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Abstract:

Background:

Neonatal sepsis is a heterogeneous condition affecting preterm infants whose underlying mechanisms remain unknown. The analysis of changes in
the  DNA  methylation  pattern  can  contribute  to  improving  the  understanding  of  molecular  pathways  underlying  disease  pathophysiology.
Methylation EPIC 850K BeadChip technology is  an excellent  tool  for  genome-wide methylation analyses  and the detection of  differentially
methylated regions (DMRs).

Objective:

The aim is to identify DNA methylation traits in complex diseases, such as neonatal sepsis, using data from Methylation EPIC 850K BeadChip
arrays.

Methods:

Two different bioinformatic methods, DMRcate (a supervised approach) and mCSEA (an unsupervised approach), were used to identify DMRs
using EPIC data from leukocytes of neonatal septic patients. Here, we describe with detail the implementation of both methods as well as their
applicability, briefly discussing the results obtained for neonatal sepsis.

Results:

Differences in methylation levels were observed in neonatal sepsis patients. Moreover, differences were identified between the two subsets of the
disease: Early-Onset neonatal Sepsis (EOS) and Late-Onset Neonatal Sepsis (LOS).

Conclusion:

This approach by using DMRcate and mCSA helped us to gain insight into the intricate mechanisms that may drive EOS and LOS development
and progression in newborns.
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1. INTRODUCTION

Epigenetics encompasses all mechanisms that control the
gene  expression  pattern  without  altering  the  DNA  sequence
itself, which participate in cell development and differentiation,
lineage identity and  transcriptional  regulation. These  mecha-
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nisms  include  DNA  methylation  (DNAm),  histone  post-
translational modifications and non-coding RNAs (ncRNAs) [1
-  3].  As  they  play  an  important  role  in  modulating  gene
expression,  changes  in  the  epigenetic  program  lead  to  the
alteration of biological processes underlying different diseases,
contributing to  disease  onset  and progression.  Therefore,  the
study of epigenetic traits through Epigenome-Wide Association
Studies  (EWAS)  can  be  useful  to  understand  the  underlying
mechanisms of diseases, contributing to the development of a
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new  strategy  of  diagnosis  and  prognosis  by  means  of
epigenetic biomarkers. In particular, DNA methylation consists
of the addition of a methyl group to the fifth carbon position of
cytosines  (5mC)  and  almost  exclusively  at  cytosine-guanine
dinucleotides  (CpG),  which  has  been  mostly  associated  with
transcriptional repression. Methylation marks occur across the
genome,  mainly  at  promoter  regions,  intergenic  regulatory
regions  transposable  elements  or  enhancers  and  within  the
body  of  genes.

The present study aims to propose an analysis strategy to
identify  DNAm  traits  in  neonatal  sepsis  using  Illumina
Infinium  Methylation  EPIC  850k  BeadChip  array  data  for
identifying  not  only  differentially  methylated  CpGs  (DMCs)
but  also  differentially  methylated  regions  (DMRs).  Notably,
the clinical importance of DNAm patterns relies on contiguous
methylated CpGs that conform a DMR rather than single CpG
sites  [4  -  6].  The  identification  of  DMCs  is  performed  by
means of the standard differential analysis, while the discovery
of DMRs entails  a greater complexity because they integrate
the methylation data of consecutive CpGs, and in some cases,
an accurate FDR control is non-trivial. Different methods have
been implemented to date, which are classified in two general
approaches:  1)  supervised  methods,  which  look  for  de  novo
DMRs  without  considering  previous  annotations,  and  2)
unsupervised  methods,  which  test  for  DMRs  in  predefined
genomic regions (e.g., genes, promoters and CGIs) [4, 7].

Neonatal  sepsis  is  an  important  health-care  concern
worldwide, occurring more frequently in premature newborns
[8]. Neonatal sepsis is known to be conditioned by both genetic
and  epigenetic  factors  [9].  Very-low-birth-weight  (VLBW,
<1500 g birth weight) neonates are at high risk for both early-
and late-onset sepsis (EOS and LOS, respectively), especially
in  infants  at  neonatal  intensive  care  units  [8].  The  septic
process  is  characterized  by  both  pro-inflammatory  and  anti-
inflammatory responses and both innate and adaptive immune
systems responses happening simultaneously [10,  11].  Given
the complexity of the pathophysiology, a holistic approach of
the molecular, cellular and metabolic events in neonatal sepsis
will accelerate the development of new biomarkers for accurate
diagnosis  and  improvement  of  the  clinical  management  and
diagnosis, which remain a challenge for neonatal intensive care
units  [12].  Moreover,  previous  studies  have  indicated  that
epigenetic  mechanisms  play  a  role  in  the  immune  system
impaired response characteristic of sepsis [13, 14], suggesting
that epigenetics can improve our understanding of the disease
and the discovery of novel diagnosis and prognosis approaches.

Since  the  concurrence  of  numerous  cellular  processes  in
neonatal sepsis hinders the discovery of useful biomarkers in
this  type  of  complex  disorders,  two  different  bioinformatic
methods  have  been  used  in  order  to  reveal  differential
methylation patterns: DMRcate, a supervised method with high

precision,  and  mCSEA,  an  unsupervised  method  with  high
sensitivity  (Fig.  1).  In  this  work,  we  used  both  approaches
(DMRcate and mCSEA) to find DMRs, which help to identify
relevant  pathways  underlying  molecular  events  occurring  in
complex disease, particularly in our study in neonatal sepsis,
and in turn, propose reliable epigenetic markers. Furthermore,
EOS  samples  and  LOS  samples  were  also  analyzed  for
differential methylation with the aim of elucidating differences
between both types. Lastly, we have also obtained a reliable set
of  DMRs  as  candidates  by  overlapping  the  results  of  both
methods,  which  may  be  validated  by  other  experimental
approaches.  Taking  together  all  these  results,  the  study  of
epigenetic  traits  will  help  us  to  give  insight  into  the
mechanisms  that  drive  sepsis  development  and  progression,
contributing  to  the  discovery  of  epigenetic  markers  for
diagnosis and prognosis in complex disorders such as neonatal
sepsis.  It  is  noteworthy,  that  despite  there  are  numerous
biomarkers  that  have  been  evaluated  for  early  detection  of
neonatal sepsis, till date, there is no single ideal biomarker that
fulfills  all  essential  criteria  for  being  an  ideal  biomarker  for
neonatal  sepsis  [15].  The  methodology  of  processing  and
differential methylation analysis of EPIC data detailed here can
serve as a useful resource for application in different diseases
with the aim of detecting DMRs.

2. MATERIALS AND METHODS

2.1. Experimental Design

Biological  samples  from preterm infants  (≤  32  weeks  of
corrected  gestation  age)  were  collected  as  part  of  the  study
protocol from a global project under the title “Omics applied to
the  diagnosis  of  bacterial  sepsis  during  the  neonatal  period”
performed  at  the  Division  of  Neonatology  of  the  University
and Polytechnic Hospital La Fe (Valencia, Spain) and granted
by  the  Instituto  de  Investigación  en  Salud  Carlos  III
(PI18/01292). This is a prospective observational study whose
study protocol followed the stringent recommendations of the
Spanish  Neonatal  Society  and  was  approved  by  the
Institutional Review Board of our hospital (Comité de Ética e
Investigación Médica) with the protocol number 2019/099 and
also registry number 2020-383-1. Informed consent was signed
by  the  parents  of  all  participants.  Recruitment  protocol  has
been extensively described in the previously published article
[16].  Samples  from  23  neonates  were  collected  at  5-7  days
after birth. Patients who met early-onset (EOS) and late-onset
(LOS) sepsis criteria according to the criteria of Töllner [17]
and Goldstein [18] were included in the study. Concretely, nine
patients were diagnosed with LOS, six patients with EOS, and
two  patients  with  EOS  and  LOS.  In  order  to  perform  the
differential analysis, six healthy preterm neonates with similar
gestational and postnatal ages and perinatal characteristics but
free of infection and without suspicion of sepsis were used as
controls (Fig. 2).
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Fig. (1). Overview of the bioinformatic pipeline used. The preprocessing of the raw data consists of the displayed steps, which were performed
using minfi R-package, with the aim to obtain a normalized and filtered dataset ready for the differential methylation analysis. The identification of
DMRs was performed by two different methods: DMRcate and mCSEA. The sets can be overlapped to obtain a reliable list of DMRs to select for
validation.
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Fig. (2). Study design. Blood samples from septic (n = 17) and healthy (n = 6) preterm infants (≤ 32 weeks of corrected gestation age) were analyzed.
Patients with sepsis were classified into 3 groups: LOS (n = 9), EOS (n = 6) and EOS and LOS (n = 2). DNA from each patient's samples was isolated
and hybridized with the Human DNA Methylation EPIC 850K BeadChip array (Illumina Inc, San Diego, California) to obtain the DNA methylation
profile. Differential expression of DNA methylation between septic patients and healthy subjects and within septic patients was performed to identify
DNA methylation signatures of septic neonates and their types.

Standard  blood  cultures  led  to  the  identification  of  LOS
(hospital-acquired infection) when there was a positive culture.
However,  the  diagnosis  of  EOS  (caused  by  pathogens
transmitted  from mother  to  infant  before  or  during  delivery)
required  a  positive  peripheral  smear  culture,  suggestive
symptoms  and/or  an  increase  of  C-reactive  protein  or  IL-6.
Because sometimes blood culture renders negative due to the
low blood volume available, sometimes the diagnosis of sepsis
is  set  as  “clinical  sepsis”  instead  “culture-positive  sepsis”.
Clinical  sepsis  is  characterized  by  the  presence  of  evident
clinical signs that can be or are not accompanied by changes in
acute phase reactant biomarkers such as CRP, IL-6 or PCT. As
these criteria are not mutually exclusive, two preterm neonates
were diagnosed with EOS and LOS. More information about
the  characteristics  of  patients  included  in  the  study  can  be
found in our previous work by Lorente-Pozo et al. [19].

2.2. Samples

Blood (0.5 mL) was sampled using a heparinized syringe
after admission to the NICU. Blood was centrifuged (1500g ×
10 minutes) at 4°C to separate plasma from the cell pellet. Cell
fractions were stored at -80°C until processed.

2.3. DNA Extraction

Total DNA was isolated from the cell pellet with All-In-
One DNA/RNA Miniprep Kit (BS88203, Bio Basic Canda Inc,
Canada)  following  the  manufacturer’s  instructions.  Purified
DNA  was  quantified  with  NanoDrop,  quantified  by  the
fluorometric method (Quant-iT PicoGreen dsDNA Assay, Life
Technologies,  Carlsbad,  California),  and  assessed  for  purity
with NanoDrop (Thermo Scientific, Waltham, Massachusetts)
260/280 and 260/ 230 ratio measurements. The DNA integrity
of  fresh  frozen  samples  was  checked  by  electrophoresis  in
1.3% agarose gel.

2.4. DNA Methylation Profiling using Illumina EPIC 850k
Array

The  measurement  of  the  methylation  levels  on  the  23
samples was performed by means of the Infinium Human DNA
Methylation  EPIC 850K BeadChip  arrays  (Illumina  Inc,  San
Diego, California) which interrogates over 850.000 CpG sites
across  the  genome,  being  a  powerful  technology  for  EWAS
studies  and improving the coverage of  the previous platform
(HumanMethylation450K),  mainly  in  important  regulatory
regions.  Probes  of  the  EPIC Bead  Chip  are  designed  so  that
they cover the following regions: gene promoters (200-1500 bp
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upstream of TSS), 5’ UTRs, 3’ UTRs, first exon, gene bodies
and intergenic regions, including regulatory regions identified
by the ENCODE and FANTOM5 projects.

The  Human  Methylation  850K  EPIC  BeadChips  require
the bisulphite treatment of genomic DNA followed by a whole
genome amplification step, enzymatic endpoint fragmentation,
precipitation and resuspension. The processed samples are then
hybridized (at 48°C for 16 hours) on the bead array containing
the  50-bp  probes  complementary  to  the  CpG  locus.  After
washing away unhybridized and non-specifically bound DNA,
a single nucleotide extension using nucleotides labelled with
biotin (ddCTP and ddGTP) and 2,4-dinitrophenol (ddATP and
ddTTP)  was  performed.  Repeated  rounds  of  staining  were
performed with a combination of antibodies that differentiate
DNP  and  biotin  by  fixing  them  with  different  fluorophores.
Finally, the BeadChip was washed and protected to scan it on
an  Illumina  HiScan  SQ  scanner  (Illumina  Inc,  San  Diego,
California).

2.5. Data Processing: Quality Control, Normalization and
Filtering

Data  processing,  as  well  as  the  differential  methylation
analysis, were performed using house-made R scripts, using the
following Bioconductor packages: minfi (version 1.32), limma
(version  3.42.2),  DMRcate  (version  2.0.7)  and  mCSEA
(version 1.6.0). Moreover, the annotation data for the Illumina
HumanMethylationEPIC  array  is  contained  in  the  Biocon-
ductor  AnnotationData  package  IlluminaHumanMethylation
EPICanno.ilm10b4.hg19,  as  well  as the IlluminaHumanMeth
ylationEPICmanifest,  which  need  to  be  loaded  in  the  R
environment. The code is available as Supplementary Material.

The raw data obtained from the Illumina EPIC methylation
array  consists  of  two  .idat  files  per  sample,  which  store  the
intensities  for  each  probe  in  binary  format,  each  file
corresponding  to  the  two  different  channels  (red  and  green).
The  .idat  files  of  the  23  samples  were  deposited  on  Gene
Expression Omnibus (GEO) with the number GSE155952. In
the  first  script  (MethylationDataProcessing.R),  the  minfi  R-
package was used to  read the  .idat  files,  assess  their  quality,
perform the normalization and the exclusion of probes that may
interfere in the posterior analysis [20].

First, the reading of the raw data was performed, obtaining
a  ‘RGChannelSet’  object  in  which  the  data  is  organized  at
probe level in both red and green channels. For the reading of
.idat files, minfi R-package requires a csv samplesheet which is
based on a samplesheet provided by Illumina and must contain
one  sample  per  line  and  the  following  columns  describing
pheno-data  in  order:  Sample_Name,  Sample_Well,
Sample_Plate,  Sample_Group,  Pool_ID,  Sentrix_ID,
Sentrix_position and Basename. The column ‘Basename’ must
contain the absolute path to the .idat file, including the name of
the file: sentrix ID + “_” + sentrix position.

Afterwards,  a  quality  control  report  was  generated,  in
which the density plot shows the distribution of the beta values
per sample (Fig. 3). The quality of the signal is assessed by the
detection  p-value  at  each  CpG,  and  by  calculating  the  mean
detection p-value among probes in each sample, the quality of

each sample can be evaluated, identifying poor quality samples
that  will  be  excluded  from  the  analysis  using  a  detection  p-
value cutoff of 0.05, where higher p-values indicate unreliable
signal  so  that  samples  with  a  p-value  greater  than  0.05  are
removed.

The  normalization  was  then  performed,  by  means  of  the
functional  normalization  method  for  Illumina  methylation
arrays,  a  between-array  normalization  which  removes
unwanted  technical  variation  by  regressing  out  variability
explained by the control probes present on the array [21]. The
output is a ‘GenomicRatioSet’ object. This GRSet is organized
at CpG locus level, contains two channels -beta values and M-
values-  and  it  is  mapped  to  the  genome.  Beta-values,  which
range from 0 to 1, are widely used to measure the percentage of
methylation; while M-values are the log2 ratio of the intensities
of  methylated  probe  versus  unmethylated  probe  (logit
transformation  of  the  beta-values).

The  filtering  step  comprises  the  removal  of  probes  with
poor  detection  p-value  (>0.01)  in  any  of  the  samples  which
may be unreliable, CpGs located at the sexual chromosomes Y
and  X,  which  introduce  variability  that  may  alter  the
differential analysis, probes known to have common SNPs that
may affect the CpG sites and cross-reactive probes [22] which
map  multiple  locations  in  the  genome,  therefore  resulting  in
spurious  signals  which  can  lead  to  invalid  conclusions  in
downstream  analyses.

2.6. Differential Methylation Analysis of CpG Sites

DMCs  were  identified  by  means  of  the  linear  model  for
differential  analysis  using limma  [23]  between the  following
clinical groups: neonatal sepsis versus control individuals, LOS
compared  to  control  individuals,  EOS  compared  to  control
individuals  and  LOS  compared  to  EOS  patients.  The
significance  threshold  selected  for  the  False  Discovery  Rate
(FDR),  adjusted  by  Benjamini-Hochberg  correction  (BH),  is
0.05. Importantly, the methylation measure that should be used
for the differential analysis of methylation levels are M-values,
which  have  been  described  as  more  statistically  valid  for
significance  testing  [24].

2.7. DMR Detection

As we discussed previously, in order to identify DMRs, we
used two packages, DMRcate and mCSEA, which use different
approaches: DMRcate is a supervised method, while mCSEA
is  an  unsupervised  method.  The  identification  of  DMRs  is
performed  by  the  scripts  dmrcateAnalysis.R  and
mcseaAnalysis.R. Supervised methods consist of a first step in
which  a  statistic  is  computed  for  each  CpG  (t-statistic  or
corresponding p-value), and a posterior step where differential
CpGs in consecutive genomic regions are identified, in which
previous  annotations  are  not  considered,  and  therefore,  they
look  for  DMRs  de  novo.  Conversely,  unsupervised  methods
analyze predefined regions, previously grouping CpG sites into
genomic regions. Both methods -DMRcate and mCSEA- apply
limma  to  fit  the  linear  model  (23),  in  the  case  of  DMRcate
obtaining the differentially methylated CpGs, and in the case of
mCSEA,  a  ranked  list  of  all  CpGs  according  to  their
differential methylation (t-statistic), and not only the significant
CpG sites.
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Fig. (3). Data exploration during processing. A. Principal Component Analysis (PCA) of methylation data of control (purple), LOS (orange), EOS
(blue) and EOS+LOS (pink). PCA plot in the left displays raw data before processing, and PCA plot in the right displays data after the processing
steps of sample quality control, functional normalization and probe filtering. B. Density plot of beta values in each sample after normalization, where
beta values are on the horizontal axis and their density on the vertical axis.

DMRcate  [5]  is  a  data-driven  approach where  intergenic
CpGs  that  lack  a  gene  or  promoter  annotation  are  also
considered,  being  able  to  detect  differential  methylation  at
enhancers and other regulatory regions in addition to annotated
genes  and  promoters.  DMRcate  identifies  chromosomal
coordinates by collapsing contiguous differentially methylated
CpGs  that  are  within  lambda  nucleotides  from  each  other.
Firstly,  we  performed  a  standard  linear  modelling  of  CpGs
using  the  clinical  groups  obtaining  a  t-statistic  per  CpG  site
which evaluates the methylation difference between the groups
for  that  CpG and  keeping  the  significant  DMCs for  the  next
step  of  DMR  detection.  Then,  a  Gaussian  kernel  smoothing
was  applied  to  the  squared  t-statistics  (Yi  =  ti2)  of  CpGs
separated  by  chromosome.  The  squares  of  the  t-statistics,
which  are  unsigned,  are  used  with  the  aim  of  combining
genomically nearby CpG site effects without considering the
direction of  effect  (hyper-  or  hypomethylation)  and allowing
the identification of DMRs where the methylation is influenced
by CpG landscape. Kernel smoothing [25] is a nonparametric
approach  in  which  data  points  are  averaged  with  their

neighbors in a series, redistributing mass around an observation
according  to  two  settings:  A  kernel  function,  which  is  a
symmetrical  probability  density  function,  and  a  bandwidth,
which  is  the  maximum  distance  from  the  kernel’s  center  at
which mass is spread. The Yi metric is smoothed within a given
window or bandwidth (lambda parameter) which correspond to
the distance in nucleotides between the significant CpG probes.
Afterwards,  the  smoothed  test  statistics  are  modeled  by  the
Satterthwaite method [26], computing p-values. Then, these p-
values  are  adjusted  by  BH  correction  to  control  the  False
Discovery  Rate  [27],  and  finally,  DMRs  are  defined  by
collapsing groups of the remaining CpG sites that  are within
lambda  nucleotides.  The  parameters  used  for  the
implementation  of  DMRcate  in  the  present  analysis  were  a
lambda of 1000 nucleotides and a scaling factor for bandwidth
of 2.

DMRcate  is  a  popular  approach,  which  shows  good
performance and has proven to be useful and reliable, with a
good  precision,  a  controlled  type  I  error  rate  (small  false
positive rate), and fast execution times [4]. However, DMRcate
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method lacks power, especially for small effect size, in other
words, to detect DMRs with real effect as true positives when
methylation  changes  are  small  [4].  Complex  diseases  are
characterized  by  small  methylation  differences  between
phenotypes  (<10%),  so  a  sensitive  DMR  detection  tool  is
needed to analyze the changes among neonates with sepsis to
discover differences between LOS and EOS. With this purpose,
in  addition  to  DMRcate  we  used  a  novel  approach  based  on
mCSEA (methylated CpGs Set  Enrichment  Analysis),  which
focuses  on  detecting  subtle  methylation  changes  with  a
consistent  pattern  among  the  different  phenotypes  analyzed.

mCSEA [28] is an unsupervised method where CpGs are
previously annotated to predefined regions (genes, promoters
and  predefined  regions).  It  is  based  on  the  Gene  Set
Enrichment Analysis (GSEA) method to identify DMRs from
Illumina Infinium 450K and EPIC array data, where gene sets
are defined as sets of CpG sites in predefined regions for DMR
finding.  First  of  all,  limma  is  used  to  fit  a  linear  model,
obtaining a list of all the CpG probes sorted by their t-statistic
or  differential  methylation.  mCSEA  applies  a  weighted
Kolmogorov-Smirnov (KS) statistic to the t-statistic metric to
calculate an Enrichment Score (ES) for each DMR. Basically,
it is calculated running through the entire ranked list of CpGs,
increasing the score when a CpG in the region is encountered
and decreasing the score when the CpG encountered is not in
the analyzed DMR. Hence, it evaluates the enrichment of CpG
sites belonging to the same region in the top positions of the
ranked  list.  The  significance  of  each  set  is  calculated  by
permuting  the  sets  and  recomputing  ES.  Finally,  DMRs  are
retrieved by selecting a  threshold of  0.05 for  the  adjusted p-
value (BH corrected). The mean beta difference for each region
is  not  implemented  in  the  mCSEA  package,  so  it  was
calculated  in  the  mcseaAnalysis.R  script  as  the  mean  of  the
beta differences of its associated CpGs between groups.

3. RESULTS AND DISCUSSION

3.1. Quality Control of the Raw and Processed Data

When  exploring  the  quality  of  the  samples  before
processing,  the  mean  detection  p-value  of  all  samples  was
smaller than the selected cutoff of 0.05, which is indicative of
the good quality of the signal, outlining the good quality of all
the samples in terms of overall  signal reliability,  without the
need of removing any of them from the analysis (Fig. 3A). In
addition,  the  quality  control  report  of  raw  data  showed  an
expected  per-sample  distribution  of  beta-values,  which  is
bimodal with one peak around 0.1 and another peak around 0.9
representing unmethylated and methylated probes. The density
plot of beta values after the normalization maintains the same
distribution, although cleaner (Fig. 3B).

The exploration of data before and after the processing was
performed  by  a  PCA  analysis  (Fig.  3A),  which  shows  that
samples tend to separate between sepsis and control  samples
with some overlap. LOS samples exhibit the greatest separation
from  control  samples,  while  EOS  samples  are  closer  to
controls.

Regarding  probes,  a  total  of  774.920  probes  of  865.859
passed the four filtering steps. Only 3.224 were removed due to

a low-quality signal (or detection p-value higher than 0.01 in
any of the samples). The rest were sex-related probes (19.152),
SNPs (29.039) and cross-reactive probes (39.524).

3.2. DMR Finding Approaches

As hypothesized,  DNA methylation is  altered in  preterm
neonates suffering from sepsis not only at  the CpG level but
also at the region level.

Both DMR detection methods, DMRcate and mCSEA, are
complementary.  The  first  tool  allowed  us  to  detect  a  wide
range  of  de  novo  DMRs.  In  fact,  DMRcate  yields  a  greater
number  of  DMRs  among  comparisons  for  neonatal  sepsis
versus controls, with 14.846 regions, and LOS versus controls,
with 16.303 regions (Fig. 4A). As it is a supervised method, it
allows the detection of intergenic regions as well as other not
predefined  regions  in  which  more  than  one  gene  can  be
annotated because of their short sequence, for instance, which
are  not  detected  by  mCSEA method.  Besides  looking  for  de
novo genomic annotation, DMRcate is agnostic to the direction
of the differential methylation signal, meaning it spatially fits
nearby  significant  CpGs  without  regard  to  the  direction  of
effect  (hyper-  or  hypomethylation).  This  DMRs  finding
approach is useful when there are contiguous differential CpGs
but is not able to obtain DMRs between conditions with small
effect  sizes  when  limma  does  not  return  differential  probes
with the specified threshold, as occurs in the LOS versus EOS
and EOS versus control comparisons.

On  the  other  hand,  mCSEA  revealed  DMRs  exhibiting
small  and consistent  methylation changes,  as it  occurs in the
LOS  versus  EOS  comparison  and  the  EOS  versus  control
comparison  (Fig.  4B)  mCSEA  detected  1.170  DMRs  in  the
sepsis versus control comparison and 1.587 DMRs in the LOS
versus  control  comparison.  More  importantly,  thanks  to  the
sensitivity of mCSEA, we were able to discover regions with
smaller  differences  between  conditions  whose  CpGs  exhibit
subtle  differences,  which  are  not  detected  by  limma  as
differential,  with  consistency  along  relatively  large  regions,
which are predefined. Due to this, the only mCSEA is able to
detect changes between EOS and control individuals, with 152
regions, and between LOS and EOS, with 938 regions.

After overlapping the DMR sets obtained in mCSEA and
DMRcate,  302  promoters  and  108  genes  were  found  to  be
hypomethylated  and  143  promoters  hypermethylated  (beta
differences (>10%)) when compared neonatal sepsis (EOS and
LOS)  to  control  neonates.  These  results  were  presented  in  a
recent work we published. Among promoters and genes with
differential  methylation  we  found  those  involved  in  immune
cell differentiation and T-cell activation (i.e. LRG1, CD300LB,
CD3G, CD3D, TXK, UBASH3, SIT1), immune response (i.e.
PRTN3,  LTA)  and  inflammation  (i.e.  TREM1,  LTA);  and
immunosuppression  and  anti-inflammatory  responses  (e.g.
S100A8,  IL10)  [19].  Furthermore,  DMR sets  obtained  using
both,  mCSEA  and  DMRcate  methods,  for  sepsis  vs.  control
comparison provided similar GO biological processes related
to immune response. In this regard, after the overlapping of the
DMRs  for  genes  and  promoters,  obtained  with  mCSEA  and
DMRcate,  we  found  the  enrichment  of  hypermethylated
regions in T-cell activation and T-cell differentiation, among
other  relevant  GO  terms  which  demonstrate  the  scarce
immunoreactivity of T cells in neonates suffering from sepsis
[19].
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Fig. (4). Distribution of the mean beta differences of the DMRs obtained by both methods. The histograms plot the mean beta difference in the x-axis
versus the frequency of DMRs for each beta difference represented in the y-axis, for the tested contrasts (LOS vs Control, Sepsis vs Control, LOS vs
EOS, and EOS vs Control) by A. DMRcate and B. mCSEA.

The overlap of both DMR sets resulted in a reliable set of
regions,  which  are  differentially  methylated  between  the
conditions  and  can  be  selected  for  a  posterior  validation
analysis.  The  early  diagnosis  of  neonatal  sepsis  requires
biomarkers  that  are  quick,  sensitive,  specific  and  affordable.
With  this  purpose,  further  research  should  focus  on  the
validation of specific differentially methylated regions, which
may  lead  to  the  discovery  of  novel  diagnostic  or  predictive
biomarkers  for  neonatal  sepsis  to  provide  better  clinical
management of the disease and in the end, improve neonatal
outcomes.

CONCLUSION

The  present  work  offers  a  comprehensive  resource  for
application  in  DMR  detection  in  complex  diseases,  such  as
neonatal  sepsis,  with  the  aim  of  exploring  a  wide  range  of
regions.  Both  methods  proved  useful  for  differential
methylation  analysis  because,  on  the  one  hand,  DMRcate
overcomes  mCSEA  in  precision,  and  on  the  other  hand,
mCSEA has better sensitivity. Therefore, they can be used in a
complementary manner. Furthermore, the use of both methods
allows the overlap of DMRs with the objective of improving
the  reliability  of  the  findings.  We  propose  that  this
methodology can be used in other clinical outcomes in order to
identify  more  accurately  methylation  patterns  involved  in
complex  diseases.
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