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Abstract:
Introduction:  The  three  prevalent  yet  detrimental  respiratory  conditions,  namely  COVID-19,  pneumonia,  and
tuberculosis, exhibit overlapping symptoms, making their differentiation challenging. However, their treatments are
significantly divergent. Early detection emerges as a critical common factor for the effective management of these
diseases. The pivotal initial step necessitates precise identification to initiate prompt prognosis. However, because of
the lack of availability of experts in general and the inadequacy of the medical system on the whole, the problem of
early detection is becoming highly concerning and, worst of all, time-consuming.

Objective: This research aimed to address this problem by examining and contrasting various deep Convolutional
Neural Network (CNN) models that can accurately identify these illnesses, thereby assisting in their early detection.

Methods:  4  pre-trained  CNN  architectures  have  been  used  in  this  work,  namely  EfficientNet-B0,  VGG-16,
InceptionNet, and ResNet-50, which have been implemented on the input dataset. Firstly, the data were collected and
pre-processed, and then model training and testing were performed for all 4 pre-trained models specified above.

Results: After fine-tuning the models and evaluating the test metrics on the test dataset, the highest accuracy was
observed for ResNet-50 and EfficientNet models, i.e., ~95%. Also, the precision and recall for both were very similar
(approximately greater than 92%), indicating accurate and good-quality results.

Conclusion:  In  this  work,  a  transfer  learning  system  has  been  employed  utilizing  several  pre-trained  CNN
architectures.  Our  findings  have  indicated  that  this  system  can  effectively  analyze  X-ray  images  to  diagnose
COVID-19, pneumonia, and tuberculosis.
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1. INTRODUCTION
The  COVID-19  outbreak  has  emphasized  the  critical

necessity for precise and effective diagnostic methods. To

address  this  issue,  this  work  has  utilized  a  transfer
learning method employing deep CNN to analyze chest X-
rays  for  the  identification  of  COVID-19,  pneumonia,  and
tuberculosis. This approach has shown promising results
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in accurately detecting these diseases; implementing such
a diagnostic approach could make a notable difference in
enhancing patient outcomes and alleviating the strain on
healthcare  systems  around  the  globe.  Furthermore,  this
research study has the potential to pave the way for future
developments  in  diagnostic  tools  for  infectious  diseases
and  could  revolutionize  the  way  medical  professionals
approach  the  identification  and  management  of
respiratory  disorders.  Additional  research  is  required  to
authenticate  the  efficacy  of  this  methodology  on  larger
datasets  and  to  ensure  that  it  can  be  implemented  in  a
cost-effective and accessible manner, particularly in low-
resource  settings  where  these  diseases  are  most
prevalent.

Overall,  this  research  paper  puts  forth  an  important
step in the fight against early detection of these three lung
diseases and has the potential to significantly improve the
accuracy and efficiency of  diagnostic  tools,  which would
ultimately  result  in  improved  patient  outcomes  and
alleviate  the  strain  on  healthcare  systems  globally.
Policymakers and healthcare professionals must prioritize
investments  in  research  and  development  of  innovative
diagnostic  tools,  such  as  the  transfer  learning  approach
proposed  in  this  research  paper,  to  become  better
equipped to tackle future pandemics and improve global
health  outcomes.  Furthermore,  it  is  important  to  ensure
that  these  diagnostic  tools  are  attainable  and affordable
for  all  individuals,  irrespective  of  their  economic  or
regional  status.

This  research  paper  may  prove  to  be  valuable  in
providing  revolutionary  breakthroughs  in  the  field  of
diagnostic  imaging  and  tools  for  respiratory  illnesses,
highlighting the potential of deep-learning approaches to
revolutionize medical diagnosis and treatment. It is hoped
that this research work will  inspire further collaboration
and innovation in the field, ultimately leading to improved
global  health  outcomes  and  a  better  quality  of  life  for
individuals around the world. Investments in research and
development  of  innovative  diagnostic  tools  must  be

prioritized,  especially  when  dealing  with  emerging
infectious diseases and other worldwide health concerns,
to be prepared for future crises and effectively address the
ongoing  health  needs  of  individuals  and  communities
worldwide. By doing so, more resilient healthcare systems
can  be  built  that  are  better  equipped  to  respond  to
emerging health threats and promote the well-being of all
individuals,  regardless  of  their  background  or
circumstances.

COVID-19,  pneumonia,  and  tuberculosis  are  very
similar diseases, affecting the respiratory system (majorly
the lungs) of human beings. While all three diseases need
to  be  treated  differently,  in  the  case  of  all  three,  early
detection  is  the  key,  and  expedited  treatment  can  help
greatly. In order to treat these diseases, the diagnosis or
detection  needs  to  be  accurate  as  these  are  similar
diseases,  and  an  incorrect  diagnosis  can  even  lead  to
death  because  of  negligence.  For  doing  so,  several
barriers present in the current healthcare systems of most
countries,  especially  the  developing  ones,  need  to  be
highlighted  first.

First  and  foremost,  as  mentioned  previously,  the
diseases  are  similar,  and  their  accurate  detection  is
difficult at times due to the amount of correlation present
within the diseases. Another issue is the lack of specialist
doctors,  especially  in  developing  and  underdeveloped
countries with huge populations. Especially in Southeast
Asian  countries,  like  India,  Nepal,  Vietnam,  and
Bangladesh, the number of physicians per 1000 population
is  less  than 1,  which depicts  how busy  and engaged the
healthcare  system  is  in  these  countries.  Another  issue
faced is the very long process that takes place during the
whole detection phase. The process flow is given below.

As  can  be  seen  in  Fig.  (1),  taking  multiple
appointments, visiting the X-ray clinics multiple times to
get  the  test  done,  and  then  getting  the  reports,  all  are
time-consuming  processes  and  can  take  a  few  days  to
multiple  weeks.

Fig. (1). User journey map before the development of the website proposed in this work.



Multifaceted Disease Diagnosis 3

Fig. (2). User journey map after the development of the website.

To resolve this problem, a better option could be to use
artificial intelligence and build a system that can reduce
time and increase  convenience  for  patients  and  doctors.
The revised process flow, being convenient and a bit more
effective, is illustrated in Fig. (2).

The main contribution of the work is as follows:

A model has been developed that is able to classify three
lung  diseases,  namely  COVID-19,  tuberculosis,  and
pneumonia,  with  the  help  of  the  transfer  learning
approach.
Using  Chest  X-ray  images,  the  model  can  predict  the
presence or absence of the above three diseases.
Four transfer learning approaches have been applied to
the model, namely, EfficientNet, ResNet-50, VGG16, and
Inception Net.
Based  on  the  experimental  performance  and  analysis
done,  ResNet-50  has  been  found  to  provide  the  most
efficient  results  with  95%  accuracy  and  97%  precision
and recall, being the best among all.

2. RELATED WORK
In line with current developments, several techniques

are  being  used  to  detect  COVID-19,  pneumonia,  and
tuberculosis.

Tuberculosis,  a  global  health  concern,  is  caused  by
Mycobacterium  tuberculosis.  The  number  of  cases  of
tuberculosis is increasing by millions each year. Currently,
six  nations  report  the  highest  number  of  cases,  and  the
common factor linking the nations is sizable regions with
low economic growth. There are few doctors and medical
services in these places [1, 2]. The proposed system was
assessed  using  three  distinct  classification  techniques:
nearest neighbour, logistic regression, and support vector
machine  [3].  Some medical  facilities  in  nations  with  few
resources  and  dense  populations  lack  the  essential  or
modern  equipment  to  conduct  Chest  X-ray  (CXR)
screening [4].  The patients are requested to have a CXR
taken, and there exists a significant chance that they have

Tuberculosis  (TB).  Consequently,  the  traditional  TB
diagnosis process may take a long time [5]. X-ray image-
based  diagnosis  is  a  tedious  and  time-consuming  task,
requiring  significant  manual  effort  and  therefore  being
prone  to  human  error  [6-8].  Though  numerous  AI-based
methods for diagnosing TB now exist, researchers are still
working  toward  achieving  the  necessary  accuracy  [9].
Also,  another  work  utilized  ResNet,  Xception,  Inception-
ResNet-V2,  MobileNet,  and  EfficientNet,  employing  the
same  approach  [9-13].  Qualified  radiologists  conduct
manual  analysis  and  CXR  detection,  which  is  a  time-
consuming  and  difficult  task  [14].  Additionally,  the  low-
resource  nations,  particularly  the  rural  areas,  lack
qualified  radiologists  [15].

The COVID-19 pandemic has severely impacted global
health and general welfare. A crucial measure in the battle
against  COVID-19  is  the  successful  identification  of
infected  individuals  with  radiology  examination  utilizing
chest radiography as a vital screening technique. The most
serious illness caused by COVID-19, such as pneumonia,
impacts  the  lungs  [16].  The  testing  procedures,  such  as
Reverse  Transcription  Polymerase  Chain  Reaction  (RT-
PCR),  are  time-consuming  and  sometimes  even  fatal
[17-19].  Other  diagnostic  methods  for  COVID-19 include
examining  clinical  symptoms,  investigating  epidemio-
logical  background,  and  analyzing  positive  radiographic
images (such as CT or CXR). These methods can cause the
process to become lengthy and are less accurate [18, 20].
Different CNN models used are unable to work accurately
with images having tilted or faulty corners. Many research
studies have advocated using transfer learning and deep
CNN for diagnostic purposes [21-25]. Many methods, such
as DeTraC, have been suggested in which frameworks, like
VGG16, are used [26].

Furthermore,  pneumonia  is  a  disease  that  impacts
either or both lungs and causes irritation of the air sacs
contained within.  These sacs get filled with pus or fluid,
leading to symptoms, such as difficulty in breathing, fever,
chills,  and  a  productive  cough  that  generates  pus  or
phlegm. A study [27] showed how Bayesian optimization
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may  be  used  to  detect  and  diagnose  pneumonia  using
CNN architecture estimates. A Deep Learning (DL)-based
strategy has also been put forth to identify and categorize
pneumonia  from  chest  X-ray  images  [28-31].  The  three
pre-existing  architectures,  ResNet50,  InceptionV3,  and
InceptionResNetV2,  have  been  utilized  in  a  transfer
learning  technique  to  extract  both  temporal  and  spatial
features  [32].  A  thorough  analysis  of  deep  learning
applications  on  X-ray  images  of  the  chest  has  made  it
abundantly obvious that the quantity of the dataset affects
the  system's  effectiveness.  Therefore,  a  combination  of
various data augmentation techniques can lead to better
results [33-35].

One  thing  that  most  studies  have  lacked  is  the
presence of a one-stop solution to classify these diseases.
This  means  that  most  studies  have  only  tried  to  detect
either COVID-19, pneumonia, or tuberculosis individually;
however, a few studies have aimed to detect two or more
diseases together.

This paper has focused on the analysis and study of the
transfer  learning  approach,  applying  a  few  pre-trained
CNN models on real-world chest X-ray datasets to predict
and  classify  three  lung  diseases,  i.e.,  COVID-19,
pneumonia,  and  tuberculosis.

3. MATERIAL AND METHODOLOGY

3.1. Dataset
We have  combined  publicly  available  datasets  for  all

three  diseases,  consisting  of  a  total  of  4300  images,

namely,  700  tuberculosis  X-ray  images  obtained  from
Kaggle by Tawisfur Rahman, 1200 COVID-19 X-ray images
taken from Kaggle by Prashant Patel, 1200 pneumonia X-
ray  images  (including  bacterial  and  viral  pneumonia)
obtained from Kaggle by Paul Mooney, and 1200 normal X-
ray  images  taken  from  GitHub.  These  X-ray  images  had
different  size  ranges.  It,  therefore,  became important  to
standardize  the  image  size  of  all  images  obtained  from
different data sources. We standardized the images to 224
pixels x 224 pixels. Furthermore, standardizing the image
colour of all images obtained from different data sources
was also an important aspect of data preparation. One-hot
encoding on labels also played a key role in this study. All
datasets  were  of  the  same  classes,  corresponding  to  4
classes in total. Some examples of X-ray images indicating
COVID-19  infection  are  presented  in  Fig.  (3).  Fig.  (4)
displays  several  examples  of  X-ray  images  indicating
positive cases of tuberculosis. Fig. (5) showcases multiple
instances  of  X-ray  images  indicating  positive  cases  of
pneumonia. Finally, Fig. (6) illustrates a range of normal
X-ray images where no evidence of the three lung diseases
is present.

3.2. CNN and DL
Deep learning-based medical image analysis has drawn

a lot  of  interest  recently  because of  its  potential  to  help
radiologists  diagnose  medical  diseases  more  effectively
and accurately. Convolutional Neural Networks (CNNs) in
particular  have  become  an  effective  tool  for  picture
segmentation  and  classification  in  the  medical  field,
including  the  diagnosis  of  various  lung  illnesses.

Fig. (3). COVID-19-positive CXR images.

Fig. (4). TB-positive CXR images.
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Fig. (5). Pneumonia-positive CXR images.

Fig. (6). Normal CXR images.

This paper aimed to present a thorough evaluation of
current research, utilizing deep learning and CNNs for the
detection  of  lung  diseases  in  medical  images,  including
pneumonia,  tuberculosis, lung  cancer, and  COVID-19. 

Fig. (7) illustrates the proposed methodology. This study
has  also  examined  the  datasets,  architectures,  and
performance  metrics  used  earlier  and  discussed  their
potential  uses  for  medical  image  analysis,  and  proposed
future directions for this technology.

Fig. (7). Proposed methodology for multi-disease detection.



6   The Open Bioinformatics Journal, 2024, Vol. 17 Pal et al.

According  to  our  findings,  CNNs  and  deep  learning
offer  a  lot  of  potential  to  help  radiologists  identify  and
categorize  lung disorders.  However,  before  they  may be
used as  common diagnostic  tools,  further  research must
be  done  to  confirm  the  precision  and  generalizability  of
these  models  in  clinical  settings.  These  findings  may  be
encouraging and point to a bright future in the application
of  deep  learning  and  CNNs  in  the  analysis  of  medical
images and the identification of illnesses. It might further
lead  to  better  patient  outcomes  and  lower  healthcare
costs.

Overall,  this  work  emphasizes  the  significance  of
research and development  in  deep learning and medical
image  analysis.  It  shows  the  potential  to  fundamentally
change  medical  diagnoses  and  significantly  enhance
patient  care.

3.3. Transfer Learning
The  method  of  Transfer  Learning  (TL)  involves  fine-

tuning  a  model  with  pre-trained  weights  from  a  larger
dataset, and is widely used in deep learning on a smaller
or more specific dataset. The method of transfer learning
is  especially  beneficial  in  the  field  of  medical  image
analysis due to the scarcity of large, annotated datasets. In
the case of CXR images, TL has been shown to be effective
in predicting COVID-19, pneumonia, and Tuberculosis (TB)
using a variety of deep learning models.

To  use  TL  for  CXR  images  in  the  prediction  of
COVID-19,  pneumonia,  and TB,  the following steps must
be taken:

3.3.1. Obtain a Pre-trained Model
There  are  several  pre-trained  models  available  for

chest X-ray image analysis, such as VGG, ResNet50, and
Inception.  These  models  have  been  trained  on  bigger
datasets,  and  therefore,  their  weights  may  be  used  as  a
starting  point  for  training  on  a  smaller  medical  image
dataset.

3.3.2. Fine-tune the Model
The  pre-trained  model  can  then  be  fine-tuned  on  a

smaller  dataset  of  CXR  images,  labeled  for  COVID-19,
pneumonia,  and  TB.  This  involves  modifying  the  final
layers of the model to match the classes in the dataset and
training the model on the new dataset while keeping the
weights from pre-trained models fixed.

3.3.3. Evaluate the Model
One  can  evaluate  the  performance  of  the  fine-tuned

model  on  a  validation  set  by  analyzing  metrics,  like
precision,  recall,  accuracy,  and  F1-score.

3.3.4. Test the Model
After the evaluation of the model, it can be tested on a

distinct test set to measure its practical performance.
In  conclusion,  transfer  learning  is  a  powerful

technique  for  CXR  image  analysis  in  COVID-19,
pneumonia,  and  TB  prediction.  It  allows  deep  learning
models  to  leverage  pre-existing  knowledge  from  large

datasets and fine-tune smaller medical image datasets to
achieve high accuracy and performance.

3.4. Training and Model Building
In  our  investigation,  we  meticulously  assessed  the

performance of pre-trained Convolutional Neural Networks
(CNNs)  by  adapting  them  to  our  dataset  individually.  To
accomplish  this,  we  employed  four  prominent  pre-trained
CNN architectures: EfficientNetB0, InceptionV3, ResNet50,
and  VGG16.  Prior  to  model  training,  thorough  data
preparation  was  performed,  involving  the  conversion  of
images  into  numerical  values  and  carrying  out  one-hot
encoding, along with standardizing the image size. Notably,
we ensured  standardization  across  the  Chest  X-ray  (CXR)
images to mitigate any potential  issues arising from color
and  size  variations,  thus  maintaining  consistency  in  the
dataset.  The ample  size  of  the dataset  provided sufficient
data for robust model training, facilitating reliable results.

For fine-tuning each pre-trained CNN architecture, we
primarily  focused  on  the  convolutional  part  of  their
respective  architectures.  Following  this,  we  augmented
each  network  with  a  global  average  pooling  layer  and  a
dense layer, which were appended to the final convolutional
layer. Subsequently, a classification layer utilizing a dense
layer  with  SoftMax  activation  was  added  to  enable  multi-
class  classification.  Fine-tuning  of  all  networks  was
conducted  using  Stochastic  Gradient  Descent  (SGD)
optimization  with  the  Adam optimizer,  employing  a  batch
size of 32 over 5 epochs. Categorical cross-entropy served
as  the  loss  function  for  all  models,  and  hyperparameters
were fine-tuned based on performance metrics evaluated on
the validation set.

During the initial stage of data preparation, particular
attention was given to resizing the images and organizing
them into distinct folders based on the required input size
of each model, ensuring compatibility with their respective
architectures. A comparative analysis of the performance of
the four pre-trained CNN models is  presented in Table 1,
wherein consistent initialization and learning rate policies
have  been  employed  during  training  to  facilitate  fair
evaluation  and  comparison.
Table 1. Hyperparameters for model building.

Loss Categorical cross-entropy

Optimizer Adam
Metrics Accuracy
Monitor Validation accuracy
Epochs 5

Batch Size 32
Input image size 224 x 224 x 3

Weights ImageNet

By meticulously configuring and fine-tuning each pre-
trained  CNN  architecture,  we  aimed  to  optimize  their
performance for the task of lung pathology detection in X-
ray  images.  This  rigorous  approach  ensures  that  the
selected  models  are  adeptly  tailored  to  the  dataset,
maximizing  their  efficacy  in  accurately  identifying  and
classifying  lung  diseases.
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Fig. (8a). ROC curve and AUC score.

Fig. (8b). Precision-recall curve.
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Fig. (8c). Confusion matrix.

Fig. (8d). Classification report.

For all 4 models, the following hyperparameters were
used:

3.4.1. Evaluation Metrics
Four  distinct  pre-trained  CNN  models  were

independently fine-tuned to our dataset, and subsequently,
their predictions were utilized on the test set. The dataset
was partitioned into training, validation, and testing sets
with proportions of 70%, 9%, and 21%, respectively. The
proposed  method  was  evaluated  using  standard
classification  metrics,  including  accuracy,  precision,
recall,  F1  score,  and  the  area  under  the  Receiver

Operating Characteristic (ROC) curve known as AUC. The
F1-score  is  a  statistical  measure  that  computes  the
harmonic mean of precision and recall. On the other hand,
the AUC or area under the curve is a performance metric
that  assesses  the  ability  of  a  classification  model  to
distinguish  between  classes  by  evaluating  various
threshold  settings.

4. RESULTS
Four  pre-trained  CNN  models,  including  Effici-

entNetB0, InceptionV3, ResNet-50, and VGG16, were fine-
tuned to our dataset containing CXR images of COVID-19,
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normal, TB, and pneumonia cases. The aim was to transfer
the pre-existing knowledge from these models to aid our
task, which had limited training data. The deep learning
process  was  implemented  using  Keras  software  and  the
Python  programming  language.  The  accuracy  and  loss
function values for the training sets during the fine-tuning
of  various  pre-trained  CNN  models  are  depicted  in  the
following figure. Diagnostic accuracy was computed using
the test set after five training iterations. The outcomes of
transfer  learning  post-employment  of  different
architectures are presented in Table 1, including standard
classification metrics, such as accuracy, precision, recall,
F1 score, and AUC.

4.1. EffecientNetB0 Model
Fig. (8a and b) and b show the ROC curve obtained for

the EffecientNetB0 model. The accuracy obtained for the
model was roughly 95%. The confusion matrix presented
in Fig. (8c) can be used to effectively infer further results
regarding the same. The ROC-AUC curves provided in Fig.
(8d) can also be used to gain further inferences about this

model  in  its  entirety.  The  precision-recall  curves  for  all
classes have also been suggestive of the effectiveness of
this  model.  The  precision  (94%)  for  this  model  was  also
relatively high, suggesting it to be a very good model for
the  dataset.  The  recall  (97%)  and  F1-score  (96%)  were
also the highest for this model, which again indicated the
supremacy of this model.

4.2. ResNet-50 Model
The results shown in Fig. (9) pertain to the ResNet50

model, which achieved an accuracy of approximately 96%.
By  analyzing  the  confusion  matrix,  we  could  obtain
additional  insights  into  the  model's  performance.
Additionally,  ROC-AUC  curves  can  provide  valuable
information  about  the  model's  effectiveness.  The
precision-recall  curves  for  all  categories  suggested  the
high efficiency of the model. The model's precision rate of
96% was notably high, indicating it to perform well on the
dataset. Furthermore, the recall rate (97%) for this model
and  F1-score  (96%)  were  among  the  highest,  further
underscoring  its  quality.

Fig. (9a). ROC curve and AUC score.
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Fig. (9b). Precision-recall curve.

Fig. (9c). Confusion matrix.

350

300

250

200

150

100

5050

0

Confusion Matrix

Covid NormalPneumonia

Pneumonia

TB

361

344

338

194

1

4 6 1

7 0

02 16

16 0 0

TB

Covid

Normal



Multifaceted Disease Diagnosis 11

Fig. (9d). Classification report.

4.3. VGG-16 Model
Fig. (10a-d) show the results of the VGG16 model that

achieved an accuracy score of approximately 93%, which
has been found to be significantly good, but not as good as
the previous two models. Analysing the confusion matrix
can provide further insights into the model's performance.
The analyses have suggested this model to rank average
among  all  4  models.  Moreover,  the  ROC-AUC  curves
showed the model to be relatively good but lesser than the
previous  two  models.  The  precision-recall  curves  for  all
categories suggested the model to be highly efficient, but
that  it  can  be  fine-tuned  to  provide  better  results  and

improved scores. Its precision rate of 96% has been found
to be among the highest of the 4 models, indicating it to
perform  remarkably  well  on  the  given  dataset.
Furthermore, the model's recall rate and F1-score, both at
91% and 94%, respectively, have not been found to be as
high as the previous two models; nonetheless, they have
highlighted its quality. Overall, the results have suggested
the VGG16 model to be a strong performer and that it can
be  considered  reliable  for  the  given  task  in  case  the
previous two models face difficulties, but it would further
need  changes  to  be  the  frontrunner  if  selected  as  a
primary  predictor  model.

Fig. (10a). ROC curve and AUC score.
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Fig. (10b). Precision-recall curve.

Fig. (10c). Confusion matrix.
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Fig. (10d). Classification report.

4.4. InceptionNet Model
Fig.  (11a-d)  demonstrate  the  results  of  the

InceptionV3 model, which attained an accuracy of roughly
86%,  being  phenomenal  by  all  means,  but  still  not
comparable with the other three models discussed earlier
in  terms  of  accuracy.  Further  insights  into  the  model's
performance  can  be  derived  by  analysing  the  confusion
matrix. Additionally, the ROC-AUC curves have shown the
model to not perform bad. However, it has not been found
to be effective enough or reliable when compared to the
three models discussed before. The precision-recall curves

for  all  classes  have  suggested  the  model  to  be  effective
enough,  but  not  significantly  reliable  in  comparison.
However, keeping in mind its direct relation to the medical
field,  this  model  may  not  suffice  in  terms  of  reliability.
With a precision rate of 81%, the model performed well on
the  dataset,  but  it  can  be  fine-tuned  in  the  future  to
produce better results. Moreover, the model's recall rate
(90%)  and  F1-score  (85%)  have  been  found  to  be  the
lowest of all, rendering it to be not appealing enough. In
some  scenarios,  this  particular  model  might  not  be  as
convenient  as  the  previous  three  models.

Fig. (11a). ROC curve and AUC score.
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Fig. (11b). Precision-recall curve.

Fig. (11c). Confusion matrix.
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Fig. (11d). Classification report.

Table 2. The performance of the models.

- Model

Metrics EfficientNet ResNet50 InceptionNet VGG16
Precision 0.94 ± 0.03 0.96 ± 0.03 0.81 ± 0.08 0.96 ± 0.08

Recall 0.97 ± 0.06 0.97 ± 0.04 0.90 ± 0.30 0.91 ± 0.04
F1-score 0.96 ± 0.02 0.96 ± 0.01 0.85 ± 0.13 0.94 ± 0.03
Accuracy 0.96 0.95 0.86 0.93

AUC (COVID-19) 0.99638942 0.99710685 0.97200846 0.98985054
AUC (Normal) 0.99557509 0.99750739 0.97520716 0.99197095

AUC (Pneumonia) 0.99545269 0.99605118 0.96300796 0.9885836
AUC (TB) 0.99823192 0.99883157 0.96179012 0.9942769

4.5. Performance Review
The  experimental  findings  presented  in  Table  2

illustrate  the  performance  evaluation  metrics  of  four
distinct  Convolutional  Neural  Network  (CNN)  models,
EfficientNet, ResNet50, InceptionNet, and VGG16, in the
context of early detection of lung diseases, encompassing
COVID-19,  pneumonia,  Tuberculosis  (TB),  and  normal
cases.  Precision  metrics  have  revealed  EfficientNet  and
ResNet50 to excel in minimizing false positives across all
classes,  while  InceptionNet  has  exhibited  comparatively
lower precision, particularly for COVID-19 and pneumonia.
Robust  recall  values  of  EfficientNet  and  ResNet50  have
underscored  their  ability  to  effectively  capture  positive
instances  with  minimal  false  negatives.  The  F1-score
analysis  has  emphasized  the  balanced  performance  of
EfficientNet and ResNet50, with InceptionNet showcasing
lower  scores  primarily  attributed  to  reduced  precision.
Notably,  AUC  values  have  highlighted  the  superior
discrimination  capabilities  of  EfficientNet  and  ResNet50
across  all  disease  categories.  These  findings  collectively
suggest  EfficientNet  and  ResNet50  to  be  promising
candidates  for  accurate  and  reliable  early  detection  of
lung  diseases,  with  potential  implications  for  enhancing
diagnostic precision in clinical settings.

5. DISCUSSION
In  recent  years,  the  integration  of  Artificial

Intelligence  (AI)  and  deep  learning  techniques  has
revolutionized medical diagnostics, particularly in the field
of  radiology.  In  this  work,  we  have  introduced  a  robust
Convolutional Neural Network (CNN) framework tailored
for the autonomous identification of lung diseases from X-
ray images. Leveraging the power of state-of-the-art pre-
trained CNN models, EfficientNet, ResNet50, VGG16, and
InceptionNet,  our  study  has  focused  on  the  automated
detection of three significant lung pathologies, including
COVID-19, pneumonia, and Tuberculosis (TB).

The  selection  of  pre-trained  CNN  models  has  been
driven by their proven performance across a diverse range
of datasets from publicly available sources. This approach
has  ensured  a  strong  foundation  for  our  framework,
enabling  efficient  feature  extraction  and  learning
representations  from  the  X-ray  images.  To  tailor  these
models specifically for the task at hand, we have employed
fine-tuning techniques, allowing the networks to adapt to
the  intricacies  of  lung  pathology  detection.  The  process
has  involved  training  the  networks  on  a  substantial
quantity  of  data,  being  crucial  for  achieving  optimal
performance.

 Precisio

n  

Recall F1-

score 

Suppo

rt 

COVID-19 0.93 0.94 0.93 372 

Normal 0.93 0.96 0.94 352 

Pneumonia 0.95 0.92 0.94 356 

Tuberculosis  0.94 0.91 0.92 210 

Accuracy   0.94 1290 
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In  our  evaluation,  the  results  have  highlighted  the
superior performance of the EfficientNet model compared
to  other  pre-trained  CNN  models.  With  an  accuracy  of
0.96, precision of 0.94, and recall of 0.97 in classifying X-
ray  images,  the  EfficientNet  model  has  emerged  as  the
frontrunner,  demonstrating  its  efficacy  in  accurately
identifying  lung  pathologies,  which  underscores  its
potential as a robust approach to diagnosing lung diseases
from chest X-ray images.

To  enhance  usability  and  accessibility,  we  have
developed  a  user  interface  to  streamline  the  process  of
inputting  X-ray  images  for  predictions  regarding  lung
health.  The  system  has  incorporated  checkpoints  to
dynamically assess and switch to a more accurate model,
ensuring  optimal  model  utilization  for  each  image.
Additionally,  we have addressed the challenge of limited
training data by proposing an ensemble technique based
on majority voting among diverse deep transfer learning
outputs. This approach has mitigated the issue of dataset
size and enhanced the reliability of our predictions.

Looking ahead, our future plans involve expanding the
dataset  to  encompass  a  broader  range  of  X-ray  images,
including  those  from  diverse  demographics  and  clinical
settings. We aim to further validate the effectiveness and
reliability  of  our  proposed  approach  through  extensive
testing  and  evaluation.  Ethical  considerations,
interpretability,  and  human  supervision  are  critical
aspects that we would continue to prioritize, ensuring the
ethical  and  responsible  deployment  of  AI  in  medical
diagnostics.

In conclusion, the comprehensive approach presented
in this investigation holds promise as a valuable tool in the
identification of lung diseases in X-ray images. However,
ongoing scrutiny and validation are imperative to affirm its
precision  and reliability  in  real-world  medical  scenarios.
By advancing the intersection of AI and medical imaging,
we  aim  to  contribute  to  improved  healthcare  outcomes
and patient care.

While our study has demonstrated promising results in
the automated identification of  lung diseases from X-ray
images  using  pre-trained  CNN  models,  it  is  essential  to
acknowledge  several  limitations  that  could  impact  the
generalizability and practical applicability of our findings.
Firstly, our analysis has been contingent upon the quality
and  representativeness  of  the  dataset  utilized  for  model
training and evaluation. Despite efforts to curate a diverse
dataset,  inherent  biases  may  have  existed,  potentially
skewing  the  performance  of  the  models  towards  certain
demographics or disease manifestations. To address these
biases,  efforts  are  required  to  collect  and  annotate  data
from  diverse  patient  populations  and  clinical  settings,
ensuring  the  robustness  and  inclusivity  of  the  model's
predictions.

Furthermore,  while  our  models  have  demonstrated
high  accuracy  and  performance  metrics  in  controlled
experimental settings, their efficacy in real-world clinical
scenarios  may  be  influenced  by  various  factors.  These
include  differences  in  image  acquisition  techniques,

variations  in  disease  presentation,  and  the  presence  of
confounding  factors  not  accounted  for  during  model
training.  Thus,  further  validation  studies  in  clinical
settings are imperative to assess the models' performance
under  real-world  conditions,  including  their  ability  to
integrate  seamlessly  into  existing  healthcare  workflows
without disrupting clinical practices.

Additionally,  the  successful  integration  of  AI-based
diagnostic  tools  into  clinical  practice  hinges  on
considerations beyond model performance alone. Practical
challenges,  such  as  regulatory  compliance,  data  privacy
concerns,  and  workflow  integration,  must  be  carefully
addressed  to  ensure  seamless  adoption  by  healthcare
providers.  Moreover,  effective  communication  strategies
are essential to facilitate collaboration between AI systems
and human clinicians, fostering trust and transparency in
decision-making processes.

In  light  of  these  limitations,  future  work  should
prioritize  efforts  to  enhance  the  robustness  and
generalizability  of  AI  models  for  lung  disease  detection.
This  includes  ongoing data  collection efforts  to  diversify
and  expand  the  training  dataset,  as  well  as  the
development  of  interpretable  AI  techniques  to  elucidate
the  rationale  behind  model  predictions.  Moreover,
collaboration with healthcare stakeholders is essential to
iteratively  refine  AI  models  and  ensure  their  alignment
with  clinical  needs  and  practices.  Ultimately,  by
addressing  these  limitations  and  challenges,  AI-based
diagnostic  tools  have  the  potential  to  augment  and
enhance  clinical  decision-making,  ultimately  improving
patient  outcomes  in  the  diagnosis  and  management  of
lung  diseases  [36-40].

CONCLUSION
This research study’s findings indicate the feasibility of

diagnosing COVID-19, pneumonia, and TB through chest
X-rays utilizing the transfer learning approach with deep
Convolutional  Neural  Networks  (CNNs).  By  employing  a
chest  X-ray  dataset,  the  study  has  applied  transfer
learning  using  four  distinct  pre-trained  CNN
architectures:  EfficientNetB0,  VGG-16,  InceptionV3,  and
ResNet-50.  The  methodology  has  encompassed  data
collection,  pre-processing,  and  comprehensive  model
training  and  testing  across  all  four  pre-trained  models.
Post-fine-tuning and evaluation of test metrics on the test
dataset,  the  study  has  observed  ResNet-50  and
EfficientNet models to achieve the highest accuracy, both
nearing  96%,  with  EfficientNet  exhibiting  a  slightly
superior  performance.  Comparable  precision  and  recall
values for both models have underscored the accuracy and
quality of the obtained results. The findings suggest that
leveraging  deep  learning  with  transfer  learning
methodologies  holds  promise  in  developing  automated
systems  for  the  early  identification  and  diagnosis  of
specific  illnesses,  especially  in  resource-limited settings.
The  integration  of  chest  X-rays  with  deep  learning
strategies  could  contribute  to  the  creation  of  more
efficient  and  precise  diagnostic  tools  for  a  spectrum  of
medical  conditions.  Furthermore,  the  potential  of  deep
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learning in addressing diverse medical imaging tasks for
disease detection warrants exploration in future research
endeavours. In summary, this study has provided valuable
insights into the application of deep learning techniques
for  illness  diagnosis,  indicating  significant  potential  for
advancing healthcare outcomes in the future.
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