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Abstract:

Aims:

We have developed a new approach to the study of human heart rate, which is based on the use of a vector rhythmocardiosignal, which includes as
its component the classical rhythmocardiosignal in the form of a sequence of heart cycle durations in an electrocardiogram.

Background:

Most modern automated heart rate analysis systems are based on a statistical analysis of the rhythmocardiogram, which is an ordered set of R-R
interval durations in a recorded electrocardiogram. However, this approach is not very informative, since R-R intervals reflect only the change in
the duration of cardiac cycles over time and not the entire set of time intervals between single-phase values of the electrocardiosignal for all its
phases.

Objective:

The aim of this paper is to present a mathematical model in the form of a vector of stationary and permanently connected random sequences of a
rhythmocardiosignal  with  an  increased  resolution  for  its  processing  problems.  It  shows  how  the  vector  rhythmocardiosignal  is  formed  and
processed in diagnostic systems. The structure of probabilistic characteristics of this model is recorded for statistical analysis of heart rate in
modern cardiodiagnostics systems.

Methods:

Based on a new mathematical model of a vector rhythmocardiosignal in the form of a vector of stationary and permanently connected random
sequences, new methods for statistical estimation of spectral-correlation characteristics of heart rate with increased resolution have been developed.

Results:

The spectral power densities of the components of the vector rhythmocardiosignal are justified as new diagnostic features when performing rhythm
analysis in modern cardiodiagnostics systems, complementing the known signs and increasing the informative value of heart rate analysis in
modern cardiodiagnostics systems.

Conclusion:

The structure of probabilistic characteristics of the proposed mathematical model for heart rate analysis in modern cardiodiagnostics systems is
studied.  It  is  shown how the  vector  rhythmocardiosignal  is  formed,  and  its  statistical  processing  is  carried  out  on  the  basis  of  the  proposed
mathematical model and developed methods.
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1. INTRODUCTION

The heart rate analysis has long been an integral part of not
only modern cardiology but also  many other  areas of  biomet-
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rics  because  the  heart  rate  is  a  carrier  of  information  about
consistency and order in the functioning of the human body as
an  integral  system.  In  particular,  the  analysis  of  heart  rate
makes  it  possible  to  assess  the  overall  activity  of  regulatory
mechanisms  of  the  body,  mechanisms  of  neurohumoral
regulation  of  the  heart,  the  relationship  between  the
sympathetic  and  parasympathetic  parts  of  the  autonomic
nervous  system,  as  well  as  the  psycho-emotional  state  of  a

https://openbioinformaticsjournal.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1875036202114010073&domain=pdf
mailto:Rasegas21@gmail.com
mailto:reprints@benthamscience.net
http://dx.doi.org/10.2174/1875036202114010073


74   The Open Bioinformatics Journal, 2021, Volume 14 Lytvynenko et al.

human.  In  addition,  the  heart  rate  analysis  is  carried  out  for
early diagnosis of the pathological condition of the fetus, the
state of the autonomic system in diabetic patients.  Heart rate
makes  it  possible  to  assess  the  value  of  the  risk  of  death  in
myocardial infarction, the degree of tension of the state of the
regulatory process in the human body, etc [1 - 12].

The special efficiency of the heart rate analysis is achieved
by using modern computerized diagnostic systems that make it
possible  to  automate  the  assessment  of  diagnostic  signs  and
make medical decisions about the human heart rate based on
recorded  cardiosignals,  mainly  electrocardiosignals.  The
accuracy,  reliability,  information  content  and  speed  of
functioning  of  cardiodiagnostic  computerized  heart  rate
research  systems  significantly  depend  on  the  adequacy  and
constructiveness  of  the  mathematical  model  of  heart  rate,  as
well as the accuracy, reliability, information content, speed of
methods  and  algorithms  of  its  analysis  in  these  information
systems.

Most  methods  for  processing  the  classical  rhythmo-
cardiosignal  in  the framework of  the stochastic  approach are
based on three of its  probabilistic models,  namely,  a random
variable,  a  random  stationary  sequence,  and  a  periodically
correlated random sequence are used. These models are based
on an approach to describing the heart rate as a sequence of R-
R  intervals  that  uses  a  ritmocardiogram  (classical
ritmocardiogram), which imposes significant limitations on the
informative  value  of  heart  rate  analysis.  The  essence  of  this
limitation  is  that  the  values  of  R-R  intervals,  which  are  the
corresponding values of  the rhythmocardiogram, reflect  only
the change in the duration of cardiac cycles over time, and not
the entire set of time intervals between single-phase values of
the electrocardiosignal for all its phases, which does not make
it possible to describe the heart rate with sufficient information.
That is why the approach based on the analysis of the classical
rhythmocardiogram  as  a  sequence  of  R-R  intervals  does  not
allow us  to  identify  more  subtle  and  detailed  features  of  the
heart rate in modern computer systems of medical diagnostics.

In the study [13, 14], a new approach to heart rate analysis
based  on  a  high-resolution  rhythmocardiosignal  was  deve-
loped.  As  indicated  in  these  works,  the  classical
rhythmocardiogram is embedded in a rhythmocardiogram with
increased resolution, which is the basis for increasing the level
of  the  information  content  of  heart  rate  analysis  in  modern
computer systems for functional diagnostics of the human heart
state based on a rhythmocardiosignal with increased resolution.

In this approach, the heart rate was represented by a high-
resolution rhythmocardiosignal (other names: high-informative
rhythmocardiosignal  or  vector  rhythmocardiosignal),  the
mathematical  model  of  which  was  a  vector  of  normally
distributed  random  variables.  Therefore,  the  classical
ritmocardiogram  is  embedded  in  a  ritmocardiogram  with
increased resolution, which is the basis for the level increase of
information  content  of  heart  rate  analysis  in  the  modern
computer systems for functional diagnostics of the human heart
state based on a ritmocardiosignal with increased resolution.

As  a  mathematical  model  of  a  rhythmocardiosignal  with
increased resolution, in the study [13, 14], is justified the use of

a vector of random variables with a normal distribution. This
stochastic model can already take into account several phases
of the cardiac cycle when analyzing the heart rate. However,
this model is a relatively simple mathematical model of a high-
resolution rhythmocardiosignal,  since it  does not  allow us to
study its temporal dynamics. To take into account the temporal
dynamics of a rhythmocardiosignal with increased resolution, it
is  necessary  to  use  the  mathematical  apparatus  of  random
sequence  theory,  namely,  to  consider  it  a  vector  of  discrete
random sequences.

In  this  paper,  a  mathematical  model  of  a  rhythmo-
cardiosignal  with  an  increased  resolution  for  its  processing
problems is described as a vector of stationery and stationary
connected  random  sequences.  It  shows  how  the  vector
rhythmocardiosignal  is  formed,  processed  and  modeled  in
diagnostic  systems.  The  structure  of  probabilistic
characteristics of this model is recorded for statistical analysis
of heart rate in modern cardiodiagnostics systems.

2. MATERIALS AND METHODS

2.1. Electrocardiosignal Mathematical Model in the form of
a Conditional Cyclic Random Process

Let's move on to constructing a mathematical model of a
vector rhythmocardiosignal. Since the rhythmocardiosignal is
formed from an electrocardiosignal, the mathematical model of
the vector rhythmocardiosignal is based on the corresponding
model of the electrocardiosignal itself (ECS). According to the
study [15], a mathematical model of an electrocardiosignal that
is  conditional  cyclic  random  process  is  called  a  process

,  which  is  given  on  the
cartesian  product  of  two  stochastically  independent
probabilistic spaces with sets of elementary events Ω and Ω' on
the  set  of  real  numbers  R,  and  for  which  the  following
conditions  are  met:

1)  There  is  such  a  random  function
, what  for  each  ω',

appropriate ω'-realisation Tω' (t,n) of this function satisfies the
conditions of the rhythm function;

2)  For  each  ω'  із  Ω'  finite-dimensional  vectors

-multiple  separabilities  of  the
process  ,  with  all  the  goals
k    N is stochastically equivalent in a broad sense;

3)  For  any  different   random
processes  are isomorphic to the order
and values cyclic random processes.

Realisation of (ω'-realisation) a random function T(ω', t, n)
there  is  a  deterministic  function  Tω'(t,  n),  which  satisfies  the
conditions of the rhythm function, namely:

a group of conditions:

a) 

𝑇(𝜔′, 𝑡, 𝑛), 𝜔′ ∈ 𝛺′, 𝑡 ∈ 𝑅, 𝑛 ∈ 𝑍

 (𝜉𝜔′(𝜔, 𝑡1), 𝜉𝜔′(𝜔, 𝑡2),…, 𝜉𝜔′(𝜔, 𝑡𝑘)) and (𝜉𝜔′(𝜔, 𝑡1 + 𝑇𝜔′(𝑡1, 𝑛))

𝜉𝜔′(𝜔, 𝑡2 + 𝑇𝜔′(𝑡2, 𝑛)),...,𝜉𝜔′(𝜔, 𝑡𝑘 + 𝑇𝜔′(𝑡𝑘, 𝑛)), 𝑛 ∈ 𝑍

𝑛 ∈ 𝑍, where {𝑡1, 𝑡2, . . . 𝑡𝑘}
𝜉𝜔′(𝜔, 𝑡), 𝜔′ ∈ 𝛺′, 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 

∈

𝜔1
′ ∈ 𝛺′ and 𝜔2

′ ∈ 𝛺′ 
𝜉𝜔1

′ (𝜔, 𝑡) and 𝜉𝜔2
′ (𝜔, 𝑡) 

𝑇𝜔′(𝑡, 𝑛) > 0, if 𝑛 > 0 (𝑇𝜔′(𝑡, 1) < ∞); 

{𝜉(𝜔,𝜔′, 𝑡), 𝜔 ∈ 𝛺,𝜔′ ∈ 𝛺′, 𝑡 ∈ 𝑅}
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b) 

c)
for which t1 < t2, for the function Tω'(t,n) a strict inequality is
fulfilled 

3)  The  function  Tω'(t,n)  is  the  smallest  in  modulus
 among  all  such  functions

, which satisfy the above conditions 1 and 2.

2.2.  A  Generalized  Mathematical  model  of  a  High-
resolution Rhythmocardiosignal

The  conditional  cyclic  random  process  ξ(ω,ω',t)  allows
simultaneous  consideration  of  both  the  stochasticity  of  the
morphological  structure  of  electrocardiosignals  (which  is
important for their statistical morphological analysis), as well

as  the  stochasticity  of  their  rhythmic  structure  (which  is
important  for  the  heart  rate  analysis).  Considering  that
according to such a mathematical model of the electrical signal,
information  about  the  heart  rate  is  contained  in  the  rhythm
function  T(ω',t,n)  of  the  conditional  cyclic  random  process
ξ(ω,ω',t),  and  also  taking  into  account  the  fact  that  the
processing  of  electrocardiosignals  is  carried  out  in  a  digital
system, the analysis  of  heart  rate  is  reduced to  the statistical
analysis  of  the  random  rhythm  function

 of  the  conditional
cyclic  random  process  discrete  argument

.

Random rhythm function T(tml(ω'),n) is completely defined
by the elements of the random domain D(ω') according to the
formula:

(1)

When n = 1, rhythm function T(tml(ω'),1) is calculated in the following way:

(2)

For each  ω'-realisation

 of  the  random  domain
definition Dω' =  of the
conditional cyclic random process of a discrete argument that
is  given  on  a  probabilistic  space  (Ω′,  F′,  P′),  the  following

conditions apply: , whetherm2 < m1, or whetherm2

=  m1,  and  l2  <  l1,  in  other  cases  

If  to  base  the  heart  rate  analysis  on  a  random  rhythm
function  T(tml(ω'),1)  the  conditional  cyclical  random  process
ξ(ω, tml,(ω')), preserving a tight bind to the phase of the cardiac
cycle  and  the  number  of  the  cardiac  cycle,  a  mathematical
model of the rhythmocardiosignal with increased resolution is
presented as a vector of random sequences:

(3)

where each l-component of a vector is a random sequence
Tl(ω',m), the value of which is equal to the value of the random
rhythm function T(tml(ω'),1) at moments in time tml(ω') from a

discrete set . The set
of  Dl(ω')  is  integrated  into  the  D(ω')  and  describes  the  time
distances  between  the  same  type  l  -  phases  of  the  studied
electrocardiosignal in its two adjacent cycles, namely:

(4)

Dimension (the number of components) L of vector 
determines  the  resolution  of  the  rhythmocardiosignal  and  is
equal  to  the  number  of  studied  time  intervals  between  pre-
selected  phases  in  the  electrocardiosignal,  which  can  be
identified  by  segmentation  and  detection  methods  when
solving  the  problem  of  automatic  formation  of  the
rhythmocardio  signal  from  the  electrocardiosignal  [16  -  28].
According  to  the  block  diagram  shown  in  Fig.  (1),  the  first
block  is  the  determination  of  the  same  type  of  phases

corresponding to the boundaries of segments-zones ECS; this
stage  is  implemented  on  the  basis  of  the  use  of  methods  for
segmenting cyclic signals. Detection of the same type of phases
within certain zones is the next step in the formation of a vector
rhythmocardiosignal.  At  this  stage,  information  is  obtained
about time points that correspond to the maximum or minimum
of characteristic ECS segments, for example, R, P, or T. The
final  stage  in  this  structure  is  the  formation  of  a  vector
rhythmocardiosignal based on the information obtained at the
previous stages.

𝑇𝜔′(𝑡, 𝑛) = 0, if 𝑛 = 0;  

𝑇𝜔′(𝑡, 𝑛) < 0, if 𝑛 < 0, 𝑡 ∈ 𝑅 ; for any 𝑡1 ∈ 𝑅 and 𝑡2 ∈ 𝑅

𝑇𝜔′(𝑡1, 𝑛) + 𝑡1 < 𝑇𝜔′(𝑡2, 𝑛) + 𝑡2, ∀𝑛 ∈ 𝑍;  

 (|𝑇𝜔′(𝑡, 𝑛)| ≤ |𝑇
𝜔′
𝛾 (𝑡, 𝑛)|) 

{𝑇
𝜔′
𝛾 (𝑡, 𝑛), 𝛾 ∈ 𝛤}

T(tml(ω
′), n), ω′ ∈ Ω′, tml(ω

′) ∈ R, n ∈ Z

{ξ(ω, t (ω′)),ω′ ∈ Ω′, ω ∈ Ω, t (ω′) ∈ D(ω′)}

T(tml(ω
′), n) = tm+n,l(ω

′) − tm,l(ω
′),  m, n ∈ Z,  l = 1, L

___

, tm,l(ω
′) ∈ D(ω′)                  

T(tml(ω
′), 1) = tm+1,l(ω

′) − tm,l(ω
′),  m ∈ Z,  l = 1, L

___

,  tm,l(ω
′) ∈ D(ω′)            

ω′- realisation Dω′

{tml
ω′

∈ R,  m ∈ Z,  l = 1, L
___

,  L ≥ 2} 

=

{tml(ω
′) ∈ R,  m ∈ Z,  l = 1, L

___

,  L ≥ 2} 

tm1l1
ω′

< tm2l2
ω′

tm1l1
ω′

< tm2l2
ω′

(m2, m1 ∈ Z, l2, l1 = 1, L, 0 < tm,l+1
ω′

− tml
ω′

< ∞). 

ΞL(ω
′,  m) = {Tl(ω

′,  m), ω′ ∈ Ω′,  l = 1, L
____

,  m ∈ Z } ,                                          

Tl(ω
′,  m) = T(tml(ω

′), 1) = tm+1,l(ω
′) − tm,l(ω

′),  m ∈ Z,  l = 1, L
___

,  tm,l(ω
′) ∈ D(ω′)

ΞL(ω
′, m)
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Fig. (1). Block diagram of the method of forming a vector rhytmocardiosignal with increased resolution.

2.3.  Updated  Mathematical  Model  of  a  High-resolution
Rhythmocardiosignal and its Probabilistic Characteristics

Let's  move  on  to  the  justification  of  the  probabilistic
characteristics of the vector  of random sequences.
One  of  the  simplest  stochastic  models  that  can  take  into
account the dynamics of changes in the rhymocardiosignal with
increased  resolution  is  the  vector   =

f  the  stationary  and
stationery-related random sequences. First of all, note that the
vector   of  the  stationary  and  stationary-related
random  sequences,  in  the  partial  case,  if  its  components  are
stationary sequences with independent values, i.e. white noises
given  on  a  set  of  integers,  is  a  well-known  model  of  a
rhythmocardiosignal with increased resolution in the form of a
random variable  vector,  which was developed in  the studies.
However, the hypothesis of independence or uncorrelation of
rhythmocardiosignal  readings  does  not  correspond  to  the
reality  on  practise,  which  requires  taking  into  account  the
stochastic relationship between rhythmocardiosignal readings
with  increased  resolution,  and  therefore  the  use  of  a  more
complex and more general mathematical model in the form of a
vector   stationary  and  stateonery  -related  random
sequence

Let's  move  on  to  substantiating  the  probabilistic
characteristics of the vector  random sequences. One
of  the  simplest  stochastic  models  that  takes  into  account  the

dynamics of changes in the rhymocardiosignal with increased
resolution  is  the  vector

stationary and stationary connected random sequences. First of
all,  we  note  that  the  vector   stationary  and
stationary-related random sequences, in the partial case, if its
components are stationary sequences with independent values
white  noises  given on a  set  of  integers,  this  is  a  well-known
model of a rhythmocardios signal with increased resolution in
the form of a random variable vector, which was developed in
[29, 30]. However, in practice, the hypothesis of independence
or  uncorrelation  of  rhymtocardiosignal  readings  does  not
correspond to  reality,  which requires  taking into  account  the
stochastic  relationship  between  rhymtocardiosignal  readings
with  increased  resolution,  and  therefore  the  use  of  a  more
complex and more general mathematical model in the form of a
vector   stationary  and  stationary  possible  random
sequences.

Defining property of the vector  stationary and
permanently connected random sequences are the invariance of
its family of distribution functions to time shifts by an arbitrary
integer  For  any  distribution  function  F

 of  order   іfrom  the
family of vector distribution functions  for stationary
and  permanently  connected  random sequences  the  following
equality holds:

(5)

Distribution function  in the
case  when  l1  =  l2  =  ...  =  lp  =  l  is  a  distribution  function

 stationary components  of
vector   -  that  is  an  automatic  order  distribution
function p  for a stationary random sequence ,  what
describing the time distances between single-phase readings of
an electrocardiosignal  for  its  l-  phase.  If  p  =  1,  then we will

have  a  one  dimensional   automatic  distribution
function of a stationary random sequence .

In  the  case  where  equality  l1  =  l2  =  ...  =  lp  =  l  if  the
distribution  function  is  not  executed

 is  a  compatible  distribution
function for several (at least two) stationary vector components

, which describes the time distances between single-
phase  readings  of  an  electrocardiosignal  as  a  whole  for  its
different phases.

Family  of  vector  distribution  functions  
stationary  and  stationary  connected  sequences  most  fully
describe its probabilistic structure, but methods for statistical
estimation  of  the  distribution  function

 they  are  too  bulky  for  their
practical use in computer diagnostic systems of the functional
state  of  the  cardiovascular  system  of  the  human  body.

 

Determination of phases of 
the same type that 
correspond to the 

boundaries of ECS 
 

Detection of the same type 
of phases within certain 

zones that correspond to the 
Maxima or minima of the 

teeth 

Formation of a vector 
rhythmocardiosignal with 

increased information content 

 

ΞL(ω
′, m)

ΞL(ω′, m)

{Tl(ω
′,  m), ω′ ∈ Ω′,  l = 1, L

____

,  m ∈ Z }

ΞL(ω
′,  m)

ΞL(ω
′,  m)

𝛯𝐿(𝜔
′, 𝑚)

𝐹𝑝𝑇𝑙 ...𝑇𝑙
(𝑥1,..., 𝑥𝑝, 𝑚1,..., 𝑚𝑝)

𝐹𝑝𝑇𝑙
(𝑥1,..., 𝑥𝑝, 𝑚1,..., 𝑚𝑝)𝑙 𝑇𝑙(𝜔

′, 𝑚)

𝛯𝐿(𝜔
′, 𝑚) 

𝑇𝑙(𝜔
′, 𝑚)

𝐹1𝑇𝑙
(𝑥,𝑚) 

𝑇𝑙(𝜔
′, 𝑚)

𝛯𝐿(𝜔
′, 𝑚) = {𝑇𝑙(𝜔

′, 𝑚), 𝜔′ ∈ 𝛺′, 𝑙 = 1, 𝐿
____

, 𝑚 ∈ 𝑍} 

𝛯𝐿(𝜔
′, 𝑚)

𝛯𝐿(𝜔
′, 𝑚)

𝛯𝐿(𝜔
′, 𝑚)

𝑘 ∈ 𝑍.
𝐹𝑝𝑇 𝑇

(𝑥1,..., 𝑥𝑝, 𝑚1,..., 𝑚𝑝) 𝑝 (𝑝 ∈ 𝑁) 

𝛯𝐿(𝜔
′, 𝑚)

𝑥1,..., 𝑥𝑝 ∈ 𝑅,𝑚1,..., 𝑚𝑝 ∈ 𝑍, 𝑙1,..., 𝑙𝑝 ∈ {1, 𝐿
____

} , 𝑘 ∈ 𝑍                                                 

𝐹𝑝𝑇𝑙1
...𝑇𝑙𝑝

(𝑥1,..., 𝑥𝑝, 𝑚1,..., 𝑚𝑝)

𝛯𝐿(𝜔
′, 𝑚)

𝛯𝐿(𝜔
′, 𝑚)

𝐹𝑝𝑇𝑙1
...𝑇𝑙𝑝

(𝑥1,..., 𝑥𝑝, 𝑚1,..., 𝑚𝑝) 
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Therefore,  in  addition  to  the  vector  distribution  functions
 effective is the use of instantaneous order functions

,  which,  if  they  exist,  are  also  invariant  to  time
shifts (shifts by argument m).

So,  if  there  is  a  mixed  initial  moment  function

of stationary and stationary connected random sequences, then
the equality holds for it:

(6)

where M - operator of mathematical expectation.

If there is a mixed central moment function 

of  order   of  stationary  and
permanently  connected  random  sequences,  then  the  equality
holds for it:

(7)

where  is  the  plural   is  a  set  of  first-order
initial  moments  (mathematical  expectations)  of  stationary
random  sequences  from  the  set  

In  practice,  to  analyze  a  rhythmocardiosignal  with
increased  resolution,  it  is  appropriate  to  use  mixed  moment

functions  of  low  orders,  namely,  mixed  initial  moment
functions of the second-order – covariance functions and mixed
central  moment  functions  of  the  second-order  –  correlation
functions.  In  this  case,  the  initial  moment  functions  of  the
second  order  for  the  vector   stationary  and
permanently connected random sequences are represented as a
matrix of covariance functions:

(8)

what can be noted more compactly like this:

(9)

where  each  of  its  elements  is  a  covariance  function , which is set as:

(10)

Since  the  components  of  the  vector  random
sequences  are  stationary  and  permanently  connected
sequences, then their covariance functions are functions of only

one integer argument u, which is equal to u = m1-m2. Therefore
the covariance matrix of this random vector can be represented
as follows:

(11)

where each of its elements is a covariance function which is equal to:

(12)

Provided that , covariance function  it
is  an  auto-variational  function  l  stationary  components

 of  vector   which  describes  the  time
distances  between  single-phase  readings  of  an

electrocardiosignal for its lphase. If  , then the covariance

function   is  a  mutual  covariance  function  for  two
stationary  vector  components   which  describe  the
time distances between single-phase electrocardiosignals for l1

𝛯𝐿(𝜔
′, 𝑚)

𝑠 = ∑ 𝑠𝑗
𝑝
𝑗=1

с𝑠𝑇 ...𝑇
(𝑚1,..., 𝑚𝑝) of order 𝑠 = ∑ 𝑠𝑗

𝑝
𝑗=1  of vector 𝛯𝐿(𝜔

′, 𝑚) 

с𝑠𝑇𝑙1
...𝑇𝑙𝑝

(𝑚1 + 𝑘,..., 𝑚𝑝 + 𝑘),𝑚1,..., 𝑚𝑝 ∈ 𝑍, 𝑙1,..., 𝑙𝑝 ∈ {1, 𝐿
____

} , 𝑘 ∈ 𝑍,                                    

𝑟𝑠𝑇𝑙 ...𝑇𝑙
(𝑚1,..., 𝑚𝑝) 

𝑠 = ∑ 𝑠𝑗
𝑝
𝑗=1  of vector 𝛯𝐿(𝜔

′, 𝑚) 

𝑟𝑠𝑇𝑙1
...𝑇𝑙𝑝

(𝑚1,..., 𝑚𝑝) = 𝑀 {(𝑇𝑙1
(𝜔′, 𝑚1) − с1𝑇𝑙1

)
𝑠1

... ⋅ (𝑇𝑙𝑝(𝜔
′, 𝑚𝑝) − с1𝑇𝑙𝑝

)
𝑠𝑝

} = 𝑟𝑠𝑇𝑙1
...𝑇𝑙𝑝

(𝑚1 + 𝑘,..., 𝑚𝑝 + 𝑘), 𝑚1,..., 𝑚𝑝 ∈ 𝑍, 𝑙1,..., 𝑙𝑝 ∈ {1, 𝐿
____

} , 𝑘 ∈ 𝑍,  

 

                                                

 {с1𝑇𝑙1
,..., с1𝑇𝑙𝑝

}  

{𝑇𝑙1(𝜔
′, 𝑚), … , 𝑇𝑙𝑝(𝜔

′, 𝑚)}. 
𝛯𝐿(𝜔

′, 𝑚)

С𝑇 =

[
 
 
 
 
с2𝑇1𝑇1

(𝑚1, 𝑚2) с2𝑇1𝑇2
(𝑚1, 𝑚2) ⋯ с2𝑇1𝑇𝑝

(𝑚1, 𝑚2)

с2𝑇2𝑇1
(𝑚1, 𝑚2) с2𝑇2𝑇2

(𝑚1, 𝑚2) ⋯ с2𝑇2𝑇𝑝
(𝑚1, 𝑚2)

⋮ ⋮ ⋯ ⋮
с2𝑇𝑝𝑇1

(𝑚1, 𝑚2) с2𝑇𝑝𝑇2
(𝑚1, 𝑚2) ⋯ с2𝑇𝑝𝑇𝑝

(𝑚1, 𝑚2)]
 
 
 
 

,                  

С𝑇 = [с2𝑇𝑙1
𝑇𝑙2

(𝑚1, 𝑚2), 𝑙1, 𝑙2 = 1, 𝐿
___

],                                                               

𝑠𝑇𝑙1
𝑇𝑙2

(𝑚1, 𝑚2)

с2𝑇𝑙1
𝑇𝑙2

(𝑚1, 𝑚2) = 𝑴{𝑇𝑙1
(𝜔′, 𝑚1) ⋅ 𝑇𝑙2

(𝜔′,  𝑚2)}, 𝑚1, 𝑚2 ∈ 𝒁, 𝑙1,  𝑙2 ∈ {1, 𝐿}.  

𝛯𝐿(𝜔
′, 𝑚) 

С𝑇 = [с2𝑇𝑙1
𝑇𝑙2

(𝑢), 𝑙1, 𝑙2 = 1, 𝐿
___

],                                                      

с2𝑇𝑙1
𝑇𝑙2

(𝑢)

с2𝑇𝑙1
𝑇𝑙2

(𝑢) = с2𝑇𝑙1
𝑇𝑙2

(𝑚1 − 𝑚2),  𝑢, 𝑚1, 𝑚2 ∈ 𝒁, 𝑙1, 𝑙2 ∈ {1, 𝐿
___

}.            

𝑙1 = 𝑙2 = 𝑙  с𝑠𝑇 𝑇
(𝑢)

𝑇𝑙(𝜔
′, 𝑚) 𝛯𝐿(𝜔

′, 𝑚)

𝑙1 ≠ 𝑙2
 с2𝑇𝑙1

𝑇𝑙2
(𝑢) 

𝛯𝐿(𝜔
′, 𝑚) 



78   The Open Bioinformatics Journal, 2021, Volume 14 Lytvynenko et al.

statistical  estimate   of  the  initial  moment  s  -order
 of  the  stationary  random  sequence

and l2 phase.

Mixed second-order central moment functions for a vector
 stationary  and  stationary  connected  random

sequences are represented as a matrix of correlation functions:

(13)

which can be written more compactly like this:

(14)

where  each  of  its  elements  is  a  correlation  function , which is set as follows:

(15)

Since  the  components  of  the  vector   random
sequences are stationary and stationary connected sequences,

then  their  correlation  functions  are  functions  of  only  one
integer argument u, which is equal to u = m1-m2. Therefore the
correlation matrix of this random vector can be represented as:

(16)

where each of its elements is a correlation function , which is equal to:

(17)

If  l1  =  l2  =  l,  are  correlation  function   is  an
autocorrelation function l-stationary components  of
vector , which describes the time distances between
single-phase readings of an electrocardiosignal for its l -phase.

If , then the correlation function  is a mutual
correlation  function  for  two  stationary  components  of  the
vector   which  describe  the  time distances  between
single-phase electrocardiosignals for l1 and l2 phase.

2.4. Statistical Estimates of Probabilistic Characteristics of
a High-resolution Rhythmocardiosignal

Let's  write  down the  formula  expressions  for  calculating
the  implementations  of  statistical  estimates  of  probabilistic

characteristics  of  a  rhythmocardiosignal  with  increased
resolution.  The  formula  expression  for  calculating  the

implementation  of  a  statistical  estimate   of

covariance  function   of  two  stationary  and
stationary-related random sequences 
,  which  describe  the  time  distances  between  single-phase
electrocardiosignals  for  -  of  it  phases,  namely:

where M - the number of recorded complete cycles of the
electrocardiosignal from which the rhythmocardiosignal with
increased resolution is formed, M1 (M1 << M) is the maximum
value of arguments m1, m2 which is selected depending on the
number  of  averages  in  the  implementation  of  statistics  to
ensure  the  required  level  of  accuracy  and  reliability  of
statistical  evaluation.

(18)

If in the formula (18) p = 1, then l1 = l2 =...= lp = l, then we
get  an  expression  for  calculating  the  implementation  of  a
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, namely:

(19)

If in the formula (19) s = 1, then we get an expression for
calculating the implementation of a statistical estimate  of

the  initial  moment  of  the  first  order   (mathematical
expectation)  of  a  stationary  random  sequence  ,
namely:

(20)

The formula expression for calculating the implementation
of  a  statistical  estimate  of  the  correlation  function

 of  two  stationary  and  stationary-related

random  sequences   ,  which  describe
the  time  distances  between  single-phase  electrocardiosignals
for l1 and l2- phases, namely:

(21)

Since  for  stationary  and  stationary-related  random
sequences, the correlation functions are the functions of only
one  integer  argument  u,  which  is  equal  to  u  =  m1  -  m2,  then

their statistical estimates also depend on only one argument u.
In  this  case,  if  we  assume  the  ergodicity  of  the  stationary
components of the vector, then the formula (21) looks like this:

(22)

If in the formula (22) u = 0, then l1 = l2 = l, then we have
the  expression  for  calculating  the  implementation  of  the

variance estimate of the stationary random sequence ,
namely:

(23)

In  order  to  reduce  the  number  of  diagnostic  signs  for  a
high-resolution rhythmocardiosignal it is necessary to take into
account  the  fact  of  symmetry

 of  the  estimated
matrix  of  correlation  functions

,  which  indicates  the
adequacy evaluation of only those elements of the matrix ,
which lie on its diagonal and above the diagonal, namely, such

an ordered totality  On
the  diagonal  of  this  matrix,  when  l1  =  l2,  estimates  of
autocorrelation  functions  are  placed,  and  the  elements  of
matrix , which are placed above its diagonal, namely, when
l1 = l2, are estimates of inter-correlation functions. Therefore,

the matrix , without losing its

information content, can be replaced with a triangular matrix

.
Another way to reduce the number of diagnostic features in

information systems for the analysis of heart rate for the main
rhythmocardiosignals  with  increased  resolution  is  to  use
spectral  decompositions  of  the  triangular  matrix  elements

themselves  in
particular,  by  using  the  discrete  Fourier  transform  of
autocorrelation estimates and inter-correlation functions from
this  matrix.  Namely,  instead  of  a  triangular  matrix

 of  the  correlation
functions a triangular matrix can be used the elements of which
are  Fourier  images  of  the  corresponding  estimates  of  the
correlation  functions  from  the  matrix  .  Namely,  Fourier
images from The Matrix  are calculated like this:

(24)
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Based on Bessel's inequality, we will not choose the entire

set  as  diagnostic  signs   function

counts , but only a certain subset of their first ones

M2 (M2 << M1) of counts  which

contribute  to  the  full  energy  of  evaluation   of  the
correlation function not less than 95%.

3. RESULTS AND DISCUSSION

Based on the above mathematical  model and methods of
processing  a  high-resolution  rhythmocardiosignal,  a
multifunctional software package for modeling and automated
analysis of a wide class of cyclic heart signals for the needs of
functional medical diagnostics has been upgraded. Namely, as
a component of this software package, a system of computer
programs has been developed for the automated formation and
the  statistical  analysis  of  heart  rate  based  on  a  vector
rhythmocardiosignal  (rhythmocardiosignal  with  increased
resolution),  which  expanded the  functionality  of  the  existing
software package and made it possible to automatically analyze
the  heart  rate  with  increased  information  content.  A  typical
structural and functional diagram of the software for processing

ECS is shown in Fig. (2). A dashed line in this block diagram
highlights  the blocks that  are emphasized in this  article.  The
software package is implemented in the programming language
Object Pascal.

According  to  the  blocks  presented  in  the  block  diagram,
ECS  processing  includes  evaluating  the  segmental  structure
using segmentation methods, for example [29]. Evaluation of
the  rhythm  function  by  interpolating  the  rhythmic  structure
(discrete rhythm function), based on the method [30].

Further, the development of the ECS branches out into two
stages  (two  problems  are  solved).  The  first  stage  performs
morphological  analysis,  which,  according  to  this  structure,
provides  for  statistical  processing  of  ECS,  normalization  of
statistical estimates and their decomposition in the Chebyshev
basis,  and  decision-making  based  on  the  obtained  morpho-
logical  features.  This  stage  is  described  in  [31].  The  second
stage  performs  rhythm  analysis  and  consists  in  forming  a
vector rhythmocardiosignal, statistical processing of the vector
and spectral analysis of the obtained statistical estimates.

As  an  example,  Fig.  (3)  shows  a  general  view  of  the
program interface for  evaluating the autocorrelation function
and  the  cross-correlation  function  of  the  components  of  a
vector  rhythmocardiosignal.

Fig. (2). Structural and functional diagram of software for heart rate analysis with increased information content.
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Fig. (3). Example of a program interface for evaluating the autocorrelation function and the cross-correlation function of a vector rhythmocardiosignal
component.

Figs. (4 and 5) show the stages of formation from the ECS
vector rhytmocardiosignal, and Figs. (6 and 7) show the results
of  statistical  processing  of  the  rhytmocardiosignal  with

increased information content,  by  statistical  evaluation of  its
corresponding  statistical  characteristics  corresponding  to  the
blocks of the structural and functional scheme 2.

Fig. (4). The results of processing: a) several cycles of the studied electrocardiosignal; b) the rhythmic structure of the electrocardiosignal.
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Fig (5). results of processing A) graphs of relative errors in the formation of high-resolution rhythmocardiogram samples corresponding to the R-R
intervals of the electrocardiogram; B) graphs of relative errors in the formation of high-resolution rhrythmocardiogram samples corresponding to the
T-T intervals of the electrocardiogram.

Fig. (6). Schedule of implementation , component of the vector rhythmocardiosignal of the first component  and the
second component , that describing the duration accordingly: a) P - intervals of electrocardiosignal; b) R - intervals of electrocardiosignal.

Fig. (7). Histograms of implementation  component of the vector rhythmocardiosignal of the first component  and the
second component , describing the duration accordingly: a) P - intervals of electrocardiosignal; b) R - intervals of electrocardiosignal.

Fig. (8) shows the results of the spectral decomposition of statistical  estimates  of  the  power  spectral  densities  of  the
components  of  the  vector  rhythmocardiosignal.
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Fig. (8). Schedule of implementations  statistical estimates of autocorrelation functions   of the
first component  and the second component , what describing the duration accordingly: a) P - intervals of electrocardiosignal;
b) R- intervals of electrocardiosignal.

Fig. (5A) shows graphs of relative errors in the formation
of high-resolution rhythmocardiogram samples corresponding
to  R–R intervals  and obtained on the  basis  of  the  method of
segmentation  and  detection  of  extreme  values  of  electro-
cardiogram  zones,  based  on  Brodsky-Darkhovsky  statistics
(indicated on the graph with bold dots) and on the basis of the
method  based  on  the  use  of  a  first-order  difference  function
(indicated on the graph with triangles). Fig. (5B) shows graphs
of  relative  errors  in  the  formation  of  high-resolution
rhythmocardiogram samples  corresponding  to  T–T  intervals,
and obtained on the basis of the method of segmentation and
detection of extreme values of electrocardiogram zones, based
on Brodsky-Darkhovsky statistics (indicated on the graph with
bold dots) and on the basis of the method based on the use of a
first-order  difference  function  (indicated  on  the  graph  with
triangles).

Analyzing the graphs of relative errors in the formation of
a high-resolution rhrythmocardiogram, which are presented in
Fig.  (5),  it  can  be  argued  that  the  method  of  automatic
formation of a high-resolution rhrythmocardiogram, which is
based on Brodsky-Darkhovsky Statistics, has higher accuracy
compared to a similar method based on the use of a first-order
difference function.

From  the  registered  electrocardiogram  according  to  the
method of automatic formation of a rhythmocardiogram with
increased  accuracy,  the  implementation  of

of  four
components  of  the  vector  

 stationary  and
stationary related random sequences.  The first  component  of

 this  vector  is  a  random  stationary  sequence
describing durations P in the electrocardiosignal for all its 245
recorded cycles. Second component  of this vector is

a  random  stationary  sequence  describing  durations  R  in  the
electrocardiosignal. Third component  this vector is a
random  stationary  sequence  describing  durations  T  in  the
electrocardiosignal.  The  fourth  component   of  this
vector is a random stationary sequence describing durations R-
R  -  intervals  in  the  electrocardiosignal.  As  an  example,  the

implementation  schedule   of  the  first  component  is

shown in Fig. (6). A, and the implementation graph  of
the second component is shown in Fig. (6B).

The  justification  of  statistical  hypotheses  about  the
stationarity of the mathematical expectation and variance of the
components  of  the  vector  rhythmocardiosignal  have  been
tested. Namely, the statistical hypotheses about the invariance
of  the  mathematical  expectation  and  variance  of  the
components  of  the  vector  rhythmocardiosignal  have  been
tested by applying well-known statistical criteria for checking
the equality of mathematical expectations and variances of two
random variables  represented  by  their  samples  (as  a  sample,
two  sections  of  each  component  of  the  vector
rhythmocardiosignal  were  taken.  The  Student's  criterion  (for
mathematical  expectation of  the  vector  rhrythmocardiosignal
component) and Fischer's criterion (for variance of the vector
rhrythmocardiosignal  component)  have  been  used  as  a
statistical  criterion  for  testing  hypotheses  about  stationarity.
The results of 13 of the 15 tests performed with a confidence
level of 0.95 indicate the consistency of the hypothesis about
the  stationarity  of  the  components  of  the  vector
rhythmocardiosignal, which can be considered verification of a
new  mathematical  model  of  the  rhythmocardiosignal  with
increased resolution in the form of a vector of stationary and
stationary-related random sequences.

To check the stationary components of the vector for their
normality,  Fig.  (7)  shows  histograms  for  implementations
T1ω,(m),  T2ω,(m)  corresponding stationary  vector  components
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Table 1. Shows the results of statistical evaluation of mathematical expectations of stationary vector components 

Stationary Component Number Significance of Implementing a Statistical Estimate of Mathematical Expectation
1 C1T1

 = 14,88

2 C1T2

 = 25,02

3 C1T3

 = 73,82

4 C1T4

 = 799,51

Fig. (9). Schedule of implementations  statistical estimates of power spectral densities  of
the  first  component   and  the  second  component  ,  what  describing  the  duration  accordingly:  a)  P-  intervals  of
electrocardiosignal; b) R- intervals of electrocardiosignal.

To test the hypothesis of the normality of the distribution
of  stationary  components  of  a  random  vector  
according to the Pearson consent criterion, it  has been found
that  these  results  do  not  contradict  the  hypothesis  of  the
normality  of  its  distribution.  Normality  of  the  vector
distribution  is the basis for substantiating diagnostic
features in systems for the analysis of heart rate using a high-
resolution  rhythmocardiogram  within  the  framework  of
spectral  correlation  theory,  which  significantly  reduces  the
computational complexity of such an analysis. In this case, to
estimate  the  probabilistic  structure  of  the  vector  
stationary  and  stationary-related  random  sequences,  it  is
sufficient to perform a statistical estimation of the only vector

 of  its  mathematical  expectations
according  to  Formula  (20)  and  the  matrix  of  correlation

functions   according  to  the
Formula (22).

Fig.  (8)  shows  graphs  of  implementations
 statistical estimates of autocorrelation

functions   of  the  first  component
 and  the  second  component  ,  what

describing  the  duration  accordingly:  a)  P-  intervals  of
electrocardiosignal;  b)  R-  intervals  of  electrocardiosignal.

(Fig.  9)  shows  graphs  of  implementations

 statistical  estimates  of  power  spec-
tral densities  of the first component

 and  the  second  component  ,  what
describing  the  duration  accordingly:  a)  P-  intervals  of
electrocardiosignal;  b)  R-  intervals  of  electrocardiosignal.

The above implementations of statistical estimates of resto-
rative probabilistic characteristics significantly complement the
known  informative  features  in  the  systems  of  the  heart  rate
analysis.  Namely,  the  new  diagnostic  features  are  being
introduced  into  practice,  such  as  the  matrix  of  correlation
functions  and  the  matrix  of  spectral  power  densities  of
stationary  components  of  the  rhythmocardiosignal  with
increased  resolution,  which,  by  reflecting  the  stochastic
temporal  dynamics  of  the  heart  rate,  make  it  possible  to
increase  the  level  of  information  content  of  the  heart  rate
analysis  in  modern  cardiodiagnostic  systems.

CONCLUSION

The  paper  presents  a  new  mathematical  model  of  a
rhythmocardiosignal with increased resolution in the form of a
vector of stationary and stationary-related random sequences,
which, in comparison with the known mathematical models of
heart rate, allows to increase the level of information content of
automated heart rate analysis and is logically consistent with
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the stochastic mathematical model of an electrocardiosignal in
the  form  of  a  conditional  cyclic  random  process.  The
mathematical model of a high-resolution rhythmocardiosignal
has  been  verified  by  testing  the  statistical  hypotheses  about
stationarity  for  the  normal  distribution  of  components  of  a
high-resolution rhythmocardiosignal, which has been the basis
for  reducing  the  computational  complexity  of  statistical
methods for the analysis of heart rate in computer systems of
medical diagnostics.

The statistical methods for the analysis of high-resolution
rhythmocardiosignals have been developed, which are based on
their  new  mathematical  model  in  the  form  of  a  vector  of
stationary  and  permanently  connected  random  sequences,
namely,  expressions  are  recorded  for  calculating  implemen-
tations  of  statistical  estimates  of  the  vector  of  mathematical
expectations and a matrix of correlation functions of compo-
nents  of  the vector  of  the rhythmocardiosignal.  A number of
new  diagnostic  features  in  computer  systems  of  medical
diagnostics based on vector rhythmocardiosignals for assessing
the state of the cardiovascular system and adaptive-regulatory
mechanisms of the human body as a whole have been justified.
Namely,  the  known  diagnostic  features  of  the  vector
rhythmocardiosignal  are  supplemented  with  such  new
diagnostic features as the matrix of correlation functions and
the matrix of spectral power densities of stationary components
of the high-resolution rhythmocardiosignal, which by reflecting
the  stochastic  temporal  dynamics  of  the  heart  rate  make  it
possible to increase the level  of  information content  of  heart
rate analysis in modern cardiodiagnostic systems.

Based  on  the  new  mathematical  model  and  methods
developed  in  the  dissertation  for  processing  high-resolution
rhythmocardiosignals, a multifunctional software package for
modelling  and  automated  analysis  of  a  wide  class  of  cyclic
heart  signals  for  the  needs  of  functional  medical  diagnostics
has been upgraded. Namely, as a component of this software
package, a system of computer programs has been developed
for  automated  formation  and statistical  analysis  of  heart  rate
based  on  a  vector  rhythmocardiosignal,  which  expanded  the
functionality  of  the  existing  software  package  and  made  it
possible  to  perform  heart  rate  analysis  with  increased
information  content  automatically.
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