
1875-0362/23 Send Orders for Reprints to reprints@benthamscience.net

1

DOI: 10.2174/18750362-v16-230705-2023-7, 2023, 16, e187503622306270

The Open Bioinformatics Journal
Content list available at: https://openbioinformaticsjournal.com

RESEARCH ARTICLE

EZYDeep:  A  Deep  Learning  Tool  for  Enzyme  Function  Prediction  based  on
Sequence Information

Khaled  Boulahrouf1,*,  Salah  Eddine  Aliouane2,  Hamza  Chehili2,  Mohamed  Skander  Daas2,  Adel  Belbekri3  and
Mohamed  Abdelhafid  Hamidechi2

1Department of Microbiology, Constantine 1 University, Constantine, Algeria
2Department of Applied Biology, Constantine 1 University, Constantine, Algeria
3Department of Informatique, Université Constantine 2, Constantine, Algeria

Abstract:

Introduction:

Enzymes play a crucial role in numerous chemical processes that are essential for life. Accurate prediction and classification of enzymes are crucial
for bioindustrial and biomedical applications.

Methods:

In this study, we present EZYDeep, a deep learning tool based on convolutional neural networks, for classifying enzymes based on their sequence
information.  The  tool  was  evaluated  against  two  existing  methods,  HECNet  and  DEEPre,  on  the  HECNet  July  2019  dataset,  and  showed
exceptional performance with accuracy rates over 95% at all four levels of prediction.

Results:

Additionally, our tool was compared to state-of-the-art enzyme function prediction tools and demonstrated superior performance at all levels of
prediction. We also developed a user-friendly web application for the tool, making it easily accessible to researchers and practitioners.

Conclusion:

Our work demonstrates  the  potential  of  using machine learning techniques  for  accurate  and efficient  enzyme classification,  highlighting the
significance of sequence information in predicting enzyme function.
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1. INTRODUCTION

Enzymes  are  proteins  that  have  a  specific  biological
activity: they catalyze biological reactions. Catalysts are tools
that  can  substantially  speed  up  these  processes.  At  the
conclusion of the reaction, they are regenerated and act at low
concentrations. The vital functions of organisms are crucially
maintained by enzymes. They control numerous other chemical
processes  that  are  strongly  related  to  the  process  of  life,
including  metabolism,  nutrition,  and  energy  conversion.
Enzymes  are  utilized  in  a  variety  of  processes,  including
industrial  synthesis,  human  health,  and  environmental  reme-
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diation [1, 2].

Precision in the selection of enzymes for bioindustrial or
biomedical applications is therefore crucial and has become a
focus  of  great  medical,  environmental,  and  industrial
importance.  Most  enzymes  are  proteins,  while  others  are
ribonucleic  acids.  Until  now,  research  on  the  prediction  of
classes and subclasses of enzymes has always been focused on
the  enzyme  whose  chemical  nature  is  the  protein;  in  other
words,  when computer  models  are  used to  classify  enzymes,
the  method  of  feature  extraction  adopted  is  always  protein-
specific.  To  facilitate  the  in-depth  study  of  enzymes,  it  has
become  important  to  classify  and  name  enzymes
internationally.  “International  Union  of  Pure  and  Applied
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Chemistry” (IUPAC) and “International Union of Biochemistry
and Molecular Biology” (IUBMB) have created the “IUPAC-
IUBMB  Joint  Commission  on  Biochemical  Nomenclature”
(JCBN) and the “Nomenclature Committee of the International
Union of Biochemistry and Molecular Biology (NC-IUBMB)”.
It  is  the  NC-IUBMB  that  maintains  the  nomenclature  and
classification  of  enzymes  [3].

The latter created an international commission called the
Enzyme  Commission,  which  is  tasked  with  developing  a
nomenclature  for  enzymes.  The Commission has  divided the
enzymes into 7 major classes depending on their reactions (see
Table  1  to  look  at  the  classes)  [4].  The  EC  nomenclature  is
made up of four parts that identify respectively the main class,
subclass, sub-subclass, and substrate class of the enzyme [5]. It
is  worth  mentioning  that  in  recent  years,  many  classifiers
capable  of  classifying  enzymes  have  appeared.  Most  of  the
classifiers designed by researchers can classify enzymes at the
subclass  level  [6].  As  enzymes  were  divided  into  6  major
classes according to the type of reaction catalyzed, a seventh
class, the translocase, was added in 2018 [4]. Most prediction
methods  divide  the  enzymes  into  just  six  classes  [7  -  11].
Functional laboratory identification approaches have been used
to  discover  the  function  and  class  of  enzymes,  although  this
form  of  experiment  is  costly  and  time-consuming  [12,  13].
Consequently,  it  is  appropriate  to  classify  enzymes  using
bioinformatics  technologies  and  deep  learning  methods.

Table 1. Enzyme classes and their catalyzed reactions.

EC Number First Digit Name
1 Oxidoreductases
2 Transferases
3 Hydrolases
4 Lyases
5 Isomerases
6 Ligases
7 Translocases

With the development of bioinformatics and deep learning
[14, 15], researchers have designed many models for enzyme
class prediction [16]. In 2003, F. Y. Hunt et al [17] introduced
an  algorithmic  approach  to  facilitate  sequence  alignments
between a  query  sequence  and  a  database  of  sequences.  The
primary  aim  of  this  approach  was  to  identify  highly  similar
proteins that are already annotated, under the assumption that
information  about  the  biological  function  or  structure  of  a
protein  can  be  gained  through  such  identification.  In  2009,
Nasibov  et  al  [18]  adopted  the  K-nearest  neighbor  (KNN)
classification  method,  which  is  a  machine-learning
classification algorithm used for classification and regression
tasks.  It  works  by  finding  the  K  closest  data  points  in  the
training set to a given test point, and the class of the test point
is determined by a majority vote of the K-nearest neighbors. In
2010, Qiu et al [19] used the support vector machine (SVM),
achieving  good  results.  In  2018,  Yu  Li  et  al  [20]  used  a
combination of Convolutional neural network (CNN) and long
short-term memory (LSTM) to build their classification model.
In  addition,  in  order  to  achieve  better  prediction  results,
researchers  usually  combine  various  feature  extraction  and
classification methods in their prediction process. For example,

Shen  et  al  [21]  combined  functional  domain  (FunD)  and
scoring matrix (PsePSSM) to extract features in 2009. Wang et
al  [22]  combined  composition,  transition,  and  distribution
(CTD)  and  pseudo  amino  acid  composition  (PseAAC)  to
extract features and ranked sequences with the combination of
(RAkEL-RF)  and  multi-label  KNN  (MLKNN)  methods  in
2014.  In  2018,  Yu  Li  et  al  [20]  combined  one  hot  encoded
protein  sequence,  position-specific  scoring  matrix  (PSSM),
solvent  accessibility  information,  secondary  structure
information  predicted  by  DeepCNF  [23],  and  functional
domains. In 2020, Safyan Aman Memon et al [24] combined
the  protein  sequence,  PSSM,  disordered  regions,  protein
secondary  structure,  solvent  accessibility,  amino  acid
composition,  and  functional  domains.

Our contribution consists in proposing a new approach in
which  artificial  intelligence  is  the  pillar.  It  consists  in  using
natural language processing (NLP) [25] with deep learning to
determine  the  function  of  enzymes  based  on  their  primary
structure.  we chose the protein sequence as the only training
data  in  order  to  avoid  involving  erroneous  data  from a  false
prediction  (for  example  predicted  protein  secondary
structure...)  so  that  the  latter  is  the  only  data  necessary  to
predict the function. The organization of the rest of the paper is
as follows: The research methodology is described in Section
2. Section 3 presents the results and discussion. The last section
concludes this paper and discusses future work.

2. MATERIALS AND METHODS

2.1. Datasets

The  dataset  was  obtained  from  the  UniProt  Knowledge
Base, the protein sequences collected are publicly available at
(https://www.uniprot.org/).  This  database  has  two  types  of
sequences:  reviewed  and  unreviewed  sequences.  We  chose
only the reviewed ones, but before proceeding to download, we
selected only three columns, which are Sequence, EC number,
and Sequence Length. These three columns represent the data,
the  label,  and  the  length  column  have  been  used  for  data
cleaning  purpose.  The  downloaded  file  format  was  tab-
separated  values  (TSV).  The  file  contained  initially  568,002
sequences (October 10, 2022). To note, sequences with no EC
number are non-enzyme proteins.

2.2. Used Environment

EZYDeep  tool  is  developed  using  Python  as  a
programming  language.  Many  libraries  are  involved  in  the
programming  process:  we  start  with  Pandas  that  we  used  in
order  to  clean  our  datasets.  The  2nd  main  library  was
Tensorflow  that  we  used  to  build  our  model,  then  sklearn
which we used to measure the efficiency of the model. Finally,
we used Django framework to build the website where the tool
is available at (http://rs.umc.edu.dz:8000/).

Additionally, EZYDeep models are trained on Kaggle, as it
offers a powerful system equipped with GPUs (2x Nvidia Tesla
T4 with 16 GB of VRAM).

2.3. Data Cleaning

The  dataset  went  through  many  steps  of  data  cleaning,
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starting  by  deleting  all  sequences  with  a  length  higher  than
1,500 aa or lower than 50 aa, followed by deleting sequences
with  unknown amino acids  (represented by X character)  and
uncommon amino acids (O, J, U, Z, B). Then, all the sequences
with incomplete  EC numbers  that  include a  dash (–)  and the
ones with multiple EC numbers were deleted. The number of
sequences after this cleaning decreased to 439,301 sequences.
After the cleaning phase, we made a copy of our dataset so it
can be dedicated to enzyme models only.

In the copy containing all the 439,301 sequences, we added
a  column  that  contains  a  binary  labeling:  enzyme  or  non-
enzyme for every sequence, as non-enzyme sequences have no
EC number. Level 0 of the classification will be based on that
column, as it will classify the sequences into enzymes or non-
enzymes. Table 2 shows the detail of the Level 0 dataset.

Table 2. Number of sequences in level 0 dataset.

Classes Number of Sequences Per Class
Enzyme 204,008

Non-enzyme 235,293

In the 2nd  copy, all  the non-enzyme sequences have been
deleted. The number of the remaining sequences is 204,008.

Three columns have been added to this dataset, all based
on the EC number column:

The 1st column contains the 1st EC number represented by
values from 1 to 7 as there are 7 enzyme classes. Level 1 of the
classification will be based on that column, Table 3 shows the
details about the number of sequences by classes at the 1st level
of classification.

Table 3. Number of sequences per class.

Classes Number of Sequences Per Class
1 23,331
2 72,684
3 41,246
4 18,946
5 12,178
6 24,200
7 11,423

The  2nd  column  contains  the  1st  two  EC  numbers  which
means  the  enzyme  class  and  subclass.  Level  2  of  the
classification  will  be  based  on  that  column.

The  3rd  column contains  the  1st  three  EC numbers  which
mean the enzyme class, its subclass, and its sub-subclass. Level
3 of the classification will be based on that column.

The number of classes in level 2 and level 3 are 64 and 193
respectively.

2.4. Data Encoding

As deep learning models cannot handle directly alphabetic
characters (raw text), the sequences and labels we have must be
encoded into a numeric format. In order to do so, we started by
encoding  the  labels  using  a  one-hot  encoder  that  consists  in
encoding a label with n states on n bits of which only one takes

the value 1, the number of the bit being 1 being the number of
the state taken by the label. This will convert our classes into
arrays built with 0 and 1 (Table 4).

Table 4. Example of the one hot encoding applied on level
0.

- Enzyme Non-enzyme
Enzyme 1 0

Non-enzyme 0 1

The  following  step  was  to  encode  the  sequences  into  a
numeric  format.  The  used  method  is  Character-level
Tokenization. This method consists in splitting our sequences
into  individual  characters  then  every  character  gets  its  own
numeric  value.  The  tokenization  will  convert  our  sequences
into arrays, which, unlike label conversion, will be built with
numbers  from 1 to  20 (as  the  number  of  amino acids  is  20).
Another  step  is  necessary,  which  is  sequence  padding.  This
method adds zeros to every array whose size is inferior to 1500
so at the end all the arrays will be of the same size.

For every level of classification, the used dataset has been
divided into 2 sets in a 9:1 ratio. The first part was used so the
deep learning model can learn from it, the second part was used
to test the efficiency of the model.

2.5. Proposed Model

Four models have been built, one model for every level of
classification (from level 0 to level 3).

As  tokenization  gives  random  values  to  sequence
characters,  which  means  similar  amino  acids  can  have  very
distinct values, a character embedding must take place. So, the
first layer of our model is the embedding layer, whose role is to
convert every integer representing an amino acid into a vector,
the result of this is having two dimension arrays representing
every protein/enzyme sequence. Those array values are learned
along with the model itself. This process is very efficient when
dealing with huge datasets like ours, as it allows the values of
vectors representing similar amino acids to be reconciled which
captures relationships that are very difficult to capture.

The second layer is the convolutional layer, which receives
the output of the embedding layer. This layer was built with a
number of filters  varying from 64 to 512,  and its  kernel  size
varied from 3 to 32. Despite the usual use of small kernel size,
using  bigger  ones  led  to  much  better-performing  models  as
some papers mentioned [26].

The  third  layer  is  a  max  polling  layer  whose  goal  is  to
reduce the size of learned features, consolidating them only to
the most essential elements.

The fourth layer is the flattening layer, whose purpose is to
convert  the  two  dimensions  vector  outputted  by  the  max
pooling  layer  into  a  one-dimension  vector  which  is  fed  into
several  fully connected layers  with dropout  regularization so
that the model can easily define the relationship between the
values of the data and their labels.

Both  binary  cross  entropy  and  categorical  cross  entropy
have  been  used.  The  first  is  for  the  binary  classification
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(enzyme  and  non-enzyme),  the  last  is  for  the  multiple
classification (classification based on EC number from level 1
to level 3).

2.5.1. Model Learning and Evaluation

Once  the  model  is  built,  we  instantiate  it  and  start  the
training.  When  the  training  is  over,  we  proceed  to  the
evaluation  of  the  model,  i.e.,  evaluating  its  accuracy.

2.5.2. Hyper-parameters Tuning

After evaluating the model, we tried many combinations of
hyper-parameters  in  order  to  find  the  model  with  the  best
prediction accuracy.  Some of  those hyper-parameters  are the
embedding  dimension,  the  number  of  convolutional  layer
filters, the kernel size of the convolutional layer, the pool size
of the max pooling layer, as well as the number of nodes of the
dense layers. The used parameters are displayed in Table 5.

Table 5. Hyper-parameters used while tuning the model.

Hyper-parameter Tested Values
Embedding dimension 32, 64, 128, 256

Convolutional layer filters 64, 128, 256, 512
Kernel size 3, 4, 6, 8, 16, 32
Pool size 3, 4, 6, 8, 16, 32
Neurons 64, 128, 256, 512, 1024, 2048

Batch size 64, 128, 256
Dropout 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
Epochs 30, 50, 70, 100

2.6. Web Application

The website built is basically one web page where the user
can input a protein sequence. A backend function checks if the
input  represents  a  real  protein  sequence  by  checking  many
criteria: sequence size, the first amino acid of the sequence, and
the  amino  acids  composing  the  sequence.  The  inputted
sequence is encoded the same way our dataset sequences were
encoded. The encoding output is then passed to the models so
the prediction can be made. The results are then displayed to
the user in a table (Fig. 1).

2.6.1. Model Overview

EZYDeep,  the  tool  presented  in  this  paper,  is  a  deep
learning method based on convolutional neural networks. The
experiments  were  performed  on  4  levels  which  are:  level  0:
Enzyme  and  non-enzyme,  level  1:  first  digit  EC  number
prediction, level 2: second digit EC number prediction, level 3:
third  digit  level  EC  number  prediction.  We  performed  some
tests on level 4 too which is the fourth and last digit of the EC
number but as the majority of 4th-level classes have a number
of  sequences  inferior  to  5,  the  experiment  did  not  yield
satisfactory  results.

2.6.2. Evaluation Measure

To  assess  the  quality  of  the  predictions,  we  employed
several  commonly  adopted  metrics  [27,  28].  These  metrics
provide a comprehensive evaluation of the performance of our

enzyme classification models. The evaluation metrics used are
as follows:

1- Accuracy: This metric calculates the ratio of correctly
classified instances (True Positives and True Negatives) to the
total  number  of  instances  evaluated  (True  Positives,  True
Negatives, False Positives, and False Negatives). It is defined
as:

2-  Recall:  Also  known  as  the  true  positive  rate,  recall
measures  the  proportion  of  true  positive  instances  correctly
identified by the model. It is defined as:

3-  Precision:  Precision  measures  the  proportion  of  true
positive instances out of all instances predicted as positive. It is
defined as:

4-  F1-score:  The  F1-score  is  the  harmonic  mean  of
precision  and  recall,  providing  a  balanced  measure  of  the
model's  performance.  It  is  defined  as:

Where:

True Positive (TP): means the actual value and predicted
value are the same.

True  Negative  (TN):  means  the  sum  of  values  of  all
columns and rows except the values of that class that we are
calculating the values for.

False  Positive  (FP):  means  the  sum  of  values  of  the
corresponding  column  except  for  the  TP  value.

False  Negative  (FN):  means  the  sum  of  values  of
corresponding  rows  except  for  the  TP  value.

In our experimentation, we conducted a two-step approach.
First,  we  performed  a  simple  test  by  randomly  splitting  the
dataset into 90% for training and 10% for testing. This initial
test  provided  a  baseline  assessment  of  the  model's
performance.

Subsequently, we employed cross-validation with 10 folds
on the entire dataset. This process involved dividing the data
into ten equal parts, iteratively training the model on nine parts,
and testing the  remaining part.  By repeating this  process  ten
times, we ensured that each part of the data was used for both
training and testing. This cross-validation approach enabled us
to obtain a more robust evaluation of the model's performance.

By  employing  this  experimental  setup,  we  obtained
comprehensive  insights  into  the  effectiveness  and
generalizability  of  our  enzyme  classification  model.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Fig. (1). Diagram representing the website application process.

3. RESULTS AND DISCUSSION

As mentioned before, the models are tested on 10% of the
dataset. The test method is based on the confusion matrix.

Table 6 shows the performance of the EZYDeep models on
four different levels of classification, with evaluation metrics
including accuracy, precision, recall, and F1-score. At Level 0,
the model achieved an accuracy of 97.04% with high precision,
recall,  and  F1-score.  For  Level  1  classification,  the  model
achieved an accuracy of 97.35% with high precision, but lower
recall  and  F1-score  compared  to  Level  0.  For  Level  2
classification, the model achieved a lower accuracy of 96.41%
with decreased precision, recall, and F1-score. At the highest
level  of  classification  (Level  3),  the  model  achieved  an
accuracy  of  95.83%  with  a  high  precision,  but  a  significant
decrease in recall,  resulting in a lower F1 score compared to
the other levels. These results suggest that the model performs
well for broader classifications.

Table  6.  Results  of  EZYDeep,  using  a  test  set  of  204,008
enzymes and 235,293 non-enzymes.

- EZYDeep
- Acc Precision Recall F1

Level 0 97.04 97.39 97.44 97.35
Level 1 97.35 98.25 97.13 97.08
Level 2 96.41 94.46 93.53 93.95
Level 3 95.83 95.36 89.10 91.63

In  addition  to  the  test  results  obtained  from  the  10%

dataset, we further conducted 10-fold cross-validation to assess
the  performance  of  our  EZYDeep  models.  The  evaluation
metrics  used  were  accuracy,  precision,  recall,  and  F1-score.
Table  7  presents  the  performance  of  the  models  at  four
different  levels  of  classification.

Table  7.  Performance  of  EZYDeep  models  with  10-fold
cross-validation.

- EZYDeep
- Acc Precision Recall F1

Level 0 97.01 97.04 97.01 96.90
Level 1 97.06 97.08 96.06 97.06
Level 2 96.13 96.22 96.13 96.14
Level 3 95.46 95.79 95.46 95.53

The performance measures in Table 6 demonstrate a strong
correlation  between  the  evaluation  metrics.  At  Level  0
classification, the model achieved an accuracy of 97.01%, with
a  precision  of  97.04%,  recall  of  97.01%,  and  an  F1-score  of
96.90%.  Similarly,  at  Level  1  classification,  the  model
achieved an accuracy of 97.06%, with a precision of 97.08%,
recall of 96.06%, and an F1-score of 97.06%. Moving to Level
2  classification,  the  model  achieved  an  accuracy  of  96.13%,
with  a  precision  of  96.22%,  a  recall  of  96.13%,  and  an  F1-
score of 96.14%. Finally, at the highest level of classification
(Level 3), the model achieved an accuracy of 95.46%, with a
precision  of  95.79%,  recall  of  95.46%,  and  an  F1-score  of
95.53%.

These results suggest a consistent trend, indicating that as
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the  classification  becomes  more  specific  (higher  levels),  the
model encounters challenges in accurately identifying instances
belonging  to  more  specific  enzyme  classes.  This  leads  to  a
decrease in precision, recall, and subsequently affects the F1-
score, while the accuracy remains relatively high.

The  inclusion  of  cross-validation  allows  for  a  more
comprehensive evaluation of the model's performance, taking
into  account  variations  in  the  dataset  splits  and  providing  a
more robust assessment of its generalization capabilities. The
strong  correlation  observed  between  the  evaluation  metrics
further  validates  the  model's  performance  across  different
levels  of  classification.

The consistent trend observed in the performance measures
indicates  the  model's  ability  to  achieve  high  accuracy  at
broader  classification  levels.  However,  as  the  classification
becomes  more  specific,  the  model  encounters  challenges  in
accurately  identifying  instances  belonging  to  more  specific
enzyme  classes.  To  gain  further  insights  into  the  model's
limitations,  we  analyzed  the  misclassified  sequences,  which
shed light on potential factors contributing to these errors.

When  analyzing  the  misclassified  sequences,  several
factors  could have contributed to the incorrect  classification.
One  possible  reason  is  the  presence  of  ambiguous  or
overlapping features within the dataset. Enzymes with similar
characteristics  or  functional  properties  may  share  common
sequence  patterns,  making  it  challenging  to  distinguish
between  them  accurately.  Additionally,  the  model's
performance  may  be  influenced  by  the  quality  and
representativeness  of  the  training  data.  As  certain  enzyme
classes are underrepresented or inadequately represented in the
training  set,  the  model  may  struggle  to  learn  their
distinguishing  features  effectively.  Furthermore,  the
complexity of the classification task and the inherent variability
within  enzyme  families  can  also  pose  challenges.  Some
enzymes may exhibit diverse functional properties within the
same  class,  leading  to  misclassification  due  to  subtle
differences  in  their  sequences.

Addressing  these  challenges  could  involve  refining  the
feature  representation  used  by  the  model,  augmenting  the
training data with more diverse and representative samples, and
exploring  more  advanced  machine-learning  techniques  or
ensemble approaches. By investigating and understanding the
reasons  for  misclassifications,  we  can  enhance  the  accuracy
and robustness of the classification model in future iterations.

Overall,  the  results  obtained from the  evaluation  metrics
and the  analysis  of  misclassified  sequences  provide  valuable
insights into the performance and limitations of our EZYDeep
models.  These  findings  can  guide  further  research  efforts
toward  developing  more  accurate  and  reliable  enzyme
classification  models,  ultimately  contributing  to  a  deeper
understanding of enzyme functionality and facilitating various
biotechnological applications.

4. COMPARISON WITH PREVIOUS METHODS

In  our  study,  we  aimed  to  develop  a  tool  for  predicting
non-enzymes  and  enzyme  functions  based  solely  on  their
sequence  information.  To  validate  its  performance,  we

conducted a comparison with two existing tools, HECNet [24]
published  in  2020,  and  DEEPre  [20,28]  published  in  2018,
which  incorporate  additional  information,  such  as  protein
secondary structure, in addition to non-enzymes and enzymes
sequences for prediction.

To  evaluate  the  performance  of  these  tools,  we  used  the
HECNet July 2019 dataset, consisting of 12,889 enzymes and
30,374 non-enzymes instances. To compare the performance of
the  tools,  we  used  the  accuracy  and  F1  score  as  evaluation
measures. The results, shown in Table 8, demonstrate that our
tool outperformed both HECNet and DEEPre, achieving higher
accuracy and F1 score on the July 2019 dataset.

Table 8. Results of EZYDeep, HECNet, and DEEPre, using
the HECNet test dataset.

- EZYDeep HECNet DEEPre
- Acc F1 Acc F1 Acc F1

Level 0 98.56 98.25 94.0 94.1 95.9 95.9
Level 1 98.76 98.80 93.6 82.8 91.8 87.3
Level 2 98.23 94.59 93.5 70.6 88.8 63.4
Level 3 98.11 97.04 93.3 74.1 86.9 53.3

Note: The best values are shown in bold. Acc and F1 indicate the accuracy and F1

score, respectively.

This comparison (Table 8) highlights the strengths of our
tool,  which  is  able  to  effectively  classify  and  predict  non-
enzymes and enzyme functions based solely on their sequence
information. However, it also highlights some of the limitations
of our tool in comparison to previous methods that incorporate
additional information. In the future, it may be worth exploring
the  integration  of  complementary  data  sources,  to  further
improve  the  accuracy  of  the  prediction.

Overall, our results demonstrate the potential of using deep
learning  for  non-enzymes  and  enzyme  functions  prediction
based on sequence information, and suggest promising avenues
for future research in this area.

Moreover,  our  results  suggest  that  deep  learning
approaches could be used to predict enzyme functions even for
sequences that have not yet been experimentally characterized,
paving the way for more efficient enzyme annotation and drug
discovery.

CONCLUSION

In conclusion, this study presents a deep learning tool for
classifying enzymes based solely on sequence information. The
tool, designed using a sequential model with convolutional and
dense layers in TensorFlow, showed exceptional performance
when  evaluated  against  two  existing  methods,  HECNet  and
DEEPre,  on  the  HECNet  July  2019  dataset.  The  results
revealed that our tool outperformed both HECNet and DEEPre
in terms of accuracy and F1 score, underscoring the potential
of  using  sequence  information  alone  to  accurately  classify
enzymes. Notably, our tool achieved a very high accuracy rate
of over 95%, indicating its effectiveness in predicting enzyme
function.

Our  comparison  with  state-of-the-art  enzyme  function
prediction  tools  proved  that  our  tool  performs  significantly



A Deep Learning Tool for Enzyme Function Prediction The Open Bioinformatics Journal, 2023, Volume 16   7

better than other methods at the four levels of prediction. This
indicates that our tool has the potential to become a valuable
resource for predicting enzyme functions, potentially speeding
up the process of enzyme annotation.

This work demonstrates the capability of deep learning to
capture  functional  information  contained  within  enzyme
sequences  and  highlights  the  significance  of  sequence
information  in  predicting  enzyme  function.  While  our  tool
showed promising results, there is still room for improvement,
and  future  studies  may  consider  incorporating  additional
information to enhance the accuracy of enzyme classification.

In summary, this study has significant implications for the
field  of  enzyme  classification  and  for  the  advancement  of
biomedical research. The success of our tool and its availability
through  a  web  application  highlights  the  potential  of  using
machine  learning  techniques  to  aid  in  the  prediction  and
understanding of enzyme function and provides a foundation
for future research in this area.
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