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Abstract:
Introduction:  This  article  serves  as  a  background  to  an  emerging  field  and  aims  to  investigate  the  use  of
Electroencephalography signals in detecting dementia. It offers a promising approach for individuals with dementia,
as electroencephalography provides a non-invasive measure of brain activity during language tasks.

Methods:  The  methodological  core  of  this  study  involves  implementing  various  electroencephalography  feature
extraction and selection techniques, along with the use of machine learning algorithms for analyzing the signals to
identify patterns indicative of dementia. In terms of results, our analysis showed that most individuals likely to have
dementia are in the 60-69 age bracket, with a higher incidence in females.

Result: Notably, the K-means algorithm achieved the highest Silhouette Score at approximately 0.295. Additionally,
Decision Tree and Random Forest models achieved the best accuracy at 95.83%, slightly outperforming the support
vector machines and Logistic Regression models, which also showed good accuracy at 91.67%.

Conclusion: The conclusion drawn from this article is that electroencephalography signals, analyzed with machine
learning  algorithms,  can  be  effectively  used  to  detect  dementia,  with  Decision  Tree  and  Random  Forest  models
showing promise for future non-invasive diagnostic tools.
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1. INTRODUCTION
A  collection  of  symptoms  that  significantly  impair

thinking, memory, and social skills to the point that they
interfere  with  day-to-day  functioning  is  referred  to  as
dementia.  It  is  most  typically  caused  by  Alzheimer's
disease, which affects and eventually destroys brain cells
[1]. It is frequently, but not always, a hallmark of aging.
Infections,  head  trauma,  strokes,  and  other  illnesses,
including  Parkinson's  or  Huntington's  disease,  can  also
result  in  dementia  symptoms  [2].  Dementia  can  cause

mood swings, personality changes, disorientation, memory
loss, and communication difficulties. It is anticipated that
the  number  of  dementia  cases  would  rise  sharply  in  the
upcoming  years,  with  152  million  people  worldwide
predicted to have dementia by 2050 [3]. Therefore, there
is  a  pressing  need  to  develop  effective  methods  for  the
early detection and treatment of dementia.

The  term  “EEG”  (electroencephalography)  describes
the methods and software used to examine and decipher
the  electrical  signals  that  the  brain  produces  and
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processes,  as  captured  by  EEG  sensors.  The  raw  EEG
signals  may  be  processed  to  obtain  useful  properties,
including  frequency,  amplitude,  and  power  [4].  These
signals  provide  information  about  brain  activity.  The
analysis  of  EEG  signals  can  yield  important  information
about how the brain works and aid in the identification of
diseases,  including  dementia,  epilepsy,  sleep  problems,
and  brain  traumas.

Analyzing  and  interpreting  EEG  data  using  machine
learning  yields  promising  results  [5].  Machine  learning
algorithms  may  be  trained  to  identify  patterns  in  EEG
data, which represent the electrical activity of the brain, in
order  to  monitor  brain  function,  diagnose  neurological
disorders,  and  make  predictions.

EEG uses a range of machine learning techniques [6],
such  as  deep  learning  algorithms  like  Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs),  clustering  algorithms  like  k-means  and
hierarchical clustering, and classification algorithms like
support vector machines (SVMs) and decision trees. Large
datasets  of  EEG  signals  may  be  used  to  train  these
algorithms to identify patterns that correspond to various
brain conditions or states.

Brain-computer  connections,  seizure  detection,  and
sleep stage classification are just a few of the many uses
for  EEG  machine  learning  [7].  Because  it  offers  a  non-
invasive and effective method of analyzing vast volumes of
EEG data, it has the potential to completely change how
we diagnose, treat, and monitor neurological diseases as
well as how we monitor brain activity.
1.1. Types of Dementia

A range of cognitive illnesses that are characterized by
a loss in thinking, reasoning, and memory that interferes
with day-to-day functioning are collectively referred to as
dementia.  Brain  cell  damage  that  impairs  the  brain's
capacity  to  communicate  and  function  normally  is  the
cause  of  dementia.  Depending  on  the  form  of  dementia,
many reasons may apply. These are a few prevalent forms
of dementia, along with their causes:

i. Alzheimer's Disease: It is estimated that between 60
and  80  percent  of  dementia  cases  are  caused  by
Alzheimer's  disease.  It  is  typified  by  the  buildup  of
aberrant protein deposits in the brain, such as tau tangles
and amyloid  plaques,  which  eventually  cause  the  loss  of
brain  tissue  and  function  [8].  Alzheimer's  disease
symptoms  include  confusion  about  time  and  location,
memory  loss,  and  difficulty  solving  issues.  Although  the
precise  origin  of  Alzheimer's  disease  is  unknown,  age-
related  changes  in  the  brain,  genetics,  and  lifestyle
choices  are  thought  to  be  involved.

Current tools to diagnose Alzheimer's dementia using
AI  algorithms  can  analyze  brain  MRI  or  PET  scans  to
detect  specific  patterns  and  biomarkers.  For  instance,
CNNs can identify abnormal brain structures indicative of
Alzheimer's disease or Lewy body dementia.

ii. Vascular Dementia: The second most prevalent kind
of dementia is vascular dementia, which is brought on by
decreased blood supply to the brain, which damages the

parts  of  the  brain  involved  in  cognitive  processes.
Decision-making  issues,  poor  judgment,  and  diminished
decision-making  capacity  are  among  the  signs  and
symptoms  of  vascular  dementia  [9].

ML models that can analyze cognitive assessment data,
such  as  neuropsychological  tests,  to  find  patterns  of
cognitive  deterioration  are  now used  as  diagnostic  tools
for vascular dementia. For example, temporal changes can
be  detected  by  LSTM  networks  through  analysis  of
longitudinal  cognitive  data.

iii.  Lewy Body  Dementia  (LBD):  The  brain's  aberrant
protein  deposits  known  as  Lewy  bodies  are  what  define
Lewy  body  dementia.  These  deposits  cause  symptoms
related  to  cognition  and  motor  function  in  the  brain.
Movement  issues,  vivid  nightmares,  and  visual
hallucinations  are  signs  of  Lewy  Body  Dementia  [10].

AI  may  be  used  to  develop  individualized  treatment
plans  and  assist  in  the  early  diagnosis  of  Lewy  Body
Dementia  by  identifying  possible  biomarkers,  such  as
genetic markers or protein levels in blood or cerebrospinal
fluid, that may indicate a particular kind of dementia.

iv.  Frontotemporal  Dementia  (FTD):  The  gradual
degradation  of  nerve  cells  in  the  brain's  frontal  and
temporal  lobes  is  the  cause  of  frontotemporal  dementia.
Frontotemporal  dementia  is  a  condition  that  primarily
affects  younger  people  and impairs  behavior,  demeanor,
and language difficulties [11].

NLP  techniques  are  used  to  examine  voice  data's
linguistic content and identify changes in language usage
and  grammar  linked  to  frontotemporal  dementia  (FTD).
This  is  one  of  the  current  methods  for  diagnosing
frontotemporal  dementia.  Multimodal  fusion  approaches
may be used to combine speech and EEG data, improving
the diagnostic accuracy of FTD detection models.

This  manuscript  is  restricted  to  Alzheimer's  disease.
Effective  management  and  treatment  of  dementia  need
early diagnosis and proper medical attention.
1.2. Aim of The Study

This  research  proposes  a  methodological  solution
(PMS)  that  involves  advanced  feature  extraction
techniques  and  addresses  the  following  key  operational
research questions (ORQ) given below:

1.  Put  into  practice  and  validate  a  set  of  machine
learning  models  to  improve  the  precision  of  EEG-based
dementia diagnosis greatly.

2. The quality of the EEG data is significantly improved
for  dementia  diagnosis  by  evaluated  preprocessing
procedures,  including  filtering,  denoising,  and  artifact
removal.

3.  Examined  several  machine  learning  techniques,
including  DT,  SVM,  RF,  and  K  Means,  and  determined
which patterns and clusters in the EEG data were the most
efficient and distinctive.

4.  Machine  learning  models  for  dementia  detection
that have been examined work well for people of different
ages  and  genders,  laying  the  groundwork  for  more
individualized  diagnosis.
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This research study is structured as follows. As stated
in  Section  1,  the  introduction  is  covered  in  Section  2,
along  with  associated  work,  methodology,  data
preprocessing,  and  feature  engineering  in  Section  3,
results  and  discussion  in  Section  4,  and  conclusion  and
prospects in Section 5.
2. RELATED WORK

The non-invasive technique of electroencephalography
(EEG) has been used to identify anomalies in brain activity
linked  to  dementia.  The  use  of  EEG  to  assist  in  the
diagnosis of dementia, including Alzheimer's disease (AD)
and  other  types  of  dementia,  has  been  investigated  in  a
number  of  studies.  The  earliest  and  most  important
investigation  using  EEG  as  a  tool  for  early  AD
identification  was  conducted  by  Jelles  et  al.  in  [12].  The
results  of  the  study  showed that  EEG spectrum analysis
could distinguish between individuals with dementia and
healthy  controls,  indicating  that  EEG may  be  a  valuable
diagnostic tool for dementia early detection. Another study
conducted in [13] by Jeong et al.  investigated the use of
EEG to differentiate between AD, vascular dementia, and
dementia with Lewy bodies. According to the study, EEG
has a high degree of accuracy in differentiating between
these dementia forms, indicating that it may be a valuable
tool for dementia differential diagnosis. Later in the year,
Babiloni et al. [14] also provided an overview of the state
of  the  research  on  EEG  as  a  dementia  diagnostic  tool.
According  to  the  research,  EEG  abnormalities  were
consistently seen in dementia patients,  and the test may
distinguish between various forms of dementia. The study
did  point  out  that  further  research  is  required  to
determine  the  clinical  relevance  of  EEG  for  dementia
diagnosis,  as  it  has  limits  in  terms  of  sensitivity  and
specificity.

Subsequent research has examined the processing of
EEG waves using machine learning approaches to identify
dementia.  EEG  data  have  been  used  to  train  machine
learning  algorithms  for  a  range  of  tasks,  such  as  the
categorization of  EEG patterns,  the prediction of  mental
states, and the identification of neurological illnesses. EEG
data, for instance, have been used to detect neurological
conditions  like  epilepsy  and  schizophrenia,  predict
cognitive states like attention and memory, and categorize
various sleep stages [15].

Support vector machines (SVMs) are one of the most
used machine learning techniques for EEG analysis. It has
been  demonstrated  that  SVMs  are  useful  for  identifying
neurological  illnesses  and  categorizing  EEG  patterns.
SVMs, for instance, were employed to categorize EEG data
in  research  by  Zhang  et  al.  [16],  with  a  sensitivity  of
86.67% and specificity of 91.11% [17]. Decision trees are
another  well-liked  machine  learning  approach  for  EEG
analysis.  These  algorithms  have  been  used  to  identify
different  mental  states  and  evaluate  EEG  data.  For
instance, decision trees were utilized in research by Feng
et  al.  in  [18]  to  identify  EEG  signals,  and  the  results
showed a sensitivity of 85.71% and specificity of 89.47%
[18].

Convolutional neural networks (CNNs) and recurrent
neural  networks  (RNNs),  two  deep  learning  techniques,
have been used on EEG data more recently.  It  has  been
demonstrated that deep learning algorithms are useful for
identifying  different  mental  states  and  neurological
conditions as  well  as  for  categorizing EEG patterns.  For
instance, a deep neural network was employed in a study
by Liu et al. [19] to classify EEG data with an accuracy of
87.5%.

An investigation on the use of EEG power spectra as a
possible biomarker for Alzheimer's disease diagnosis was
carried  out  by  Lopez-Sanz  et  al.  in  [20].  They  gathered
EEG  data  from  both  healthy  controls  and  Alzheimer's
patients,  and  they  examined  the  power  spectra  across
several  frequency  ranges.  The  power  spectra  of  the  two
groups differed significantly, according to their findings,
with  Alzheimer's  patients  showing  lower  power  in
particular frequency bands. They came to the conclusion
that EEG power spectra could be a helpful biomarker for
early detection of Alzheimer's disease.

In order to determine if electroencephalography (EEG)
may be utilized as a biomarker for cognitive impairment in
this group, Gómez et al. evaluated the use of EEG in older
persons in research published in [19]. They examined EEG
signals from an elderly population, comprising those with
slight  cognitive  impairment  and  those  without  it.  Their
total accuracy using SVM and four EEG frequency bands
was 74.2%.

In  summary,  the  crucial  preprocessing  step  of
removing artifacts from the data has not received enough
attention  in  the  present  study  on  dementia  diagnosis
utilizing  EEG  signals  and  machine  learning.  This
discrepancy may cause errors and lower the accuracy of
detecting  techniques.  For  the  accurate  diagnosis  of
dementia,  the  quality  of  the  EEG  data  is  essential.  One
significant  gap  that  impacts  the  efficacy  of  machine
learning algorithms in accurately diagnosing dementia is
the absence of thorough data preparation, particularly the
removal of artifacts and filtering in previous studies.
3. METHODS

The suggested research pipeline is depicted in Fig. (1)
and consists  of  data  preprocessing,  feature  engineering,
and  machine  learning.  These  steps  must  be  carefully
planned  and  executed  to  guarantee  that  the  dataset  is
balanced  and  does  not  overrepresent  any  one  form  of
dementia  or  severity  level.  The  objective  is  to  create  a
clean, accurate, and representative dataset of the various
forms  of  dementia  so  that  machine  learning  algorithms
can offer trustworthy, objective diagnoses and insights. By
using EEG signals, our suggested technique improves the
accuracy and reliability of dementia detection.
3.1. Data Collection

In  this  work,  we  have  employed  the  Open-Neuro
dataset,  which  is  accessible  to  the  public  [21].  The  EEG
data from 88 patients in total are included in this dataset;
44  of  the  subjects  are  male,  and  44  are  females,  with  a
mean age of 66.52 for men and 65.82 for women [21].
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Fig. (1). Proposed methodology.

An  electroencephalograph  [22]  is  one  piece  of
specialist  equipment  that  may  be  used  to  capture  EEG
data. Afterwards, the signals are processed and analyzed
using  a  variety  of  software  tools  in  order  to  identify
patterns that can be suggestive of dementia or cognitive
decline. In certain situations, the patient may be asked to
sit  quietly  with  their  eyes  closed  or  open  while  in  the
resting state, or the EEG data may be obtained while the
patient is doing a particular cognitive activity, such as an
attention or memory test. To get precise and trustworthy
EEG  data,  it's  critical  to  make  sure  the  patient  feels  at
ease and content during the recording. The International
10-20  System  Electrode  Placement  Method  is  the
approach that is most frequently used to get EEG data.

One  popular  technique  for  placing  electrodes  on  the
scalp  during  electroencephalography  (EEG)  recording  is
the  international  10-20  system.  It  is  a  systematic
procedure that guarantees uniform and precise electrode

insertion  in  various  people,  which  is  essential  for
analyzing  and  interpreting  EEG  signals.

The  term “10-20”  describes  the  separations  between
neighboring  electrode  placements,  which  are  10%  and
20%,  respectively,  of  the  whole  front-back  and  right-left
lengths of the scalp. Based on the structure of the brain,
this approach separates the scalp into several areas, and
each  electrode  implantation  is  labeled  with  a  letter  and
number to designate its position [22].

Fig.  (2)  [22]  illustrates  the  various  locations  of  the
brain's lobes. The distance from the midline is indicated by
the  number  (even  numbers  for  the  right  side  and  odd
numbers  for  the  left),  which  also  tells  which  lobe  of  the
brain  the  area  is  closest  to.  The  sculp  data  has  been
specified using the electrode montage selector. The letters
Frontal  (F),  Central  (C),  Parietal  (P),  Occipital  (O),  and
Temporal (T) represent the five primary sculps [22].

Fig (2). International 10-20 system electrode placement method [22].
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In  addition,  drift  or  electrode  offset  has  been
eliminated using an LPF with a 30-Hz cutoff and an HPF
with a 1-Hz cutoff. These filters have a 60-120 second time
frame  and  are  fed  into  a  writing  unit  oscillograph  to
produce  EEG  signals  that  are  sent  to  a  PC.

3.2. Data Preprocessing
The collected EEG data is preprocessed using MATLAB

SIMULINK [23] to reduce noise filtering and artifacts from
EEG  signals  through  a  variety  of  techniques,  such  as
filtering,  artifact  removal,  and  denoising  algorithms
explained  below:

3.2.1. Noise Filtering
EEG signals may be cleaned up from undesired noise

by using a filtering approach [24].  To exclude particular
noise frequencies from a signal, one may design and apply
a variety of filters in MATLAB SIMULINK, including band-
pass, low-pass, high-pass, and notch filters. We have used
band-pass filters for this activity so that we only keep the
frequencies  that  are  relevant  (usually  between 1 and 40
Hz for most cognitive activities). As shown in Fig. (3), This
will  help  eliminate  any  high-frequency  noise  as  well  as
very  low-frequency  drifts  to  avoid  distorting  the  time
relationships  within  the  signal.  This  can  be  particularly
important in cognitive tasks where timing information is
crucial. The criteria for this bandpass filter design were to
provide  a  smooth  response  in  the  passband  and  a
relatively  flat  frequency  response,  which  minimizes
distortion  because  it  has  no  ripple  in  the  passband  and
doesn't attenuate as rapidly as other types.

3.2.2. Artifact Removal
Many causes, including electrode movement, muscular

activity, and eye movement, can result in artifacts in EEG
signals  [25].  To  eliminate  artifacts  from  the  signal,
MATLAB SIMULINK offers a number of artifact reduction
algorithms. Fig. (3) illustrates this, particularly in frontal
channels like Fp1 and Fp2, which are frequently impacted
by artifacts connected to the eyes.

MATLAB  SIMULINK  offers  a  variety  of  denoising
methods  that  may  be  used  to  eliminate  noise  from  EEG
recordings.  The  wavelet  denoising  technique  has  been
utilised to divide the signal into distinct frequency bands
and eliminate noise from each band independently [26].

In order to eliminate certain frequency noise, we have
also employed notch filters for this objective. Notch filters
are made to eliminate or greatly reduce frequencies within
a  very  precise  range.  This  is  perfect  for  removing  some
kinds  of  interference,  such  as  powerline  noise,  which
frequently causes issues with EEG recordings. Depending
on the area, powerline noise normally occurs at 50 Hz or
60  Hz.  A  notch  filter  may  precisely  target  these
frequencies.

Notch filters have little effect on frequencies outside of
their  narrow  stopband,  in  contrast  to  band-pass  or  low-
pass  filters,  which  affect  a  wider  range  of  frequencies.
This  is  significant  for  EEG  analysis  since  accurate
interpretation depends on maintaining the signal integrity
throughout a range of frequency bands.

Fig.  (4)  shows  the  decomposed  signal  into  wavelet
coefficients, then thresholds these coefficients to remove
noise,  and  finally  reconstructs  the  signal  from  the
denoised  coefficients.

By applying filters consistently across all channels, it
becomes easier to identify and address these artifacts, as
their impact on the signal will be uniform.

Fig (3). Noise filtering using band-pass filter.
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Fig (4). Signals after artifact removal using notch filters.

3.3. Feature Engineering
Creating  machine  learning  models  requires  a  crucial

stage  called  feature  engineering.  It  entails  producing,
selecting,  and  converting  unprocessed  data  into
characteristics  that  improve  the  efficiency  of  machine
learning  systems.  It  basically  involves  transforming
unprocessed data into a format that is more appropriate
for  modeling.  Feature  extraction  and  feature  selection,
which  are  covered  below,  are  two  possible  steps  in  this
procedure.

3.3.1. Feature Extraction
By converting the original features into a new set with

less redundancy and more discriminating power, feature
extraction  is  a  machine-learning  approach  that  reduces
the  dimensionality  of  a  dataset.  The  following  are  some
methods  for  lowering  a  dataset's  dimensionality  via
feature  extraction:

3.3.1.1. Independent Component Analysis (ICA)
ICA  is  a  technique  used  for  feature  extraction  that

aims  to  separate  a  set  of  signals  into  their  underlying
independent  sources  [24].  The  original  features  are
transformed into a new set of features that represent the
independent  sources,  which  can  have  reduced
dimensionality  compared  to  the  original  data.

The weight or contribution of each EEG channel to the
independent  component  is  represented  by  the  spatial

topographies.  The  data  are  divided  into  statistically
independent  components  using  ICA.  These  elements
frequently  stand  in  for  different  neuronal  or  non-neural
activity sources.

The  color  scales  in  Fig.  (5)  depict  the  relative
importance  or  weight  of  every  EEG  channel.  The  ICA's
components aren't always arranged according to variance,
though. Rather, there is no statistical difference between
them. Because ICA can distinguish between brain activity
and noise sources like muscular contractions or eye blinks,
it  is  very  helpful  in  identifying and eliminating artifacts.
Certain  components,  including  heartbeats  or  eye  blinks
(which  are  frequently  observed  as  frontal  activity  on
channels  like  Fp1  and  Fp2),  may  mimic  common  EEG
artifacts.

3.3.1.2. Principal Component Analysis (PCA)
PCA is a common technique used for feature extraction

in which the original features are transformed into a new
set of orthogonal features that capture the most important
information in the data [18]. The new features are ordered
in  terms  of  their  importance,  so  the  first  few  principal
components  can  be  used  to  represent  the  data  with
reduced  dimensionality.

The  loading  or  weight  of  each  EEG  channel  in  the
corresponding  PCA  component  is  represented  by  the
spatial  topographies.  These  components  show  the
directions  in  which  the  data  fluctuates  the  greatest  and
are orthogonal to one another.
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Fig (5). Weight of each EEG channel using ICA.

The direction with the largest variance is represented
by  the  first  component  (PCA  Comp  1)  in  Fig.  (6),  the
direction with the second maximum variance (orthogonal
to the first) by the second component (PCA Comp 2), and
so on. The color scales show each EEG channel's weight or
loading. For example, negative weights are represented by
dark  blue  or  purple,  whereas  positive  weights  are
represented  by  yellow  or  red.  The  way  that  each
component condenses various elements of the EEG data is

reflected  in  these  spatial  patterns.  Some  components
might capture widespread activity across many channels,
while others might emphasize localized activity in specific
regions.

Therefore,  PCA  works  well  to  reduce  the  number  of
dimensions  in  the  data  while  preserving  the  majority  of
the variance. This is important when using EEG analysis to
identify dementia, as the data from many electrodes might

Fig (6). Weight of each eeg channel using PCA.
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be high-dimensional, and the most important information
may be captured by a small number of main components.
Furthermore,  PCA  is  a  simple  and  computationally
effective  approach.  It  is  simpler  to  use  and  faster  to
compute  since  it  does  not  involve  sophisticated
computations like ICA, LDA, and ITA or assumptions about
the distribution of the data.

3.3.2. Feature Selection
The  process  of  choosing  a  subset  of  pertinent

characteristics from a broader set of features is known as
feature  selection,  and  it  aids  in  lowering  the  dataset's
dimensionality  [26].  We  may  enhance  the  efficiency  of
machine learning algorithms, lower computing complexity,
and  avoid  overfitting  by  minimizing  the  number  of
features.  The  following  are  some  typical  methods  for
choosing  features:

3.3.2.1. Filter Method
Statistical  measurements  are  used  in  the  filter

approach  to  rank  the  features  and  choose  the  best
characteristics.  As  an  illustration,  consider  feature
selection techniques like chi-square, mutual information,
and correlation-based feature selection [27].

The top EEG channels are shown in Fig. (7), utilizing
the  filter  approach  for  feature  selection,  depending  on
their connection with variance. The top EEG channels are

shown  on  the  y-axis.  Additionally,  each  channel's
association  with  the  variation  between  time  points  is
shown on the x-axis. The total variation in the EEG data is
more strongly correlated with channels that are closer to
the  left  (with  more  negative  values)  or  the  right  (with
more positive values). As an example, the channels “Fp1”
and  “Fp2”  have  the  largest  negative  correlations  with
variance, suggesting that they account for a considerable
amount of the data's unpredictability.

3.3.2.2. Wrapper Method
The  wrapper  technique  assesses  the  subset  of

characteristics  using  a  machine  learning  model.  The
optimal subset of features is selected after the algorithm
has  been  trained  and  evaluated  using  various  feature
subsets.  One  illustration  of  a  wrapper  technique  is
recursive  feature  removal.

Using the Wrapper Method, Fig. (8) visualizes the top
EEG  channels  according  to  their  Recursive  Feature
Elimination  (RFE)  ranking.  The  top  EEG  channels  are
shown  on  the  y-axis.  The  RFE  rating  is  shown  on  the  x-
axis.  When  it  comes  to  forecasting  the  target,  in  this
example, the mean of each sample is a lower rank, which
denotes greater relevance. When using a linear regression
estimator in the RFE approach, channels toward the top of
the plot (with lower ranking values) are considered to be
more significant.

Fig (7). Feature selection using filter method.
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Detection of Dementia 9

Fig (8). Feature selection using wrapper method.

3.3.2.3. Embedded Method
Feature  selection  is  a  step  in  the  model  training

process  using  the  embedded  approach.  For  instance,
Lasso regression adds a penalty term to the model's cost
function  to  promote  sparsity  in  the  model's  feature
weights,  or  decision  trees,  where  the  model  coefficients
directly correlate to the importance of the features.

The  top  EEG  channels  are  visualized  using  the

Embedded Method with cross-validation, as shown in Fig.
(9), based on their LASSO coefficients. Top EEG channels
are  shown  on  the  y-axis.  To  illustrate  the  LASSO
coefficients,  the  x-axis  is  used.  In  terms  of  target
prediction, channels with higher coefficients—positive or
negative—are  seen  to  be  more  significant.  The  largest
coefficients  in  this  graphic  correspond  to  channels  like
“P4”,  “F7,”  and  “C3,”  demonstrating  their  relative
relevance  in  the  model.

Fig (9). Feature selection using embedded method.
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Fig (10). Clustering graphs comparison.

4. RESULTS AND DISCUSSION

4.1. Clustering
To start, we created a few groupings using clustering

on  the  prepossessed  EEG  data.  After  that,  labels  are
applied  to  these  clusters  for  supervised  learning.  This
method  is  predicated  on  the  idea  that  the  EEG  data
contains discrete, groupable patterns. There are now just
12  main  components  left  in  the  data,  down  from  171
characteristics, after PCA was used to preserve 95% of the
variance.  Next,  we  used  the  K-means  technique  for
unsupervised  clustering.  As  our  labels  were  binary  and
artificial,  we  will  attempt  to  cluster  the  data  into  two
clusters  for  simplicity's  sake.

The  K-means  clustering  algorithm  has  grouped  the
segments  into  two  clusters:

Cluster 0: Contains 39 segments.[i]
Cluster 1: Contains 80 segments.[ii]

The clustering findings  that  were assessed using the
Davies-Bouldin  Index,  Calinski-Harabasz  Index,  and
Silhouette  Score—an  internal  cluster  validation
measure—are  displayed  in  Table  1  and  Fig.  (10).  Using
the following techniques, the Silhouette Score runs from
-1 to 1, with a high value indicating that the item is well
matched  to  its  cluster  and  poorly  matched  to  nearby
clusters:
Table 1. Clustering results comparison.

Algorithm Silhouette
Score

Calinski-Harabasz
Index

Daives-Bouldin
Index

K-Means 0.29 52.21 1.34
DBSCAN 0.24 23.15 2.09

Agglomerative 0.25 37.06 1.34

For  each  algorithm,  we  evaluated  the  clusters  using
the following metrics:

(a)  Silhouette  Score:  Compared  to  the  other
algorithms,  K-means  produced  the  greatest  score,
indicating that its clusters had greater cohesiveness and
separation.  For  our  clustering  findings,  the  Silhouette
Score is around 0.29. The range of the Silhouette Score is

-1  to  1.  A  score  around  -1  suggests  that  the  clusters
overlap, while a score near 1 shows that the clusters are
well  separated  from  one  another.  A  score  of  almost  0
indicates clusters that overlap, with samples located quite
near the adjoining clusters' decision borders. Our result of
0.29  indicates  that  there  appears  to  be  some
differentiation between the two groups. Given the artificial
nature of the labels and the heuristic-based methodology
we employed, this is to be expected.

(b)  Calinski-Harabasz  Index:  It  is  sometimes
referred  to  as  the  Variance  Ratio  Criterion,  which
calculates  the  ratio  of  the  total  dispersion  between
clusters to the dispersion within clusters. Better clustering
is  indicated  by  higher  values.  Once  more,  K-means
produced  the  best  results,  showing  that  the  clusters  it
generated had a greater variance ratio across and within
clusters.

(c)  Davies-Bouldin  Index:  Calculates  the  average
resemblance between each cluster and the cluster that is
most like it. Better clustering is indicated by lower values.
While  DBSCAN  has  a  lower  score,  K-means  and
agglomerative  clustering  have  similar  ratings.

4.2.  Time-Based  Segmentation  &  Synthetic  Label
Creation

We  have  divided  the  EEG  data  into  fixed-length
windows  using  clustering.  A  segment  length  of  five
seconds was our choice. This translates to 2500 samples
per segment at the 500 Hz sampling rate. The EEG data
was then split up into these pieces. We removed the final
few samples that didn't fit into a whole segment if the EEG
data didn't split precisely into these segments. Later, we
determined each segment's mean amplitude. Next, using
this mean amplitude as our basis, we generated a binary
label:  We  designated  a  segment  as  “1”  if  its  mean
amplitude exceeded a threshold, with zero serving as the
threshold. If not, we assigned it a value of '0'.

This  method  produced  a  binary  classification  issue,
where  segments  below  the  threshold  were  labeled  as
“negative”  (label  = 0)  and  those  with  a  mean amplitude
above the threshold as “positive” (label = 1).

It  is  critical  to  remember  that  the  mean  amplitude
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Detection of Dementia 11

heuristic  was  used  to  construct  these  labels,  which  are
entirely synthetic.

The classification results are displayed in Table 2 and
Fig.  (11),  with  the  Random  Forest  and  Decision  Tree
models  outperforming  all  others  in  terms  of  all  criteria.
While  the  Random  Forest  and  Decision  Tree  models
somewhat outperformed the SVM and Logistic Regression
models, both models produced good results.

4.3. Comparison of Different Demographic Groups
The  X-axis  (Age)  in  (Figs.  12  and  13)  displays  the

participants' ages. Plotted along this axis is the age range
found  in  the  dataset.  On  the  other  hand,  the  Y-axis

(Number  of  Participants)  shows  how  many  people  are
involved in each age group. Participants who are “Likely
No  Dementia”  (based  on  MMSE  scores  between  24  and
30)  are  shown  in  pink.  Moreover,  those  with  “Likely
Dementia”  (defined  as  MMSE scores  between 0  and 17)
are shown in the blue.
Table 2. Classification results comparison.

Classifiers Accuracy Precision Recall F1 Score

Decision Trees 95.83% 95.65% 100% 97.87%
Random Forest 95.83% 95.65% 100% 97.78%

SVM 91.67% 91.67% 100% 95.65%
Logistic Regression 87.50% 91.30% 95.45% 93.33%

Fig (11). Classification graph comparison.

Fig (12). Dementia prediction by age.
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Fig (13). Dementia prediction by gender.

The kernel density estimates curves, or smooth lines,
provide the histogram with a continuous, smoothed form.
The  general  pattern  in  the  age  distribution  for  each
ailment  may  be  seen  with  the  aid  of  these  graphs.

This shows that both conditions (Likely Dementia and
Likely No Dementia) are present over a broad age range,
while there are some age bins where one condition may be
more  common  than  the  other.  A  larger  concentration  of
individuals in that age range who most likely do not have
dementia  is  shown  by  the  peak  ages  similar  to  the  pink
curve (Likely No Dementia), which appears to peak around
the mid-60s. Although the blue curve (likely dementia) to
be more dispersed, there are distinct peaks that point to
the  age  groups  when  dementia  is  more  common.
Furthermore,  there  exist  age  ranges  in  which  both
estimated conditions overlap, suggesting that there exist
persons within those age groups who, according to their
MMSE  scores,  fall  into  both  conditions.  Based  on  the
accuracy and MMSE scores results, here's the distribution
of participants estimated to have “Likely Dementia” across
different age groups:

40-49 years: 0 participants
50-59 years: 3 participants
60-69 years: 7 participants
70-79 years: 3 participants
80-89 years: 0 participants
From  the  data,  the  age  group  60-69  years  has  the

highest  number  of  participants  (7  participants)  likely  to
have dementia based on their MMSE scores.

4.4. Comparison with Other Modalities
EEG and image modalities  are compared in Tables 3

and 4, respectively, utilizing the suggested technique. The

suggested approach for the EEG modality comparison uses
Principal Component Analysis (PCA) for feature reduction
in conjunction with a band-pass filter/noise filter (BPF/NF)
and  then  clustering  as  a  measure.  This  combination
produced  impressive  results:  91%  for  Support  Vector
Machine  (SVM)  and  95%  for  Decision  Tree  (DT)  and
Random  Forest  (RF).  The  suggested  approach  shows  a
notable  improvement  in  performance  when  contrasted
with the other experiments in the table. This suggests that
the feature extraction methods and filter selections in the
suggested  methodology  are  more  successful  for
processing  and  analyzing  EEG  signals.
Table 3. EEG modality comparison.

Authors/Refs. Filter Features Metrics Accuracy

Pirrone D [28] LPF LDA K-Fold DT: 87%, SVM:
89%

Kavita C [29] LPF Chi-Square Voting DT: 80%, RF:
86%,

SVM: 81%
Balea-Fernandz [30] HPF PCA K-Fold DT: 80%

Giulia Fiscon [31] DWT/FFT FT/WT K-Fold FDT: 72%, WDT:
83%

Table 4. Image Modality Comparison

Authors/Refs. Features Model Metrics Accuracy

Dashtipour D [32] CNN Bi-LSTM K-Fold 83%
Helaly [33] CNN SVM MCC 82%

Aruna & C [34] ICA SVM MCC 79%

The great accuracy of the suggested approach is also
attributed  to  its  clustering  metric.  Though  the  use  of
clustering  in  the  suggested  methodology  likely  offers  a
more nuanced approach to understanding the underlying
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Detection of Dementia 13

structure  of  the  data,  resulting  in  more  accurate  model
training  and  prediction,  traditional  metrics  like  K-Fold
cross-validation  used  in  other  studies  are  valuable  for
model  validation.

Table 5 displays the speech modality; however, it does
not  list  the characteristics  or  models  that  are utilized in
the  suggested  approach,  which  makes  it  difficult  to
compare  directly.  However,  if  we  assume that  the  novel
method  used  in  the  EEG  modality  is  also  applied  to
speech, the success in EEG implies that such a tactic may
also  prove  to  be  very  successful  in  the  voice  modality.
Even if they are outstanding, the accuracy revealed in the
voice  research  using  other  approaches  falls  short  of  the
high  standard  established  by  the  suggested  EEG
methodology.
Table 5. Voice Modality Comparison

Authors/Refs. Features Model Metrics Accuracy

Chlasta Wolk [35] VGGish CNN F1 Score 63%
Zhu et al. [36] Wav2vec BERT ROC 73%
Weiner [37] ASR DNN ACC 70%

It is noteworthy that the effectiveness of the suggested
methodology  also  suggests  the  significance  of  an
integrated  data  analysis  strategy  in  EEG  signal
processing. The suggested methodology establishes a new
benchmark in the area by carefully choosing the filtering
technique  to  preserve  important  signal  components  and
lower noise, applying PCA for feature reduction to capture
the most important signal features, and utilizing advanced
machine learning models.

In  summary,  the  suggested  approach  significantly
outperforms conventional techniques in the EEG modality
and probably will in the speech modality as well. Its merits
are found in the thoughtful  fusion of  powerful  statistical
approaches  with  cutting-edge  signal  processing
techniques,  offering  a  path  forward  for  future  studies
aiming at creating highly accurate classification systems
in EEG signal processing.

CONCLUSION

Early-Onset Dementia
We  acknowledge  that  our  dataset  primarily  includes

older adults, with participants ranging from 40 to 89 years
old. Notably, the age group of 60-69 years has the highest
number  of  participants,  with  seven  individuals  likely  to
have  dementia  based  on  their  MMSE  scores.  This
demographic  focus  may  limit  the  generalizability  of  our
findings to early-onset dementia. Future research should
include  a  broader  age  range  to  address  this  limitation.
Overall,  the  results  point  to  the  potential  use  of  EEG
signals as a non-invasive, reasonably priced substitute for
established  diagnostic  techniques  in  the  diagnosis  and
treatment  of  dementia.  To  confirm  the  results  on  a
broader  and more  varied  population  and to  examine  the
generalizability  of  the  models  across  various  dementia
types  and  stages,  additional  study  is  necessary.

Real-World Applicability
The non-invasive nature of EEG makes this approach

suitable  for  integration  into  portable  EEG  devices,
enabling early diagnosis in clinical settings or even home
environments.  This  could  significantly  improve  patient
care  by  facilitating  timely  interventions  and  treatment
plans.  Even  yet,  there  are  still  certain  restrictions.  One
key  issue  is  that  most  approaches,  for  example,  train
traditional  Machine  Learning  classifiers  by  extracting
features  from  inputs  that  are  merged  within  a  single
neural  network.  Another important drawback is  that our
research, in particular, trains EEG signals independently
before  using  majority  voting  techniques,  which
considerably lengthens training time. Moreover, handling
the  tasks  and  events  independently  results  in  less-than-
ideal performance. We also looked at the possibility that,
even  though  EEG  has  yielded  innovative  outcomes  in
several domains,  the process of detecting dementia with
EEG data has not yet completely realized its potential.

Open Research Question
Dementia research is a vast and evolving field. While

this  study  focuses  on  EEG-based  diagnosis,  other
modalities  like  genetics,  neuroimaging,  and  cognitive
assessments  hold  promise  for  a  comprehensive
understanding of the disease. In summary, the suggested
approach  significantly  outperforms  conventional
techniques in the EEG modality  and probably will  in the
speech  modality  as  well.  Its  merits  are  found  in  the
thoughtful fusion of powerful statistical approaches with
cutting-edge signal processing techniques, offering a path
forward  for  future  studies  aiming  at  creating  highly
accurate classification systems in EEG signal processing.

Managerial Significance
Early  and  accurate  diagnosis  of  dementia  allows  for

better  management  of  the  disease  and improved patient
outcomes. This can translate to reduced healthcare costs
by  identifying  patients  who  could  benefit  from  early
interventions and potentially delaying disease progression.
Additionally,  timely  diagnosis  empowers  patients  and
caregivers  to  make  informed  decisions  regarding
treatment options, future planning, and potential support
services.  The  focus  of  future  research  will  be  on  the
extraction and analysis of novel traits that are more likely
to aid in dementia disease diagnosis. To improve accuracy,
redundant  and  unnecessary  features  will  also  be
eliminated  from  the  present  feature  sets.  The  future
study’s  focus  will  also  be  on  using  digital  filters  or
transforming  analog  signals  to  digital  ones,  which  are
currently  missing  in  the  present  study.  Future  research
will  primarily  focus  on  examining  and  contrasting  the
effectiveness  of  various  trans-former  designs,  including
GPT,  T5,  and  XLNet,  for  dementia  diagnosis  and
investigating  the  effectiveness  of  a  multimodal
transformer-based  dementia  diagnosis  approach  that
combines text  and voice data with additional  modalities,
like EEG and fMRI data.
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