer  order,  there  are  many  non-identical
definitions of derivatives of fractional order, which leads to a
variety  of  differential  equations  of  fractional  order  that  are
close in form but significantly different in properties [24 - 33].

Biomaterials,  in  particular  bones,  have  a  porous,
heterogeneous  structure  and  a  complex  nature  of  spatial
correlations. The rheological behavior of these materials is not
linear. In particular, it is possible to distinguish the presence of
memory  effects  that  significantly  affect  the  development  of
stresses and strains during reloading. Based on the structural
and  rheological  properties  of  bones,  this  biomaterial  can  be
attributed  to  materials  with  a  fractal  structure.  Using  the
mathematical  apparatus  of  integro-differentiation  of  the
fractional-order in the construction of mathematical models of
rheological behavior of biomaterials will allow us to take into
account  their  complex  nature  of  spatial  correlations,  the
presence of memory effects, self-organization, and determin-
istic chaos [14].

2. MATERIALS AND METHODS

In  this  section,  the  basic  relations  of  the  linear  elasticity
problem of biomaterials while taking into account their fractal
structure are received. The principle of virtual works at small
deformations  and  the  mathematical  apparatus  of  integro-
differentiation  of  fractional  order  to  obtain  a  variational
formulation of the problem are used. The finite element method
with  a  piecewise  linear  basis  to  find  the  minimum  of  the
obtained energy functional was used. The UML diagram of the
developed software for finding the components of the stress-
strain state of the biomaterial subjected to external loading was
given.

2.1.  Some  Properties  of  Integrals  and  Derivatives  of
Fractional Order

Following  the  main  properties  of  the  fractional-order
integro-differentiation apparatus, it seems promising to use the
theory  of  fractional  calculus  in  the  study  of  mechanical
processes and phenomena in natural and artificial inhomoge-
neous structures, biomaterials, and nanomaterials.

mailto:vshymanskiy@gmail.com


116   The Open Bioinformatics Journal, 2021, Volume 14 Shymanskyi and Sokolovskyy

(1)

(2)

Let us consider the fractional-order integro-differentiation
operators integral of the function f(x,y,z) over the variable x in
Caputo's understanding in more detail [27, 34, 35].

Where  
gamma function.

Repeated  use  of  the  fractional-order  operator  to  the
function  is  equivalent  to  one-time  using  of  the  fractional
operator when its order is equal to the sum of orders [27, 34]:

(3)

(4)

The action of a fractional operator on the sum of functions
is equivalent to the sum of actions of the fractional operator on
each of the functions [27, 34]:

(5)

(6)

The action of the fractional operator on the product of the
constant c and the function f is equal [27, 34]:

(7)

(8)

Provided  that  the  following  property
is valid [27, 34]:

(9)

During  constructing  the  variational  formulation  of  the
linear  elasticity  problem,  many  operations  related  to  the
combined  application  of  integration  and  differentiation
operators are performed. To construct a variational formulation
of the linear elasticity problem of biomaterials  with a fractal
structure,  the  formulation  of  fractal  operators  in  the  Caputo
understanding  was  chosen  based  on  a  property  (9).  At  the
initial moment of modeling time, the biomaterial is in a natural
stress state, i.e., there are no stresses and displacements. If at
the initial moment, the body is not in a natural stress state, then

property  (9)  will  not  be  valid.  The  history  of  stresses  and
displacements must be taken into account during the combining
application  of  fractional  integration  and  differentiation
operators.  The  Caputo  formulation  of  fractional  operators
allows  us  to  take  into  account  that  fact.

2.2. The Linear Elastic Deformation Problem

The calculation of the mechanical behavior of biomaterial
for  a  given  dependence  of  loading  by  time  is  based  on  an
adequate  mathematical  model  of  the  properties  of  a  material
with the fractal structure. For biomaterials, such model is based
on fractional derivatives, which take into account the loading
mode and existing effects of memory, spatial non-locality, self-
organization,  and  deterministic  chaos  in  the  material.  The
expediency  of  using  the  mathematical  apparatus  of  integro-
differentiation of fractional order to build mathematical models
of physical processes in environments that are characterized by
such properties has been described [14, 28]. Rabotnov Yu.N.
was engaged in the construction of mathematical models of the
elasticity theory for medium with after-effect. He also showed
the  feasibility  of  using  such  mathematical  apparatus  in  the
model’s  creation  and  its  advantages  over  the  traditional
approach  [14,  23].

Let  us  consider  the  problem  of  stress-strain  state  in
biomaterial taking into account the fractal structure. Suppose
that  a  body  that  is  in  equilibrium is  affected  by  mass  forces

in  the  corresponding  directions,  and  also
surface  forces   with  corresponding  projec-
tions on the axis x,y,z. Let us find the components of the stress-
strain state of the body, namely vectors 
- stress,  - deformation and displace-
ment  ,  which  are  satisfying  the  equilibrium
equation in elementary volume [36 - 38]:

(10)

and the equilibrium conditions on the surface [39]:

(11)

where n- outer normal to the surface of the body S.

Taking into  account  the  fractal  structure  of  biomaterials,
relations  between  displacements  and  deformations  can  be
written  in  the  following  form  [39]:

(12)

Hooke's  law  makes  it  possible  to  express  stress  due  to
deformation and vice versa [8, 9, 14, 23]:

(13)

where,  σik  -  stress  tensor,  εlm  -  deformation  tensor,  λiklm  -
elastic modulus tensor.

We introduce a notation to simplify the further description
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of the material:

(14)

Considering (12), the ratio of the deformation community
in a biomaterial with a fractal structure will be as follows [39]:

(15)

(16)

(17)

(18)

(19)

(20)

Thus,  the  obtained relations  make it  possible  to  describe
the  rheological  behavior  of  a  biomaterial  with  a  fractal
structure  under  the  action  of  an  external  load.

2.3. Variational Formulation of Linear Elastic Deformation
Problem

In  the  process  of  deformation  of  the  system,  the  energy
accumulates  in  their  element,  which  is  called  the  potential
energy of deformation. It is equal to the actual work of internal
forces,  and  it  is  considered  positive.  In  flat  systems,  the
potential  energy  of  deformation  consists  of  the  energy  of
tension-compression,  bending,  and  shear.

All general theorems for small deformations are based on
the equation of virtual works [36, 40]:

(21)

where V - body volume, S - body surface.

Thus,  among  all  permissible  displacements  u,υ,ω  that
satisfy the boundary conditions, the active displacements result
in a stationary of full potential energy and provide a minimum
of functional Π

(22)

(23)

(24)

where A(u,υ,ω) - the strain energy function can be written
in the form:

(25)

(26)

Substitute the expression of stresses due to deformations
from the  relations  (4)-(9).  Then,  taking  into  account  relation
(3),  the  equilibrium  conditions  on  the  surface  due  to
displacement  were  obtained:

(27)

(28)

(29)

Thus, a variational formulation of the elastic deformation
problem of biomaterials with a fractal structure was obtained.

2.4. Finding the Minimum of Full Energy Functionality

Let us construct full potential energy functional for a one-
dimensional  problem  of  the  linear  elasticity  theory  of  a
biomaterial  with  a  fractal  structure:

(30)
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Using Stoke’s formulas, we obtain:
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Let us find an approximate solution of the minimum of full
potential energy functional in the following form:

(36)

Inserting (36) in (35), we obtain:

(37)

Using properties (7) and (8) from (37), we can obtain:

(38)

We  use  the  necessary  condition  for  the  existence  of  the
extreme  to  find  the  minimum  of  the  full  potential  energy
functional:

(39)

The  differential  of  full  potential  energy  functional  by

variables   can  be  written  as:

(40)

Thus, we obtain a system of linear algebraic equations with

unknown variables  Having solved it, we obtain

the values  and put them into the relation (36).
As a result, we obtain a function that gives a minimum of the
full potential energy functional (30).

2.5.  Using  a  Piecewise  Linear  basis  for  Finding  the
Minimum of the Full Potential Energy Functional

Let us divide the segment [a,b] into a uniform grid into N
parts:
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We  choose  as  a  basis  for  (36)  the  piecewise  linear
functions  having  the  following  form  [13]:
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Let us find the derivatives of basis functions (42).
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Substitute  the  obtained  relations  (42-45)  into  the
expression  (40):
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as:
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Solving and substituting the basic functions (42) and the found

coefficients   in  relation  (36),  we  obtain  the
required displacements. Substituting the found displacements
into the relation (12), we obtain deformations. Substituting the
found  deformations  in  (13),  we  obtain  the  required  stresses
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biomaterial while considering its fractal structure.

2.6. Class Diagram for Developed Software

The  UML  diagrams  and  application  software  for  the
realization  of  the  formulated  mathematical  model  of  the
definition of a stress-strain state of a biomaterial while consi-
dering its fractal structure are developed. The implementation
of  the  finite  element  method  based  on  an  object-oriented
approach, class packages, and the relationships between them
was developed. The documentation of the created classes was
constructed.  Important  aspects  of  the  designed  software  are
reflected in the graphical notation of UML.

In particular,  covering a region with a  grid of  nodes and
dividing it according to finite elements method implements the
following  classes,  shown  in  Fig.  (1):  Point  –  the  class  that
contains  the  nodes  which cover  the  region;  Finite  Element  –
class  for  finite  element  and  List  FE  –  the  list  of  them;
Boundary Point  – realized the boundary element and List  Of
BP  –  list  of  them;  FE  System  -  the  class  that  implements  a
mechanism  for  finding  the  solution  of  a  system  of  linear
algebraic  equations.

In  contrast  to  the  known  finite  elements  method
implementations,  the  computational  information  about  finite
nodes  and  elements  is  stored  not  in  arrays  but  on  the  lists.
Thus, the program implementation of the finite element method
is  carried  out  based  on  lists  in  which  each  object-entity  is
programmed  as  a  separate  class.  All  classes  are  documented
and can be reused to implement other mathematical models by
the finite element method. The developed class diagrams made
it  possible  to  establish  the  order  of  creation,  destruction,  the
interaction of objects, and the relationship between them.

3. RESULTS AND DISCUSSION

We conduct a numerical experiment for the cross-section
of the femur bones with a diameter of 2 cm of an 80 years old

person.  Let  us  consider  a  one-dimensional  case.  So,
 Let  us  fix  the  sample  on  the

boundary  a,  so  we  can  formulate  the  boundary  condition  on
this  boundary  as   Let  us  force  the  load

 to the opposite side of the material. Using the
developed software and formulated variational statement of the
linear  elasticity  problem  for  a  biomaterial  with  a  fractal
structure, we calculate the components of the stress-strain state
of the described sample under the action of external load.

The curves in Fig. (2) show that the nonlinear part begins
to be observed at deformation values ε ≥ 0,237%. Considering
the fractal structure of bone material makes it possible to take
into account the effects of nonlocality and the complex nature
of spatial correlations. Analyzing the obtained results, we can
conclude that the fractal structure contributes to the accumula-
tion and “memorization” of the stress state of the material. The
graphical  dependences  show  that  the  difference  between
stresses  while  taking into account  the fractal  structure of  the
material and without at deformations ε ≥ 0,8% exceeds 4.8%.

Fig.  (3  )  shows  the  stress  distribution  in  the  sample
depending on the spatial coordinates. Analyzing the obtained
results,  we  can  conclude  that  the  maximum  stresses  σ  ≈  15
MPa  will  be  relatively  small  from the  fixed boundary of  the
sample. However, on the opposite side, the maximum stresses
are  significantly  higher.  Taking  into  account  the  fractal
structure of the material, the maximum stresses are equal to σ =
153  MPa.  Considering  the  traditional  model  α  =  1  the
maximum  stresses  are  equal  σ  =  141  MPa.

Consider the deformations in this sample while taking into
account the fractal structure of the material and without, after
applying  the  different  loads  on  its  boundary.  Curve  1  and
Curve  2  describe  the  deformations  in  the  sample  at  the
boundary b under loads F = 35 MPa, and Curve 3 and Curve 4
under loads F = 57 MPa.

Fig. (1). Class diagram of developed software for finding the numerical solution of elastic deformation problem of biomaterials with fractal structure.
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Fig. (2). Changing of the stress component σx depending on deformation while taking into account the fractal structure of biomaterial and without

Fig. (3). The value of the stress component σx depends on the spatial coordinate while taking into account the fractal structure of biomaterial and
without

Fig.  (4).  The value of  the deformation component  εx  depending on the time at  different  loads while  taking into account  the fractal  structure of
biomaterial and without
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After analyzing the results obtained from Fig. (4), we come
to the following conclusion. In the initial moments, there is an
elastic  deformation  that  is  visible  in  Fig.  (4).  The  complex
structure of the material determines the presence of a nonlinear
component of the deformation process. In the case of Curve 1
and Curve 2, the deformations develop more slowly, which is
explained  by  the  smaller  value  of  the  applied  load  in
comparison to Curve 3 and Curve 4. Taking into account the
fractal structure has a more significant effect on the results at
higher  loads.  In  particular,  in  the  time interval  t  ϵ  (0,60)  the
deformations while taking into account the fractal structure of
the material will be smaller (the maximum difference between
Curve  3  and  Curve  4  in  this  range  is  14.3%).  In  the  time
interval t ϵ (60,100) the deformations while taking into account
the  fractal  structure  of  the  material  will  be  greater  (the
maximum  difference  between  Curve  3  and  Curve  4  in  this
range is 6.8%). This effect can be explained by the presence of
stress memory in the material, which causes the accumulation
of residual stresses.

CONCLUSION

Using  the  basic  laws  of  mechanics  of  hereditary
environments  and  the  mathematical  apparatus  of  integro-
differentiation of fractional order, new mathematical models of
elastic  deformation  of  biomaterials  with  the  fractal  structure
were obtained, which allows taking into account the existing
effects of memory, spatial non-locality, self-organization and
deterministic chaos in the material.

The basic equations of the elastic deformation problem of
biomaterials  while  taking  into  account  their  fractal  structure
were obtained. A variational formulation of this problem was
constructed,  which  allows  obtaining  an  approximate
continuous solution of the problem. The finite element method
with  a  piecewise  linear  basis  for  finding  the  solution  to  this
problem was used.

Application software for finding an approximate solution
of  the  elastic  deformation  problem  of  biomaterials  while
considering  their  fractal  structure  was  developed.  The  class
diagram of the developed software was built.

The  components  of  the  stress-strain  state  of  the  femur
bones  subjected  to  different  external  loads  considering  the
fractal structure of the material and without, were found. The
analysis of the obtained results showed that using the apparatus
of integro-differentiation of fractional order in the construction
of mathematical models of the linear elasticity theory allows
calculating the residual stresses in the material.
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