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Abstract:

Aim:

This  study  investigates  the  topology  of  convolutional  neural  networks  and  proposes  an  information  technology  for  the  early  detection  of
pneumonia in X-rays.

Background:

For the past decade, pneumonia has been one of the most widespread respiratory diseases. Every year, a significant part of the world's population
suffers from pneumonia, which leads to millions of deaths worldwide. Inflammation occurs rapidly and usually proceeds in severe forms. Thus,
early detection of the disease plays a critical role in its successful treatment.

Objective:

The most operating means of diagnosing pneumonia is the chest X-ray, which produces radiographs. Automated diagnostics using computing
devices  and  computer  vision  techniques  have  become  beneficial  in  X-ray  image  analysis,  serving  as  an  ancillary  decision-making  system.
Nonetheless, such systems require continuous improvement for individual patient adjustment to ensure a successful, timely diagnosis.

Methods:

Nowadays, artificial neural networks serve as a promising solution for identifying pneumonia in radiographs. Despite the high level of recognition
accuracy, neural networks have been perceived as black boxes because of the unclear interpretation of their performance results. Altogether, an
insufficient explanation for the early diagnosis can be perceived as a severe negative feature of automated decision-making systems, as the lack of
interpretation results may negatively affect the final clinical decision. To address this issue, we propose an approach to the automated diagnosis of
early pneumonia, based on the classification of radiographs with weakly expressed disease features.

Results:

An effective spatial convolution operation with several dilated rates, combining various receptive feature fields, was used in convolutional layers to
detect and analyze visual deviations in the X-ray image. Due to applying the dilated convolution operation, the network avoids significant losses of
objects' spatial information providing relatively low computational costs. We also used transfer training to overcome the lack of data in the early
diagnosis of pneumonia. An image analysis strategy based on class activation maps was used to interpret the classification results, critical for
clinical decision making.

Conclusion:

According to the computational results, the proposed convolutional architecture may be an excellent solution for instant diagnosis in case of the
first suspicion of early pneumonia.

Keywords: Information technology, Pneumonia, Early diagnosis, Individual approach, Convolutional neural network, Feature extraction, Visual
analysis, Chest X-ray.
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1. INTRODUCTION

Pneumonia is a severe disease of people of all ages around
the  world.  According  to  the  World  Health  Organization
(WHO), nearly 2 million deaths from pneumonia are reported
yearly [1]. A severe pandemic of the COVID-19 coronavirus in
early  2020  further  exacerbated  the  death  of  lung  diseases.
Numerous  clinical  studies  have  confirmed  that  COVID-19
infection causes severe pneumonia in a significant number of
people [2, 3]. At the same time, bacterial and viral pathogens
cause various pneumonia forms, requiring different treatment
approaches  [4].  Bacterial  pneumonia  can be treated instantly
with antibiotics; simultaneously, patients with viral pneumonia
require  additional  support  and  treatment,  making  early  and
accurate diagnosis especially valuable [5]. Chest X-ray analysis
is  one  of  the  most  common  methods  of  diagnosis  and
differentiation of pneumonia [6]. Fig. (1) shows examples of
X-rays with healthy and pneumonia-infected lungs.

Applying preventive measures to diagnose lung diseases is
the key to effective treatment. Even in the absence of the first
external symptoms of pneumonia (cough, difficulty breathing,
high body temperature (39°), rapid breathing), it is possible to
detect  its  origin on X-rays [7 -  10].  The result  of  diagnosing
pneumonia  with  radiographs  is  possible  in  three  main
conditions: perfectly healthy lungs without any visible features
of the disease, clearly pneumonia with bright manifestations in
the  image,  and  an  intermediate  condition  in  which  the  pro-
minent pneumonia features are not presented. Simultaneously,
a chest radiograph is taken for prophylactic purposes or if there
is a suspicion of early manifestations of viral pneumonia [10 -
12]. Therefore, an individual approach to digital diagnosis is to
identify the first manifestations of pneumonia on X-rays.

The main features of viral pneumonia in X-ray are [13]:

Complete loss of transparency of lung tissue (complete
darkening of the pulmonary field).
Eclipse of one or more parts of the lung (sub complete
eclipse).
Eclipse,  which  is  within  one  segment  of  the  lung
(limited eclipse).

Pathological  changes  in  the  lungs  during  pneumonia
correspond to four stages [14]: inflow of fluid to the lungs, red
pulmonary seal, gray deepening, and thinning. The early stage
of pneumonia includes flushing and pulmonary compaction.

The inflow stage lasts 12-72 hours and is characterized by
intense  blood  flow  to  the  lungs'  vascular  system,  decreased
functional activity, and alveolar exudate formation. An X-ray
can show an increase in the pulmonary image's intensity and
clarity,  a  slight  darkening  of  the  pulmonary  fields  in
localization  of  pathological  changes,  and  an  increase  in  the
lung  root  with  a  simultaneous  loss  of  its  structure  [15].  The
 chest scan  in the  first  stage of  the disease, due  to the  lungs'

* Address correspondence to this author at Department of Computer Science and
Information Technologies, Khmelnytskyi National University, 11, Institutes str.,
29016, Khmelnytskyi, Ukraine; E-mails: radiukpavlo@gmail.com

filling with blood, resembles a lattice (cellular lung).

The red seal stage usually lasts from 24 to 72 hours. We
may  observe  the  compaction  of  interstitial  tissue  during  this
period,  which  in  structure  begins  to  resemble  the  liver.  A
certain amount of blood (erythrocytes) appears in the exudate.
The  radiological  picture  has  only  slight  differences  from the
first  stage:  the  pulmonary  image  is  less  pronounced  but
enlarged, the pulmonary contours become darker (the effect of
“frosted glass”).

For the most part, pneumonia can be detected at the initial
stages  of  development  only  by  comparing  images  taken  at
intervals of 1-2 days [16]. However, a significant disadvantage
of  radiographs,  as  a  means  of  early  diagnosis  of  viral
pneumonia,  is  the  limited  range  of  colors,  consisting  of
different shades of gray [11]. Also, due to the high intensity of
the film's white wavelength, the fluid in the lungs at the tide
stage is quite tricky to identify as a dense and complex tissue
[17]. In other words, the visual transition from air-filled tissue
(normal lung condition), which is visible in darker shades, to
distinctly compacted tissue requires enough fluid to shift  the
overall color scheme of the image to lighter shades. As a result,
preventive actions to detect viral pneumonia are complicated
by the limited color scheme of radiographs and, consequently,
the weak expression of the disease's features in the image.

Another problem in the early diagnosis of pneumonia is the
human  factor.  Radiologists  must  have  extensive  expertise  to
distinguish  the  heterogeneous  color  distribution  of  air  in  the
lungs.  Such  a  distribution  can  be  clearly  expressed  on  the
radiograph in various gray shades but simultaneously does not
correspond to the pneumonic fluid. Therefore, specialists must
determine  whether  the  white  spots  on  the  X-ray  film
correspond  to  the  liquid.  According  to  the  experience  of
radiologists  [18  -  20],  both  false  positive  and  false  negative
diagnoses can considerably harm human health. Thus, the use
of  computational  methods and the introduction of  automated
diagnostic  systems  at  an  early  stage  of  the  disease  can
significantly increase the chances of correct diagnosis and, as a
result,  increase  the  reliability  of  preventive  measures  and
further  treatment.

Automated Diagnostic Tools (ADTs) aim to complement
the clinical decision-making process, considering the study of
information adequacy [21] and its noise immunity [22]. They
combine Computer Vision (CV) and Artificial Intelligence (AI)
systems  with  X-ray  image  processing  to  detect  patterns  in
images [23]. Modern digital diagnostic systems work based on
Machine  Learning  (ML)  methods  [24],  which  detect  and
describe specific disease features in the image. Such methods
are optimized for specific datasets and are trained to identify
predetermined  changes  in  the  size  of  the  Region  of  Interest
(ROI), orientation, and position on X-rays. Note that in recent
years,  methods  based  on  the  detection  and  classification  of
characteristics [25, 26], particularly hyperplane classification
[27, 28], using Deep Learning (DL) [18, 20, 23, 29] have been
widely spread.
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Fig.  (1).  The  samples  of  X-rays  images  with  (a)  transparent  lungs
without  abnormal  opacity;  (b)  bacterial  pneumonia,  which  shows  a
consolidated proportion of fluid in the upper right part of the image; (c)
viral pneumonia manifested by diffuse interstitial patterns in both lungs
in the center of the image [7]..

Different  CV  issues  in  medical  image  processing  have
usually  been  addressed  with  convolutional  neural  networks
(CNNs).  Over  the  past  years,  various  modifications  of  con-
volutional architectures have received considerable recognition
[30 - 32]. Furthermore, based on novel comparative studies [33
-  35],  it  can  be  claimed  that  CNNs  mostly  outperform
traditional  ML  techniques  in  medical  imaging  tasks.  A  key
CNN's benefit is a combination of sequentially placed different
processing layers to detect hierarchical features of objects from
the input pixel data [36]. The network's initial layers abstract
the  features  of  the  targeted  object  using  diverse  pixel
manipulation  techniques  [37],  such  as  receptive  fields'
localization,  weight  distributions  and  sharing,  subsampling,
pooling, and normalization. The successful synergy of different
obtaining mechanisms provides a holistic view of investigated
objects in the images ensuring high classification. Considering
all  possible  medical  image  processing  methods,  a  CNN  was
chosen  as  the  underlying  feature  extractor  the  automated
pneumonia  detection.

Although  DL  methods  demonstrate  significant  achieve-
ments in various medical imaging problems, the lack of robust
interpretation  limits  their  medical  diagnosis  potential.  For
instance, the insufficiently studied behavior of the CNN model
limits its use in everyday clinical practice [38]. To date, there is
still no clear understanding of the features of pneumonia on an
X-ray that indicate the models of CNN about the presence of
the  disease.  Accordingly,  it  is  not  clear  how  to  design  and
specify  a  proper  CNN  topology  for  individual  pneumonia
diagnosis in the early stages. Therefore, the presented study is
devoted to the early pneumonia detection and interpretation in
the chest X-rays.

2. RELATED WORK

In  recent  years,  the  scientific  community  has  presented
many  works  on  using  machine  diagnosis  of  pneumonia  on
chest  radiographs.  For  example,  in  [39],  active  contour
algorithms were used to detect the entire lung zone, and then
this zone was divided into 40 ROIs. As a result of applying the
two-dimensional  Daubechies  wavelet  transform  and  the
analysis  of  the  main  components,  each  region's  components
were removed and compared to the predicted area. In this way,
the authors could segment the chest  image and present  ROIs
with possible lung disease features. The study [40] is devoted
to the identification of pneumonia using a modified threshold
value Otsu. The presented threshold value makes it possible to
separate the healthy part of the lung from the manifestations of
frosted glass in the image, signaling the disease's presence. The
study [41] presents an automated diagnostic system that uses
the  procedure  of  X-ray  voxel  differentiation  for  sequential

extraction  of  pneumonia  features  in  pre-prepared  areas  of
interest. Simultaneously, the method of reference vectors was
used  to  train  and  mark  the  pulmonary  parenchyma's  ROIs,
guided by the characteristics of the image's texture and shape.
This  approach  made  it  possible  to  achieve  a  classification
accuracy of 91%, which exceeded the radiologists' results at the
time.

However,  despite  the  decent  results  of  traditional  short
circuit methods in the digital diagnosis of pneumonia, they do
not reveal a few essential points. First, it is necessary to specify
the ROIs manually, but it  is not clear how many of them are
sufficient to cover all the pneumonia features. Furthermore, it
is  unknown  which  types  of  textures  are  most  significant  for
early  pneumonia,  given  the  blurring  of  the  X-ray  image's
features. Besides, for new forms of pneumonia, such as those
caused by COVID-19 [10, 14, 42], it is necessary to improve
the level of chest segmentation in the image while maintaining
a  high  level  of  interpretation  of  the  results.  In  general,
traditional  CV  techniques  require  significant  image
preprocessing  and  manual  intervention  to  remove  specific
visual features before classification. Over the past few years,
such issues have been primarily addressed with DL methods,
mainly using CNNs.

In  [43],  a  modified  CNN  is  presented,  configured  to
localize  the  ROI  based  on  a  gradient  for  the  detection  and
spatial  localization of pneumonia.  In addition,  the authors of
this work have released an extensive collection of datasets of
frontal  X-rays with a  size of  112,120 images.  At the time of
writing,  the  authors  achieved  an  accuracy  of  detecting
pneumonia  in  63.3%.  In  [18],  the  gradient  imaging  method
combined with heat maps was applied to the ROI's localization
to  identify  pneumonia.  The  authors  used  a  121-layer  tightly
coupled neural network to assess the likelihood of disease and
achieved an AUC of 76.8%. In another paper [44], the authors
focused  on  visualizing  the  process  of  detecting  pneumonia,
using Class Activation Maps (CAMs) to interpret the results of
an  automated  diagnostic  system.  As  a  result  of  VGG19 [45]
modification, they achieved 93.6% of classification accuracy,
and  their  imaging  approach  revealed  what  features  CNN
considers the most significant for the clinical decision. Another
approach to visualizing and interpreting deep learning is fully-
connected  CNN,  specifically,  the  U-Net  architecture.  For
example,  the  study  [46]  proposes  a  modified  U-Net
architecture  with  convolutional  kernels  of  3  ×  3  ×  3  to
segmentation  abdominal  organs  in  volumetric  images  of
computed  tomography.

Over  the  last  few  years,  an  approach  called  transfer
learning has become popular, which involves transferring the
values of the weights of a network trained on a single dataset to
a  target  model  of  a  specific  task.  For  example,  the  study [7]
applied  a  transfer  training  method  to  a  36-layer  CNN  to
effectively  classify  pneumonia  on  a  small  dataset  and  used
gradient-based  CAMs  to  interpret  the  automated  diagnosis
output. On a small training dataset of 5232 X-rays, such CNN
achieved a classification accuracy of 96.4%. In a recent study
[47], the authors proposed an automated system for diagnosing
pneumonia  and  COVID-19  by  developing  a  transfer  training
method  using  a  small  number  of  COVID-19  X-rays.  The
proposed  multilayer  CNN  uses  in-depth  convolution  with
various  dilated  coefficients  to  effectively  extract  targeted
features  from  radiographs.
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Furthermore,  discriminant  gradient-based  localization  is
integrated  to  separate  ROIs  that  may  signal  the  presence  of
pneumonia.  At  present,  the  in-depth  convolution  approach
seems  to  be  the  most  promising  for  the  early  diagnosis  of
pneumonia without significant expansion of the neural network
topology. A novel study [48] presents an ensemble approach
combining AlexNet architecture as a feature extractor, Relief
algorithm for  efficient  feature  selection,  and  Support  Vector
Machine (SVM) as a final classification layer. This approach
demonstrated notable results, achieving validation accuracy of
96-97% depending on different datasets. Nonetheless, despite
the  successful  implementation  of  CNN  architecture  in
pneumonia  detection,  few  studies  have  addressed  the  early
diagnosis.

All  mentioned  detection  methods  and  approaches  were
based  on  extensive  multilayer  CNN  architectures.  However,
multilayer networks do not always provide sufficient coverage
of  receptive  fields  [49];  as  a  result,  they  may  not  extract
inconspicuous  texture  features  in  the  image  while  remaining
heavy  and  challenging  to  operate.  Additionally,  neural
networks  have  been  perceived  as  black  boxes  due  to  vague
interpretation of their performance results. Altogether, a heavy
and frail computational model with insufficient explanation for
the  early  diagnosis  can  be  perceived  as  a  severe  negative
feature of automated decision-making systems, as the lack of
interpretation  results  may  negatively  affect  the  final  clinical
decision.  Thus,  to  address  these  issues,  we  propose  an
individual  approach  to  the  automated  diagnosis  of  early
pneumonia  based  on  a  simple  yet  efficient  DL  model  and
straightforward  interpretation  technique.

3. MATERIALS AND METHODS

The  presented  study  consists  of  three  aspects:  first,  the
approach  to  detecting  early  pneumonia  features  on  X-rays,
second,  the  method  of  interpreting  the  extracted  features  of
early disease, and third, substantiating the effectiveness of the
proposed  approach  based  on  computational  experiments.  In
particular,  in  this  section,  we  present  and  describe  the

methodology of an individual approach to detecting pneumonia
in the early stages. It should be noted that the idea of diagnosis
of  early  pneumonia  on  individual  radiograms  was  primarily
proposed in our previous work [50]. In general, the idea of an
individual  approach  is  presented  by  the  conceptual  model  in
Fig. (2).

According  to  the  analysis  of  the  related  work  from  the
previous section, the CNN architecture has been considered the
most prominent feature extractor so far; thus, it was chosen as
the core for disease identification.

3.1. The Modification of the Convolutional Layer

First, we will form the task of detecting pneumonia on X-
rays.  The  following  image  features  are  most  used  in  image
processing:  target  color,  object  shape,  texture,  and  objects'
relationship  in  space.  The  main  difference  between  different
types  of  pneumonia  from  healthy  lungs  in  the  image  is  the
lungs' textural features. Despite the intuitive choice of feature
textures  to  identify  the  image's  disease,  there  is  no  clear
standard  for  defined  textures.  Unlike  image  features  such  as
grayscale and color, textures are grayscale distribution relative
to  a  particular  pixel  and its  space.  Therefore,  we present  the
texture as a constant repetition of local space in the image.

The  convolution  kernel  is  a  typical  example  of  the
mechanism of extraction of features. In a convolutional layer
consisting  of  a  plurality  of  filters,  each  neuron's  input  is
connected to  the  previous  layer's  local  receiving area,  which
allows  removing  local  features  in  the  image.  The  approach
based  on  local  connections  has  been  repeatedly  successfully
applied  to  many  texture  analyses  [51].  Therefore,  due  to  the
convolutional layer's modification, it is possible to remove the
textures' local features effectively. However, the texture does
not  always  entirely  reflect  the  object's  essential  properties;
thereby, using only the texture features to obtain a higher level
of image content might not be the right approach. As the depth
of  the  model  increases,  the  feature  map  resolution  gradually
decreases,  and  the  texture  highlighted  by  the  convolution
kernel  may  have  significant  deviations.

Fig. (2). The methodology of the proposed individual approach for detection of early pneumonia.
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According to clinical diagnosis [4, 6, 12], the features of
X-ray pneumonia can be either highly compacted or diffusely
distributed  throughout  the  lung  plane.  Therefore,  there  is  a
need to consider the disease's features at different observation
levels. For instance, in [52], it is proposed to use a new type of
convolution,  called  dilated  convolution,  to  enlarge  the
convolution's receptive field without increasing the convolution
kernels' total number of parameters. Fig. (3) illustrates dilated
operations with different dilated rates.

Due to the expansion's peculiarity, various disease features,
removed from various convolutions with several dilated rates,
will accumulate more diversity. The traditional convolution can
be divided into in-depth and dotted, one after the other. When
performing  deep  (spatial)  convolution,  each  input  channel  is
individually  processed  by  separate  filters.  Next,  a  point
(traditional)  convolution  with  1  ×  1  kernels  is  performed  to
integrate  deep  convolution  results  into  the  new  space.  This
approach  makes  the  extraction  process  computationally
efficient  with  a  small  number  of  convolutions  [47].

In  this  study,  we  propose  to  apply  dilated  convolutions
consistently with point convolutions. First, the dot convolution
passes  through  a  map  of  input  characteristics  to  project
information from many input channels into a more expansive
space.  The  image  is  then  produced  through  numerous  deep
convolutions with different spatial kernels and different dilated
rates,  from 1 to the maximum value of the dilation rate.  The
rate's  value  is  adjusted  according  to  the  input  feature  map's
shape to cover all the necessary receptive fields. As a result, in-
depth  convolutions  extract  spatial  features  from  various
receptive fields, from very condensed to generalized features.
Then  all  the  disparate  features  go  through  the  next  point
convolution to  merge into  a  narrow space.  Such a  procedure
leads to removing even a few visible features of pneumonia in
the image using only a few convolutional layers, which allows
designing individual CNN architectures.

3.2. The Neural Network Architecture

In  this  work,  the  proposed  architecture  is  CNN.  In  this
case, the balance is the difference between the actual observed
value and the calculated value. The idea is to adjust the CNN to
study minor changes removed by the rest of the convolutional

layer. Therefore, we formulate a hypothesis according to which
an individual approach to the medical image analysis should be
based  on  preserving  the  necessary  information  about  the
textural  features  of  pneumonia  and  the  simplicity  of  the
computational  model.  To  prove  this  hypothesis,  we  propose
and  investigate  a  three-layer  residual  CNN  with  skipping
connections  and  dilated  convolutions  as  feature  extractions.
The scheme of the proposed CNN architecture is presented in
Fig. (4).

Thus, the network receives a set of images of 128 × 128
pixels  after  their  preprocessing  collapsing  in  a  sequence  of
three  convolutional  layers.  Simultaneously,  convolutional
filters  contain  3  ×  3  kernels  [53]  with  the  ReLU  activation
function [54]. In this way, the neurons' small size relative to the
input signal's entire receptive field is provided. Accordingly, it
provides  an  opportunity  to  cover  the  local  features  of  the
texture  of  pneumonia.

This approach should ensure consistent network resolution
and minimize image space resolution loss. As we see from Fig.
(3), the dilated convolutional kernel can increase the kernel's
receptive  field  without  increasing  the  kernel  parameters  and
allows avoiding excessive loss of feature map resolution. The
ReLU activation function was utilized after each convolutional
layer.  Moreover,  a  normalization  layer  follows  each
convolution  so  that  the  nonlinear  transformation  function's
input  value  falls  into  the  region that  is  sensitive  to  the  input
data.  Such  an  approach  may  avoid  the  problem  of  gradient
disappearance and speeds up network learning. A dropout layer
with a parameter of 0.5 has been added to prevent the model
from being retrained. This layer accidentally stops the training
of  half  of  the  neurons  each  time  the  training  is  updated  and
prevents hidden neurons' dependence on specific inputs. Next,
we  have  an  averaged  pooling  layer,  which  calculates  each
feature  map's  average  value  for  the  last  original  convolution
layer. The output feature set is equal to the number of feature
maps of the global average pooling layer and is forwarded to
two dense (fully-connected)  layers.  The first  dense layer  has
256  nodes  with  ReLU  activation  function,  the  second,  a
classification layer  with  two nodes  and a  Sigmoid activation
function  to  compress  the  two-dimensional  output  in  the
probability  distribution.

Fig. (3). Dilated convolution with different dilated rates with a convolution kernel size of 3 × 3 covers different receptive fields. As a dilated rate
increases, the receptive field also enhances with the entire kernel.
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Fig. (4). The proposed CNN topology designed for early diagnosis of pneumonia.

3.3. Data Preprocessing and Feature Extraction

To date, the apparent features for the digital diagnosis of
early  pneumonia  have  not  still  been  standardized  in  the
scientific  community.  Even  though  numerous  studies  have
proposed various feature selection methods and confirmed their
practical benefit [55 - 58], there are no special techniques that
would  distinguish  early  pneumonia  from  perfectly  healthy
lungs and lungs with late stage of the disease [10, 11, 42, 59].
Therefore,  this  study  also  considers  a  method  for  selecting
early pneumonia features and interpreting the diagnosis results
as a part of the individual approach.

A  three-step  preprocessing  is  applied  to  the  input  X-ray
image to make it more straightforward and detect pneumonia
features.

(1)  In  the  first  step,  the  X-ray  image  is  illuminated  to
increase  the  brightness.  This  approach  was  used  since  even
professional radiologists examine X-ray images under the light.
Artificial  radiographs can be an effective means of detecting
pneumonia features for the classification task.  Increasing the
brightness is done by parsing each pixel of the image and then
increasing  their  respective  values  of  Red,  Green,  and  Blue
(RGB) by an absolute constant.

(2) The second step increases the image's contrast, which is
like  changing  the  image's  brightness.  Increasing  the  contrast
makes  the  borders  in  the  image  more  continuous  and  some
areas  more  noticeable.  This  technique  can  be  used  with  the
original  color  scheme,  which  does  not  reflect  the  disease
features, yet emphasizes the image's local areas. Increasing the
contrast of the image can be obtained by introducing affinity
equivalence:

(1)

where α – contrast level; β – image brightness level; (i, j) –
the corresponding pixels' coordinates in the image.

3)  The  third  step  is  to  expand  the  color  scheme  by
computing the average RGB values for each image. Next, these
values  are  multiplied  by  the  average  found  to  increase  the
overall  values  and  get  a  color  version  of  the  image.  This
technique  is  used  to  simplify  the  symptoms  of  the  disease
during  image  classification.  The  image  created  in  this  way

allows  highlighting  the  details  on  the  surface  so  that  the
classifier can better identify any features and differences from
the image with healthy lungs.

Among all the Haralick textural features [60], we choose
those  that  best  show  pneumonia's  manifestations  on  the
processed image. Such features are the square deviation of the
mean value of the image (variance), the sum of all mean values
in  this  image,  and  the  sum  of  all  values  of  variance  in  the
image.

Dispersion

(2)

The sum of all averages

(3)

The sum of all variance values

(4)

Next, we create a classifier in the form of a convolutional
neural  network with three convolutional  layers.  This  number
ensures  the  efficiency  of  the  classifier  on  any  computing
device.

3.4. Visual Analysis Through Discriminative Localization

The  CNN  performance  interpretation  is  an  urgent  task,
especially  in  clinical  decision-making  [27,  44].  DL  models
have been considered black boxes for a long time; there is still
no  trust  in  their  forecasts  [18,  33].  Simultaneously,
understanding  the  principles  of  feature  detection  can  help
configure and optimize network hyperparameters, identify and
understand the cause of model failures, and explain the results
to  a  non-specialist  user  in  solving  practical  problems.  The
visual  interpretation  of  DL  [41]  can  be  performed  with  (a)
preceding  techniques  to  visualize  the  separate  parts  of  a
network's structure and (b) gradient-based methods that operate
gradients through the whole network.

Every trained model focuses on the discriminant parts of
the  image  at  the  last  stage  of  classification.  Class  activation
maps  [61]  might  be  an  excellent  solution  to  visualize  and
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debug model predictions and address the interpretation issue.
The  pooling  layer's  output  is  fed  to  the  linearized  layer  to
identify the discriminant ROI, which is explicitly allocated to
classify inputs to the appropriate classes.

Let  us  consider  the  pooling  layer  Gm,  which  spatially
averages the Gm-th feature map from the convolutional layer.
Meanwhile, the m-th feature map joins the last neuron with the
weights wc

m, according to the predicted class c. Therefore, the
prediction score s  on the initial neuron can be represented as
the weighted sum of all neurons on the pooling layer:

(5)

where gm (x, y) denotes the m-th activation feature map on
the (x, y) plane, M – total number of class activation maps.

Also, the weighted number of activations from all feature
maps  relative  to  the  predicted  class  c  on  the  (x,  y)  are  as
follows

(6)

The  value  of  CAMc  (x,  y)  displays  the  significance  of  a
feature on each spatial  grid (x,  y)  to classify the input image
into the predicted class c.  The maps should also be scaled to
the  input  image's  size  to  find  the  discriminant  ROI.  This
approach can explain the process of forecasting the model and
localize the ROI specific to its class.

In this study, we utilized a visualization technique called
average-CAM.  It  represents  the  class  level's  ROI,  which  is
considered  the  most  important  for  correct  prediction  for  all
inputs belonging to this class. The average-CAM for class c is
calculated by averaging all CAM outputs:

(7)

where CAMk
p (x, y) corresponds to the value of CAM for

the k-th image in the class p, K is the total number of images at
the pooling layer's output.

Approach (7) can identify the ROI that is characteristic of
the  predicted  class,  improve  the  interpretation  of  internal
representations,  and  explain  model  predictions.

3.5. Transfer Learning

In  traditional  classification  problems,  the  classification
model's accuracy and reliability can be guaranteed if there are
enough  training  and  testing  data  from  one  space  of
characteristics and unified distribution. At the same time, the
model must be retrained with each data change. However, in
practice, it has been found that available labeled image samples
may not be consistent with the distribution of new test samples.
Besides,  due  to  the  patient's  confidentiality,  it  is  often
challenging to obtain labeled medical imaging data. Transfer
training might serve an excellent role in addressing the above
issues [62]. In this study, we pretrained our three-layer CNN on
the recently released benchmark ChestXray14 dataset [42] and
utilized  its  weights  for  further  investigation.  This  dataset
contains  112,120  frontal  X-rays  of  the  chest,  marked  by
fourteen chest diseases. Next, the network's trained weights are

stored and transferred to the classification of early pneumonia.
Experiments  have  shown  that  transfer  training  avoids
introducing  structured  noise  and  is  sufficient  for  model
convergence  and  improved  classification  characteristics.

3.6. Evaluation Criteria and Experiment Setup

A  small  CheXpert  dataset  [63]  was  used  to  test  the
proposed approach experimentally. The dataset contains 3458
chest  radiographs  with  320  ×  320  pixels  obtained  from  524
patients. The images are marked with two classes: normal and
pneumonia.  The  entire  dataset  is  divided  into  train,  test,  and
validation samples, each containing 70%, 20%, and 10% of all
images, respectively.

Let  us  consider  the  number  of  real  Positive  (P)  and  real
Negative  (N)  cases  in  the  data.  As  is  known,  the  results  of
modeling  and  classification  [64,  65]  are  distributed  as  True
Positive  (TP),  True  Negative  (TN),  False  Positive  (FP),  and
False Negative (FN) cases.  In this paper,  the performance of
targeted neural networks is evaluated by several fundamental
statistical indicators defined as

(8)

(9)

(10)

(11)

(12)

(13)

We also calculated the area under the curve (AUC) [66] to
measure the distinction between normal and pneumonia classes

(14)

To train the network,  we utilized the Adam optimization
[67] with overall  300 epochs. Adam's algorithm serves as an
extension of the stochastic gradient descent algorithm, which
iteratively  updates  the  neural  network  weights  based  on
training  data.  Guided  by  the  results  of  computational
experiments in [68, 69], the training parameters are established
as follows: learning rate of 10-5 -10-3, the weight decay of 0.5
10-3,  the  momentum  of  0.85,  and  the  batch  size  of  512.
According  to  recent  studies  [70,  71],  such  a  set  provides  an
excellent model's approximation.

At the model's initialization stage, the pretrained weights
on the Chest X-ray 14 dataset were transferred to the current
CNN model to perform the early pneumonia classification task.
While training,  the scales with small-batch data are updated,
and the batch size is set to 256. When the model's accuracy on
the validation set does not increase anymore, the learning rate
decreases  ten  times.  The  network  training  finished  after
reaching  100  iterations.

All  experiments  were  performed  on  the  Windows  10
operating  system using  the  Python  v3.7  stack.  The  proposed
architecture  was  implemented  based  on  TensorFlow  v.1.15
[72]  and  Keras  frameworks;  hardware  –  8-core  Ryzen  2700
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and one NVIDIA GeForce GTX1080 graphics processor with 8
GB of memory. The code has been open-sourced and available
on GitHub via [73].

4. EXPERIMENTS AND RESULTS

This  section  presents  the  results  of  computational
experiments and presents a visualization of the proposed model
to interpret the results.

Fig.  (5)  illustrates  confusion  matrices  obtained  by  the
proposed architecture and state-of-the-art CNNs: VGG19 [45],
Inception-V4 [74], and MobileNet_v2 [75].

As shown in Fig. (5a), the VGG19 model achieved 85.9%
validation accuracy classifying 1,582 images as pneumonia and
147  images  as  normal  samples  for  the  pneumonia  class,  and
1390 images as normal and 339 images as pneumonia for the

normal  class.  From  Fig.  (5b),  we  may  observe  that
Inception_v4  marked  1650  samples  for  the  pneumonia  class
correctly  and  79  –  incorrectly.  It  also  included  1621  normal
and 108 pneumonia images to the normal class. According to
Fig.  (5c),  MobileNet_v2  classified  1634  images  correctly  as
pneumonia  and  95  incorrectly  as  normal  for  the  pneumonia
class;  simultaneously,  for  the  normal  class,  it  correctly
predicted  1696  images  but  erred  in  33  samples.  Finally,  the
model based on our architecture correctly marked 1618 images
as  pneumonia  while  incorrectly  assigned  111  images  with
healthy  lungs  to  the  pneumonia  class  (Fig.  5d).  As  for  the
normal class, 1705 samples were correctly classified as normal
and 24 – incorrectly as pneumonia.

Fig. (6) shows the training and validation curves obtained
by the proposed architecture.

Fig.  (5).  The  distribution  of  actual  and  predicted  labels  obtained  by  (a)  VGG19,  (b)  Inception_v4,  (c)  MobileNet_v2,  and  (d)  the  proposed
architecture illustrated in Fig. (4).
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Fig. (6). Accuracy (a) and loss (b) curves obtained by the proposed CNN.

Fig. (7). The ROC curve for evaluating the proposed approach's effectiveness is based on two variables: the false positive coefficient (horizontal axis)
and the true positive coefficient (vertical axis).

According to Fig. (6a), the training and validation curves
increase  to  95.5%  from  epoch  0  to  20.  After  that,  training
accuracy  slightly  increases  and  eventually  reaches  99.1%,
while  the  validation  accuracy  stops  at  96.1%.  In  Fig.  (6b),
training  and  loss  validation  curves  demonstrate  excellent
convergence. By epoch 25, the loss function's value for both
curves  slows  at  3.98%  and  then  gradually  falls  to  1.16%  in
epoch 300.

The graph of the ROC curve is shown in Fig. (7).

As from Fig. (7), the AUC score reaches 95.3%. This result
shows that our three-layer CNN can provide complete textural
feature  extraction  associated  with  early  pneumonia  and
accurately  determine  the  ROI  in  the  limited  chest  X-ray
dataset.

Overall,  Table  1  contains  all  predictions  obtained by the
targeted  networks.  Moreover,  we  included  training  time  for
each model to estimate their computational efficiency.

Table  2  compares  four  investigated  convolutional
architectures  by  the  statistical  indicators  (8)–(14).

Table 1. The formal results obtained by the computational experiments.

Architecture TP TN FN FP Time, h
VGG19 [45] 1390 1582 147 339 5.11

Inception_v4 [74] 1621 1650 79 108 5.21
MobileNet_v2 [75] 1696 1634 95 33 6.17

The proposed architecture 1705 1618 111 24 4.62
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Table 2. A numerical comparison of the proposed architecture with state-of-the-art models.

Architecture Accuracy Specificity Precision Recall FPR FNR AUC
VGG19 0.859 0.824 0.804 0.904 0.176 0.096 0.951

Inception_v4 0.946 0.939 0.938 0.954 0.061 0.046 0.843
MobileNet_v2 0.963 0.980 0.981 0.947 0.020 0.053 0.939

The proposed architecture 0.961 0.985 0.986 0.939 0.015 0.061 0.953

As we see from Figs. (6 and 7) and Table 2, the learning
and validation accuracy curves gradually increase to the point
of stability and reach a maximum of 300 epochs. It should be
noted  that  the  VGG19  model  shows  significantly  worse
performance (85.9%) compared to other investigated networks.
Their training and validation curves begin to be stable starting
from  epoch  20,  and  validation  accuracy  stops  at  94.6%  for
Inception_v4,  96.3%  for  MobileNet_v2,  and  96.1%  for  the
proposed architecture.

It  is  also  noteworthy  that  the  proposed  three-layer
architecture demonstrates good convergence of the training and
validation  curves,  which  may  indicate  a  low  level  of  over-
fitting of  the  model  and,  consequently,  reliable  and practical
implementation. Moreover, our approach shows relatively low
type  I  and  type  II  errors,  with  1.5%  and  6.1%,  respectively.
Therefore, according to all statistical indicators (Table 2), the
model  based  on  the  proposed  architecture,  schematically
depicted  in  Fig.  (4),  achieves  high  and  robust  performance
efficiency and can be further implemented for practical tasks.

Next, we evaluated the proposed model's effectiveness in

detecting  pneumonia-affected  parts  of  the  lungs  using  heat
maps.

5. DISCUSSION

This section provides a systematic analysis of the proposed
approach against other recognized CNNs based on the previous
section's experimental results. It also describes the features of
the approach in terms of interpreting the results of diagnosing
early pneumonia.

First, Fig. (8) demonstrates the feature maps constructed by
different parts of our CNN model.

Fig.  (8a)  presents  a  visualization  of  the  original  feature
maps  of  the  best  model's  first  convolutional  layer.  It  can  be
seen  from the  figure  that  the  convolutional  layer  reveals  the
edges, and their various properties cover the leading edges of
the  forms.  Fig.  (8b)  also  shows  a  partial  feature  map  of  the
pooling layer. Furthermore, Fig. (8c) presents the partial output
of the first dense layer (Fig. 5), while Fig. (8d) visualizes the
last classification layer's output.

Fig. (8). Partial visualization of feature maps in the proposed CNN architecture: (a) convolutional, (b) pooling, (c) dense, and (d) final classification
layers.

(a) (b)

(d)(c)
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Fig. (9). Visual interpretation of CNN operation through the gradient feature localization based on class activation maps and performed by the CAM
method: (a) initial radiographs; (b) restrictive frameworks localizing activation zones; (c) heat maps superimposed on the initial radiographs by the
CAM method; (d) segmented lung masks; (e) heat maps superimposed on segmented lung masks by the CAM method.

According to the indicators in Table 2, we may see that the
VGG19, Inception_v4, and MobileNet_v2 generally performed
worse  compared  to  our  network.  Given  the  problem  of
classifying images with poorly expressed pneumonia features,
we assume that multilayer architectures lose spatial features on
the last convolutional layer, limiting the model's classification
characteristics. On the other hand, the small number of layers
of our network makes it possible to preserve and pass through
all convoluted layers, such weak features of early pneumonia
as  darkening  of  one  or  more  parts  of  the  lung  or  darkening
within  one  segment  of  the  lung.  In  particular,  the  proposed
filter  designs  based  on  the  dilated  convolutions  ensure  the
expansion  of  the  neuron's  receptive  field,  thus  capturing
additional  vital  pneumonia  features.

The  use  of  transfer  training  has  reduced  the  negative
impact  of  introducing  structured  noise  on  the  model's
performance.  Instead,  initializing  the  model  with  mastered
scales from the Chest X-ray 14 dataset significantly accelerated
its convergence. Other modifications of the approach are also
noteworthy,  such  as  image  preprocessing,  highlighting
essential  Haralick  features,  selecting  the  activation  function
and the loss function, and adjusting the target's optimal hyper-
parameters. Thus, the proposed model of deep learning has the
following contribution against other methods: A cross-cutting
model  of  CNN with  dilated  convolutional  operations  for  the
classification of pneumonia in the early stages is proposed. The
model effectively addresses the issue of low resolution, partial
occlusion,  or  blockage  of  the  inflammatory  area  of  chest  X-
rays.

Because  the  configured  CNN,  Fig.  (4)  contains  pooling
layers  in  its  topology,  it  is  compatible  with  the  CAM
visualization method. Fig. (9)  shows the visual results of the
CAM  in  localization  of  the  area  on  the  radiograph  with  the
most prominent pneumonia features.

The approach to the interpretation of the work of CNN is
as follows. The model receives X-rays from the training dataset
and decodes predictions about the features of the disease. The
CAMs generate heat maps in two-dimensional evaluation grids,
calculated  for  each  input  pixel  location.  Those  pixels  with  a
high value relative to the predicted class have a bright red color
with clear color transitions for different ranges. After that, the
formed heat maps are applied to the input X-rays to visualize
the  ROI  with  the  most  probable  pneumonia  features.  Then,
with  the  help  of  an  algorithm for  detecting  boundaries,  lung
masks  are  formed.  These  masks  describe  the  contours  of  the
lungs  on  radiographs  to  remove  the  localized  area  with
features.

Given the visualization results in Fig. (8), we see that the
network's  convolutional  layer  absorbs  the  image's  fuzzy
contours.  These  patterns  are  abstracted  as  they  pass  through
successive convolutional layers until the last layer describes the
lungs'  characteristics.  Heat maps in Fig. (8) demonstrate that
the proposed CNN assimilates features that strongly correlate
with the class of pneumonia, and with high accuracy, identifies
areas of interest with inflammation. Simultaneously, our CNN
architecture  is  based  on  the  residual  network  by  the  dilated
convolution's  internal  structure.  This  approach  can  provide
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high  image  plane  resolution  and  competitive  classification
accuracy  through  weight  assimilation  and  hyperparameter
adjustment.

CONCLUSION

The  current  study  investigates  an  early  diagnosis  of
pneumonia  based  on  deep  learning  methods.  We  propose  an
approach to identify mild pneumonia in the X-ray images and
interpret  classification  results  with  a  CNN.  The  feature
extractor  here  is  a  modified  CNN architecture,  consisting  of
three convolutional layers with ReLU activation functions after
each  layer,  followed  by  an  averaged  pooling  layer  and  two
dense  layers.  A  dilated  convolution  with  different  sizes  was
employed  to  detect  and  analyze  visual  deviations  on  the
radiograph in convolutional layers to preserve the radiograph's
receptive fields' spatial features. The network was trained with
an  Adam  optimizer  to  minimize  the  cross-entropy  loss
function. The proposed architecture provides minimal losses of
objects'  spatial  information  due  to  dilated  operations  while
ensuring low computational costs.

Our  approach  involves  utilizing  transfer  training  to
overcome the lack of data in early pneumonia. The investigated
CNN  achieves  high  classification  rates  on  the  CheXpert
dataset,  relevant  to  state-of-the-art  neural  networks,  and
demonstrates significant computational efficiency, surpassing
other models. Moreover, we applied a visual strategy based on
class  activation  maps  to  explain  the  classification  outcome,
critical  for  clinical  decision  making.  The  formed  class
activation  maps  provide  discriminatory  localization  of
abnormal zones in radiographs that can help diagnose weakly
expressed  early  pneumonia  features.  According  to  the
simulation  results,  the  proposed  CNN  architecture  may  be  a
promising solution for instant diagnosis in the first suspicion of
early pneumonia.

Further,  research  will  focus  on  applying  optimization
methods to fine-tune our architecture and, therefore, improve
clinical measurements. Besides, the authors plan to expand the
network's use for the analysis of computed tomography images.
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