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Abstract:

Background:

The psychological aspects of the brain in Alzheimer's disease (AD) are significantly affected. These alterations in brain anatomy take place due to
a variety of reasons, including the shrinking of grey and white matter in the brain. Magnetic resonance imaging (MRI) scans can be used to
measure it, and these scans offer a chance for early identification of AD utilizing classification methods, like convolutional neural network (CNN).
The majority of AD-related tests are now constrained by the test measures. It is, thus, crucial to find an affordable method for image categorization
using minimal information. Because of developments in machine learning and medical imaging, the field of computerized health care has evolved
rapidly. Recent developments in deep learning, in particular, herald a new era of clinical decision-making that is heavily reliant on multimedia
systems.

Methods:

In the proposed work, we have investigated various CNN-based transfer-learning strategies for predicting AD using MRI scans of the brain's
structural organization. According to an analysis of the data, the suggested model makes use of a number of sites related to Alzheimer's disease. In
order  to  interpret  structural  brain  pictures  in  both  2D  and  3D,  the  Alzheimer's  Disease  Neuroimaging  Initiative  (ADNI)  dataset  includes
straightforward CNN designs based on 2D and 3D convolutions.

Results:

According to these results, deep neural networks may be able to automatically learn which imaging biomarkers are indicative of Alzheimer's
disease and exploit them for precise early disease detection. The proposed techniques have been found to achieve an accuracy of 93.24%.

Conclusion:

This research aimed to classify Alzheimer's disease (AD) using transfer learning. We have used strict pre-processing steps on raw MRI data from
the ADNI dataset and used the AlexNet, i.e., Alzheimer's disease has been categorized using pre-processed data and the CNN classifier.
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1. INTRODUCTION

Like  many  significant  populations  around  the  world,
India's massive population, which is the second largest in the
world, is faced with the problem of aging. Alzheimer's disease
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is a dreadful degenerative condition that can strike anyone at
any time and continue to do so until it exacts its ultimate, fatal
toll. In India, more than 4 million people suffer from dementia
[1].  The  disease,  which  affects  at  least  6  million  people
globally, is a global health emergency that requires attention.
Alzheimer's disease is the main factor contributing to dementia.
Amnesia is one of the symptoms of AD, a chronic brain disease
that has a detrimental effect on a patient's quality of life. Other
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symptoms include difficulties in thinking, problem-solving, or
speaking.  A  chronic  neurological  condition  known  as  AD
usually begins gradually and progresses over time. Moreover,
the  cause  of  AD  is  not  well  known.  While  some  treatments
could momentarily lessen symptoms, none can stop or reverse
the disease's course. The majority of AD cases are still found in
advanced stages when treatment will only stall the progression
of cognitive impairment [2].

Enhancing  preventative  and  disease-modifying  drugs
requires  early  AD  detection.  Some  persons  may  develop
moderate  cognitive  impairment  (MCI)  during  the  onset  of
Alzheimer's disease, a period that occurs between the normal
loss  of  ageing  psychological  traits  and  the  additional  severe
deterioration of dementia. It suggests a modest cognitive and
memory deficiency,  but  it  has  little  bearing on how well  the
person performs on a daily basis and is infrequently observed
in  clinical  settings.  Recent  research  has  revealed  that  MCI
patients are more likely than normal individuals to develop the
AD  epidemic  [3].  The  support  vector  machine  is  most
frequently employed to diagnose AD. To allow clinical design
automation, SVM builds prognosticative classification models
using  high-dimensional,  instructional  imaging  alternatives.
However,  the  majority  of  feature  extraction  ideas  entail
arduous  manual  extraction  from  a  semi-automatic  brain
structure sketch that takes a long time and is computationally
challenging to perform.

In a variety of fields, such as speech recognition, computer
vision,  spoken  language  understanding,  and  more  recently,
medical analysis, deep learning algorithms, a distinct family of
machine  learning  approaches,  deliver  the  greatest  results
(Lecun et al., 2015). Because they can automatically determine
the optimal method to represent data from raw images without
the  need  for  feature  selection  beforehand,  deep  learning
algorithms differ from typical machine learning techniques in
that they make the process more unbiased and less subject to
prejudice [4 - 6]. Therefore, deep learning algorithms are better
at  spotting  both  minor  and  significant  anatomical  defects.
Recently,  deep  learning  was  successfully  used  on  the
Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to
distinguish  between AD patients  and healthy  controls.  It  has
only been demonstrated to predict AD development within 1.5
years in MCI patients using ADNI auxiliary MRI controls and
deep  learning  calculations  without  the  prior  assessment  of
elements  (considering  dim  issue  [GM]  volumes  as  a
contribution). For the diagnosis of multi-modal neuroimaging
knowledge  supported  by  AD/MCI,  recent  advances  in  MRI,
PET, and other machine-learning approaches have been made
[7 -  10].  Over the past  ten years,  photo categorization issues
have  been  rather  successfully  addressed  using  convolutional
neural networks. Despite the fact that a number of extremely
effective CNN image classifiers, such as AlexNet and ResNet,
are  built  to  support  vast  amounts  of  training  data,  this  is
unsuitable  for  medical  image  classification  due  to  a  lack  of
resources, especially for brain tomography.

Following is the organization of the remaining portions of
this paper; Section 2 presents the related work. The suggested
work  is  defined  in  Section  3  of  the  document.  The  result
analysis  and  discussion  are  presented  in  Section  4.  Future
works  are  included  in  Section  5.

2. RELATED WORK

MCI, which can progress into AD, is predicted by a model
created by Jin  Liu et  al.  and Wang [1].  They first  selected a
small  number  of  regions  using  AAL  (automated  anatomical
labelling), a program and digital atlas of the human brain with
a  labelled  volume  that  maps  the  brain  and  labels  its  many
regions.  Wang  presented  an  MCI  model  that  might  be
converted into AD [2]. Functional magnetic resonance imaging
(fMRI)  data  from the  resting  state  was  used  by  Ronghui  Ju,
Chenhui  Hu,  Pan-Zhou,  and  Quanzheng  Li  [3].  The  resting-
state functional magnetic resonance imaging (R-fMRI) data are
processed into a 90-130 matrix that keeps the key information,
with the brain being divided into 90 regions. The strength of
the  relationships  is  assessed  using  the  Pearson  correlation
coefficient  [4,  5].

A system based on a convolutional neural network (CNN)
was created by Gang Guo, Min Xiao, Min Du, and Xiaobo Qu
[6  -  9]  to  precisely  predict  the  mild  cognitive  impairment
(MCI) transformation into Alzheimer's disease (AD) using data
from MRI. When MRI images are processed, age correction is
the first thing used. Marcia Hon and Naimul Mefraz Khan [10]
attempted to address a number of fundamental issues, including
the requirement for a large number of training images and the
necessity to improve CNN's structure adequately. Prospective
MCI  decliners  can  be  distinguished  utilising  the  method
created by Babajani-Feremi et al. [11] for identifying AD using
structural and functional MRI integration. The classic statistical
analysis approach suggested by Fei Guo et al. [12] was built on
the multi-scale time series kernel-based learning model, which
was utilised to detect brain abnormalities. They discovered that
this  technique  is  useful  for  precisely  identifying  brain
disorders. Xia-an Bi et al. [13] identified HC, patients' aberrant
brain  areas,  and  AD  by  building  a  random  neural  network
cluster  based  on  fMRI  data.  Modupe  Odusami  et  al.  [14]
developed a model for early-stage identification of functional
deficits in MRI images using ResNet18. Impedovo et al. [15]
introduced  a  protocol.  This  technique  provided  a  “cognitive
model”  for  assessing  the  connection  between  cognitive
processes  and  handwriting  for  both  healthy  participants  and
patients  with  cognitive  impairment.  A  3D  CNN  architecture
was  used  by  Harshit  et  al.  [16,  17]  to  characterise  the  four
stages of AD [AD, early MCI (EMCI), late MCI (LMCI), and
normal  control  (NC)]  using  4D  FMRI  images.  Additionally,
Dan et al. [18] and Silvia et al. [17] suggested additional CNN
structures  for  3D  MRI-based  categorization  of  distinct  AD
stages.  Juan  Ruiz  et  al.  [19,  20]  used  the  3D densely  linked
convolutional  network  (3D DenseNet)  to  categorise  items  in
3D MRI  scans  in  four  different  ways.  According  to  a  recent
study by Nichols  et  al.  [21],  there  are  currently  57.4  million
dementia sufferers globally, and by the year 2050, there may be
as many as 152.8 million. Early diagnosis is crucial for treating
patients effectively and halting the condition's progression [22].
In  order  to  address  the  minor  sample  issue,  uncover
abnormality  in  the  brain,  and  identify  pathogenic  genes  in
multimodal data from the AD Neuroimaging Initiative (ADNI),
Bi et al. [23] proposed clustering evolutionary random forest
design. LeNet-5 is a model that Yang and Liu [24] recommend
adopting  for  classification  and  prediction.  PET  imaging  was
performed  on  350  ADNI  individuals  with  MCI.  The  model
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obtained  sensitivity  and  specificity  in  MCI  transformation
prediction  of  91.02  and  77.63%,  respectively  [17,  24].

A lot  of  infrastructure  that  can  enable  AD detection  and
medical  picture  categorization  has  recently  been  developed.
However,  the  literature  has  not  adequately  addressed  these
subjects.  Using  other  cutting-edge  methods  covered  in  the
section  of  ‘Related  Work’,  it  is  possible  to  organise  the
uniqueness  of  this  study  as  follows:

•  The  early  diagnosis  of  Alzheimer's  disease  and  the
classification of medical images are performed using an end-to-
end framework. The recommended method handles 2D and 3D
structural brain MRI and is based on basic CNN architecture.
The underpinning for these designs is convolution in 2D and
3D.

•  Four  AD  stages  have  been  investigated  utilising  three
multi-class  and  twelve  binary  medical  picture  classification
systems.

•  Due  to  the  COVID-19  outbreak,  it  was  difficult  for
individuals  to  routinely  visit  hospitals  in  order  to  prevent
gatherings  and  infections,  while  the  experimental  results
demonstrated  high  performance  according  to  performance
indicators.

3. METHOD

3.1. Architecture

The basic  architecture  of  the  proposed work is  shown in
Fig. (1). The proposed work consisted of three models. Firstly,
the  pre-trained  AlexNet  model  was  trained  on  MRI  scans  of
different  diseases  related  to  the  brain,  like  dementia,  tumor,
encephalitis, Parkinson’s, Alzheimer’s, etc. This was done due
to the lack of training datasets available to train our machine.
In  the  second  phase,  the  features  of  the  existing  pre-trained
model were transferred to a new AlexNet model. In the third
phase, images were taken from the ADNI dataset to train and
fine-tune our model, which has been designed specifically for
Alzheimer’s  disease  prediction.  The  process  is  described  in

detail in the latter part of the paper.

3.2. Data Acquisition

In  this  study,  the  convolutional  neural  network  (CNN)
classifier  has  been  built  using  the  MRI  images  from  the
Alzheimer's  Disease  Neuroimaging  Initiative  (ADNI)  [1].
ADNI is actually an ongoing study that was started in 2004. It
aims  at  comprehending  the  diagnostic  and  prognosticative
terms  of  Alzheimer's  disease-specific  biomarkers.  The
information enclosed an overall 715 structured MRI scans out
of both ADNI1 as well as ADNI2 phases, having 320 AD cases
and 395 normal controls. Then, the data were acquired for the
dataset  with  the  previously  mentioned  description  in  the
DICOM  MRI  format.  For  further  investigation  of  the
information,  it  was  required  to  convert  the  data  into  NIfTI
format so that we can further work on it and provide it to the
accessible neuroimaging toolbox, where further preprocessing
will be applied to the data.
3.3. Data Preprocessing

The  raw  image  data  require  preprocessing,  and  for  that,
statistical parametric mapping (SPM) is used. SPM is basically
a  statistical  technique  utilized  for  evaluating  cognitive
activities  documented  throughout  neuroimaging  tests.  The
statistical parametric mapping software system is additionally
used  for  spatial  standardization,  smoothing,  and  statistical
analyses  of  the  parametric  images.  The  original  magnetic
resonance  images  were  initially  stripped  of  the  skull  and
segmented  using  the  segmentation  algorithm  based  on  the
probability  mapping  and  then  standardized  using  affine
registration on the International Brain Mapping Template. The
setup comprised bias, noise, and overall intensity calibration.
The traditional way of preprocessing would have created image
records having 122X145X122 standardized size. The removal
of the skull and normalization offered equivalence within the
images by simply adjusting the brain's initial image into normal
image space and positioning the same brain substructures with
the image's coordinates alongside similar images of different
participants. Fig. (2) presents the preprocessing of MRI skull
images.

Fig. (1). System architecture.
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Fig. (2). Image pre-processing; (a) skull stripping, (b) template matching, (c) white matter, grey matter, CSF extraction and selection.

4. RESULTS AND DISCUSSION

A CNN (Convnet)  is  a  particular  kind of  neural  network
made up of input, several hidden layers, and output layers. The
most crucial layer for feature extraction is the hidden layer. It
comprises  a  convolution  layer  (detects  pattern),  a  rectified
linear  unit  (ReLU)  (used  to  get  rectified  feature  map),  a
pooling  layer  (uses  filters  to  detect  edges,  etc.),  and  a  fully
connected layer. Another main advantage of ConvNet is that it
assumes  that  the  input  data  is  image  only,  which  helps  to
embed certain properties into it.

4.1. AlexNet

In this research, AlexNet architecture has been used as a
CNN  classifier.  AlexNet  is  a  popular  and  precise  CNN
architecture  that  has  made  its  name in  machine  learning  and
AI, notably in image processing. The basic advantage of this
architecture  is  that  it  has  a  pooling  layer  after  every
convolutional layer, and we can modify the convolution layer
as it does not have a fixed size, which gives us more control
over  the  CNN.  It  consists  of  11X11,  5X5,  and  3X3
convolutions, max pooling, dropout, data increase, activation
of  ReLU,  and  dynamic  SGD.  After  each  convolutional  and
fully connected layer, ReLU activations are attached.

We  looked  at  two  different  architectures,  AlexNet  and
GoogleNet, because they have been found to be successful for
similar issues [10, 11]. AlexNet was at par with GoogleNet. In
both of the trained architectures, 25000 random images of the

test  dataset  were  used  to  compare  the  accuracy  of  the  two
architectures. Then the confusion matrices and the accuracy for
each test dataset were calculated for both the architectures.

AlexNet's  input  is  a  224x224x3  RGB  image  that  passes
through  the  first  convolution  layer  with  96  feature  maps  or
filters with a size of 11X11 and a 4 stride. The image is now
55x55x96  in  size.  The  AlexNet  then  performs  a  maximum
layer of pooling or sub-sampling using a 3 subterranean filter
and  a  2-step  process.  The  final  image  will  be  smaller,
measuring 27x27x96 in dimensions. The primary variation in
our AlexNet versus the standard AlexNet comes in the second
layer. The second convolution layer receives data coming from
the first convolution layer, and then screens it with 256 feature
maps  of  dimension  5X5X64.  Subsequently,  the  next
convolution  layer  is  connected  to  the  data  coming  from  the
second  convolution  layer  by  384  feature  maps  of  dimension
3X33X192.  The  next  layer  of  convolution  has  384  feature
maps of dimension 3X3X84, and the fifth layer of convolution
has 256 feature maps of dimension 3X3X56, as shown in Fig.
(3).  These  are  the  ideal  dimensions  for  feature  extraction
purposes in these types of images to train them properly. In the
sixth  layer,  the  output  is  flattened  through  a  fully  connected
layer  in  order  to  accommodate  all  the  data  coming  from
AlexNet  architecture;  in  our  system,  we  have  done  some
minute  adjustments,  i.e.,  a  fully  connected  layer  is  included
with  985  neurons  in  the  base  model  with  a  softmax  layer  to
deal with negative loss.

Fig. (3). AlexNet architecture.
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Fig. (4). Different activation functions.

4.2. Activation Function

An artificial neuron's activation function is the part of the
neuron  that  produces  an  output  in  response  to  inputs.  In
AlexNet,  ReLU  is  used  as  an  activation  function  instead  of
Tanh and sigmoid. The ReLU activation function is used to add
non–linearity  and  different  activation  functions,  as  shown in
Fig. (4).

The hyperbolic tangent function is defined in Eq. (1):

(1)

The sigmoid function is defined in Eq. (2):

(2)

These functions are slow to train. Because the ReLU does
not activate all the neurons at once, it  has an advantage over
other  activation  mechanisms.  It  means  that  in  the  ReLU
operation,  if  the  input  is  negative,  it  converts  it  to  zero  and,
therefore,  the  neuron  does  not  get  activated.  Rectified  linear
unit (ReLU) is faster to train, and can be done using Eq. (3):

(3)

It  enhances the training speed at  the same accuracy by 6
times.

4.3. Fine-tuning

The optimizer we tended to use was the Adam optimizer;
one of the algorithms that work well across a wide variety of
deep learning architectures is the adaptive moment estimation
or  Adam optimization  algorithm.  Adaptive  moment  estimate
(Adam)  [14]  calculates  for  each  parameter  the  adaptive
learning  rates.  It  is  also  referred  to  as  a  solver.  The  falling
averages of the past and past square gradients, mt and vt, can
be calculated using Eqs. (4 and 5):

(4)

(5)

The method's names, mt and vt, represent estimates of the

gradients'  first  moment  (the  mean)  and  second  moment  (the
uncentered  variance),  respectively.  They  balance  out  these
biases by computing bias-correction, first, and second moment
estimates using Eqs. (6 and 7):

(6)

(7)

We used these to update the parameters in order to give the
update rule for Adam, as presented in Eq. (8):

(8)

4.4. Fine-tuning of the Linear Fully-connected Layer

As we know that the network's end layers tend to be much
more precise to the class features in the initial dataset and that
the pretrained AlexNet dataset varies from the initial dataset, to
tackle  this  situation,  we  have  to  replace  the  last  classifying
layer  and  also  calibrate  all  the  classifiers.  To  solve  this
problem, first, the fully connected layer is back propagated and
its weights are kept in the earlier convolution layer.

The  final  layer  of  convolution  and  the  classifiers
formulated are calibrated on the observation that the network’s
end layer contains more precise characteristics for the dataset.
We, however,  cannot discover that  only calibrating it  for the
fully connected layer will solve all the problems. Subsequently,
we have carried out some trials to adjust the final output layer
by  the  use  of  the  last  convolution  layer.  Mainly  because
contorting  the  initial  parameters  can  be  disastrous  for  the
network,  in our research,  the learning rate  or  we can say the
weight-controlling parameter that we have used was 1e−4; the
learning  rate  was  increased  for  enhanced  learning  and  fine-
tuning,  which  showed  better  performance  than  the  standard
learning rate.

In  our  experiment,  with  learning  rate  1e-3,  the  max
validation  accuracy  achieved  was  80% and  the  max  training
accuracy  was  85%,  as  shown  in  Fig.  (5a),  and  when  we
increased the learning rate to 1e-4, we achieved max validation
accuracy  as  82%  with  corresponding  training  accuracy  as
96.5%,  as  shown  in  Fig.  (5b).

𝑓(𝑥) = tanh(𝑥) = 2 ∗
1

1+𝑒−2𝑥 − 1          

𝑓(𝑥) =
1

1+𝑒−𝑥

𝑓(𝑥) = max(0, 𝑥)    

mt = β1mt − 1 + (1 − β1)gt  

vt = β2vt − 1 + (1 − β2)g2t  

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡   

�̂�𝑡 =
𝑣𝑡

1−𝛽1
𝑡  

θt + 1 = θt −
𝜂

√�̂�+𝜀
+ m̂t  
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Fig. (5). Analysis of learning rate; (a) with learning rate 1e-3, (b) with learning rate 1e-4.

Additionally,  as  mentioned  earlier,  the  improper
initialization  of  the  network  parameter  could  impact  the
performance  of  the  network.  But  to  set  the  initial  parameter
uniformly, there are various algorithms available, and we have
used  the  Xavier  initialization  algorithm  based  on  some
research. Support vector machine (SVM) was used for the final
classification and AlexNet as an extractor.

4.5. Transfer Learning

A small dataset limits the use of a complex neural network
as it would overfit the training data, while transferring learning
shows good performance by using a pre-trained network (e.g.,
AlexNet)  to  extract  features  or  fine-tune  parameters.  After
finishing  AlexNet's  higher  layer,  we  achieved  86  percent
accuracy in the AD/normal classification. We ensured that the
weights  were  not  too  small  as  well  as  not  too  large  to
accurately propagate the signals. Initialization is important for
a  small  network  with  a  limited  number  of  layers;  thus,  a
significant variance can be there while initializing the weights
for distribution having zero mean and variance using Eq. (9):

(9)

Where, nin and nout are, respectively, the numbers of inputs
and outputs in the layer.

4.6. Evaluation Metrics

For  the  evaluation  metrics,  the  F1  score,  accuracy,
precision, recall, and false negative scores are used, in addition
to the confusion matrix. True positive and true negative values

are  stored  in  a  form  that  resembles  a  table  in  a  confusion
matrix.  There  are  four  parts  to  it;  in  the  first  scenario,  also
known  as  true  positive  (TP),  the  data  are  verified  to  be
accurate.  The  second  type  is  a  false  positive  (FP),  which
involves  the  values  that  have  been  found  to  be  false  but  are
actually true. False negatives (FN) constitute the third category,
in which the value actually being positive is found. The fourth
one,  true  negative  (TN),  genuinely  determines  the  negative
value.

Eq.  (10)  defines accuracy as  the proportion of  cases that
meet the criteria for the dataset divided by the total number of
occurrences.

(10)

Precision is defined as the average likelihood of obtaining
pertinent data in Eq. (11).

(11)

Recall is defined as the typical condition likelihood of full
recovery and is represented by Eq. (12).

(12)

After  determining  the  precision  and  recall  of  the
classification  problem,  the  F-measure  was  calculated  by
combining  the  two  scores.  The  traditional  F-measure
computation  is  shown  in  Eq.  (13).

(13)

To  perform classification  using  SVM,  we  performed  the

𝑉𝑎𝑟(𝑊) =
2

𝑛𝑖𝑛+𝑛0∪𝑡
  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

(a) 

(b)

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = (2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 
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experiment using different layers of output features. Previous
studies [11 - 13] have suggested that generic characteristics are
usually extracted from lower layers. Our results have indicated
that these generic features are not good for SVM classification
(the accuracy is 55%), while the features in the higher layers
contain more specific characters that can be distinguished by a
linear  SVM  (the  accuracy  is  85%).  Table  1  presents
performance  parameter  values  for  different  datasets.  Table  2
compares  the  suggested  method  with  current  methods  in  a
comparative  analysis.  Our  method  has  yielded  superior
outcomes to those already achieved. The effectiveness of the
proposed model has also been compared to current models, as
shown in Table 2, and the suggested model has outperformed

the  existing  models  in  terms  of  accuracy.  Table  2  illustrates
how  our  model's  accuracy  compares  to  that  of  the  models
proposed earlier [25 - 28] at 82.22%, 81%, 74% and 86.47%,
respectively. Fig. (6) displays the graphical comparison of the
proposed method with state-of-the-art methods.

We  have  presented  two  basic  CNN  architecture  models,
2D-CNN and 3D-CNN, for the application of multi-class and
binary medical image classification algorithms. These models
have  been  assessed  based  on  the  accuracy  measure  by
contrasting their performance to other cutting-edge models, as
indicated in Table 1, and a comparison of the proposed work
with state-of-the-art methods is tabulated in Table 2.

Accuracy
100
90
80
70
60
50
40
30
20
10
0

DNN
[26]

RNN
[27]

CNN+RNN
[28]

AE+CNN
[29]

2D/3D+CNN
Proposed

Accuracy

Fig. (6). Visual comparison of the suggested approach to the state-of-the-art methods.

Table 1. Performance parameters for different datasets.

Datasets
2D CNN 3D CNN

Precision Recall F1 score Precision Recall F1 score
AD 00.95 00.92 00.94 00.97 00.93 00.95

ADNI 00.94 00.91 00.92 00.95 00.91 00.93
NC 00.97 00.93 00.96 00.93 00.95 00.94

Table 2. The proposed method in comparison to the state-of-the-art methods.

Methods Datasets Techniques Performance

[25]

Gene
expression and

DNA
methylation

profiles

DNN Accuracy (NC/AD): 82.3%

[26]
Demographic
information,

neuro-imaging
RNN Accuracy (CN/MCI/AD): 81%

[27] MRI CNN + RNN
Accuracy (NC/AD): 91.0%
Accuracy (NC/MCI): 75.8%

Accuracy (sMCI/pMCI): 74.6%

[28] MRI AE+ CNN Accuracy (AD/NC):
86.60%

Proposed ADNI 2D/3D CNN Accuracy: 93.24%
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Fig. (7). The confusion metric and normalized confusion metric for the proposed models.

The number of patients diagnosed with NC and AD and the
number of patients diagnosed with MCI are all depicted in the
confusion matrix. It shows the number of patients diagnosed as
MCI as well as others. The model has also been accompanied
by  the  numerical,  reciprocal,  and  normalized  confusion
matrices,  as  depicted  in  Fig.  (7).

CONCLUSION

The proposed work aimed to classify Alzheimer's disease
(AD)  using  transfer  learning  methods.  We  used  strict  pre-
processing steps on raw MRI data from the ADNI dataset and
used the AlexNet, i.e., CNN classifier on pre-processed data to
classify Alzheimer’s disease. During classification, features of
low to high levels were learned. We increased the learning rate
to  enhance  the  prediction  of  our  model.  For  future
classification  of  neural  networks,  pre-trained  convolution
layers  capable  of  extracting  generic  image  features,  such  as
pre-trained AlexNet convolution layers on CNN, could provide
good  input  features.  These  findings  suggest  that  deep  neural
networks may be capable of autonomously learning as to which
imaging indicators are suggestive of Alzheimer's disease and
using them for accurate early disease detection. The proposed
techniques have been found to possess a 93.24% accuracy rate.
Deep  learning-based  AD research  is  still  under  development
for  improved  performance  and  transparency.  Resources  for
heterogeneous  neuroimaging  data  and  computation  are
expanding quickly. Despite the need for approaches to combine
various forms of data in a deep learning network, research on
the  diagnostic  categorization  of  AD  using  deep  learning  is
moving away from hybrid methods and towards a model that
uses just deep learning algorithms.
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