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Abstract:
Introduction: The thyroid is an endocrine gland located in the front of the neck whose main purpose is to produce
thyroid hormones necessary for the functioning of the entire body. Thyroid hormones may be produced too little or
too much depending on dysfunction. Since the 1990s, there have been an increasing number of thyroid illness cases,
and in recent years, thyroid cancer has become the malignancy with the fastest rate of increase. According to recent
studies,  thyroid  dysfunction affects  42 million  people  in  India.  Much research has  provided solutions  for  thyroid
classification.

Methods: In this paper, we survey various transfer learning models to classify thyroid nodules and predict the best
accuracy. Our study evaluated several models, including DenseNet169, ResNet101, and various EfficientNet variants,
using a comprehensive dataset comprising 7,893 images. DenseNet169 achieved the highest accuracy at 95.96%,
followed by ResNet101 and EfficientNetB1, with accuracies of 94.74% and 86.14%, respectively. The models were
rigorously tuned and optimized using grid search strategies, with hyperparameters such as learning rate, batch size,
optimizer type, and dropout rate carefully selected to enhance performance. The evaluation included precision, recall,
and F1 score metrics, ensuring balanced performance across different metrics.

Results: Our results demonstrate that advanced transfer learning models can distinguish malignancy from benign
conditions with greater accuracy than traditional diagnostic approaches reliant on the human eye.

Conclusion: This research highlights the potential of integrating AI techniques in medical diagnostics to improve the
accuracy and reliability of thyroid disease detection, ultimately leading to better patient outcomes.”
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1. INTRODUCTION

1.1. Ultrasound Image
Ultrasound  characterization  of  thyroid  nodules  pri-

marily  focuses  on  imaging  features  such  as  size,  shape,

echogenicity,  and  the  presence  of  calcifications  to
determine  the  likelihood  of  malignancy.  On  the  other
hand,  the  study  of  gland  function  and  conditions  like
hypothyroidism or hyperparathyroidism involves assessing
hormone  levels,  glandular  function,  and  associated
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symptoms  to  diagnose  and  manage  endocrine  disorders.
Separating these areas of study allows for a more focused
and  in-depth  analysis  of  each  aspect  of  thyroid  disease,
potentially  leading  to  more  nuanced  and  accurate
diagnostic  and  management  strategies.  Additionally,  it
enables researchers and clinicians to tailor interventions
and treatments specifically to the needs of patients based
on their presenting symptoms and diagnostic findings.

1.2. Thyroid and CAD(Computer Aided Diagnostics)
System

Thyroid  nodules,  which  afflict  20%  to  69%  of  the
general population, are among the most common nodular
lesions. Thyroid cancer, one of the most prevalent types of
cancer,  is  known to  have  increased by  about  240% over
the  previous  30  years  [1].  Ultrasonography  is  a  popular
and widely used examination used to diagnose the thyroid
gland and forms the basis of fine needle aspiration biopsy
(FNAB)  and  subsequent  treatment.  Several  recommen-
dations have recently been made to assist radiologists in
evaluating thyroid nodules based on ultrasound. However,
since ultrasound causes echogenic problems and adverse
effects,  ultrasound  detection  of  thyroid  nodules  still
depends  only  on  the  extensive  training  and  expertise  of
specialists [2].

Using  the  proposed  multi-channel  paradigm,  the
possibility  of  different  kernel  sizes  is  explored  and
compared to single-channel CNNs. Using CT modalities in
the field of thyroid disease detection, Xinyu Zhang (2022)
assessed  the  effect  of  nucleus  size  selection  on  CNN
performance.  This  study  also  suggests  the  most  reliable
combination of kernel sizes for CNN mode [3].

Thyroid  nodules,  abnormal  growths  in  the  thyroid
gland,  are  a  common  occurrence  in  medical  imaging
studies,  necessitating  accurate  identification  for  timely
intervention [4]. Traditional methods of diagnosis involve
manual  interpretation  of  imaging  data,  a  process
susceptible to subjectivity and variability. With the rapid
advancements  in  artificial  intelligence,  particularly  deep
learning and machine learning, there is a growing interest
in leveraging these technologies to enhance the accuracy
and efficiency of thyroid nodule detection [5].

Deep  learning,  a  subset  of  machine  learning,  has
demonstrated  exceptional  capabilities  in  image  analysis
tasks.  Convolutional  Neural  Networks  (CNNs),  a  pro-
minent deep learning architecture, have proven successful
in various medical imaging applications [6]. In the context
of  thyroid  nodule  detection,  CNNs  can  be  employed  to
automatically  learn  and  extract  relevant  features  from
medical  images,  aiding  in  the  differentiation  of  nodules
[7]. The ability of deep learning models to discern complex
patterns  and  hierarchical  representations  makes  them
well-suited  for  this  intricate  diagnostic  task  [8].

Few  studies  show  that  optimization  techniques  are
crucial  for  refining  and  improving  the  performance  of
thyroid  nodule  detection  models  [9].  Hyperparameter
tuning,  regularization  methods,  and  gradient  descent
optimization  algorithms  are  employed  to  fine-tune  the
model parameters, ensuring optimal generalization to new

data.  Additionally,  transfer  learning,  a  technique  where
pre-trained  models  on  large  datasets  are  adapted  to  the
specific task of nodule detection, enhance the efficiency of
model  training,  particularly  in  scenarios  with  limited
labeled  medical  data  [10].

Wenkai Yang employed semi-supervised classification
algorithms  to  generate  data,  addressing  the  reliance  of
deep learning models on lesion labeling and overcoming
constraints  posed  by  small  datasets  in  medical  imaging
[11].  This  approach facilitated improved nodule splitting
and  categorization.  Yang  also  introduced  a  Multitask
Cascade  Deep  Learning  Model  (MCDLM)  that  leverages
multimodal  ultrasound  data  for  the  automatic  classi-
fication  of  thyroid  tumors.  Notably,  the  model  considers
the  diverse  perspectives  of  radiologists.  The  Dual
Knowledge  (DK)  framework  incorporates  insights  from
radiologists'  comments  and  ultrasonic  properties  of
nodules  (UF),  encompassing  B-mode  characteristics
defined  by  TI-RADS  and  hardness  information  from
elastography images. The initial nodule segmentation was
performed  using  a  U-net  constructed  with  a  pre-trained
VGG13 model. Ruiguo Yu employed ultrasonic imaging is a
topic of many research studies involving thyroid nodules.
Thyroid nodules, which can be benign or malignant, are a
prevalent ailment in coastal areas [12].

Each  of  them  offers  different  therapy  options  and
affects  patients  to  various  degrees.  Although
ultrasonography can be used to identify nodule features,
its fuzziness and a variety of angles, as seen in, place extra
demands on medical practitioners and suggest a method
for  CAD  ultrasound  pictures  that  is  unsupervised.  Lee
proposed that a deep convolutional neural network (CNN)
has  significantly  improved  the  efficiency  and  diagnostic
accuracy  of  interpreting  medical  images  in  recent  years
[13]. Many studies describe a computer-aided diagnostic
(CAD)  model  that  uses  computed  tomography  (CT)  and
ultrasound  images  to  diagnose  both  normal  and
pathological  thyroid  conditions.

To semantically distinguish thyroid nodules in nodules,
cystic components, and normal thyroid in B-mode images,
Viksit Kumar came up with a breakthrough multiplex CNN
[14].  The  program  allows  the  user  to  recognize  and
segment  the  anatomy  of  the  thyroid  in  real  time.  The
method  is  used  to  create  thyroid  maps,  identify  thyroid
nodules,  segment  them,  and  estimate  their  volume  and
size.  The  effectiveness  of  the  proposed  method  is
evaluated  against  manual  segmentation  masks  and
traditional  seeding  methods.

Yinghui Lu showed that convolutional neural networks
diagnose thyroid nodules more accurately than traditional
artificial  neural  networks.  However,  there is  still  a  need
for enhancement in thyroid nodule placement or diagnosis
accuracy  [15,  16].  There  is  a  lack  of  a  target  detection
technique for deep learning networks that can locate and
identify  nodules  in  real-time.  Hence,  numerous  studies
endeavor  to  create  a  highly  effective  object  detection
model  capable  of  discerning  between  benign  and
malignant thyroid nodules. Here are the main highlights of
the proposed work:
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Comprehensive Evaluation of Transfer Learning Models:
The study evaluates a range of transfer learning models,
including  DenseNet169,  ResNet101,  and  various
EfficientNet  variants,  for  classifying  thyroid  nodules.
DenseNet169 achieved the highest accuracy of 95.96%,
demonstrating  the  effectiveness  of  advanced  deep-
learning  techniques  in  medical  image  classification.
Hyperparameter Tuning and Optimization: An exhaustive
grid  search  strategy  was  employed  for  hyperparameter
tuning,  optimizing  parameters  such  as  learning  rate,
batch  size,  optimizer  type,  and  dropout  rate.  This
rigorous approach ensured the models were finely tuned
to achieve the best performance.
Balanced Performance Metrics: In addition to accuracy,
the  study  monitored  precision,  recall,  and  F1  score  to
ensure  balanced  performance  across  different  metrics.
This  comprehensive  evaluation  provided  a  robust
assessment of each model's capabilities in distinguishing
between malignant and benign thyroid nodules.
Utilization of a Diverse Dataset: The research utilized a
dataset  comprising  7,893  images  from  four  different
sources  (PERSIAN,  DDTI,  ACR  TIRADS,  and  AUITD),
ensuring a diverse and representative sample of thyroid
images. This diversity enhances the generalizability and
robustness of the findings.
Implications for Improved Diagnostic Accuracy: The study
highlights  the  potential  for  integrating  advanced  AI
techniques  in  medical  diagnostics.  By  outperforming
traditional  diagnostic  approaches  reliant  on  the  human
eye, these models offer a more accurate, consistent, and
unbiased  method  for  detecting  thyroid  diseases,
potentially  leading  to  better  patient  outcomes.

2. RELATED WORKS
Xingtao  Lin  [17]  advocates  the  use  of  a  super-

resolution directed network to enhance automated thyroid
nodule categorization. The proposed system employs an N-
shaped network for classification, comprising a multi-scale
input  layer,  a  U-shaped  convolutional  network  with
attention blocks, multiple atrous spatial pyramid pooling
blocks, and a parallel atrous convolution modulus (PAC).
Validated  using  the  UTNI-2021  dataset,  the  method
achieves  a  Dice  value  of  91.9%,  mIoU  value  of  87.0%,
Precision  value  of  88.0%,  recall  value  of  83.7%,  and  F1
score value of 84.3%. This novel approach stands out for
ultrasound  image  segmentation,  demonstrating  superior
performance on the UTNI-2021 dataset.

Qingbo  Kang  [18]  introduces  a  method  for  the
segmentation  and  classification  of  thyroid  nodules  in
ultrasound images, emphasizing consistent intra-task and
inter-task  learning.  Curated  from  a  hospital  in  western
China,  the  dataset  enables  training  intra-  and  inter-task
consistency, successfully eliminating task inconsistencies.
The proposed method performs exceptionally  well  on  all
tasks  related  to  thyroid  nodule  segmentation  and
classification.

To  segment  malignant  thyroid  nodules,  Geng  Li  [19]
proposes  the  fusion  of  an  improved  transformer  and  a
large kernel CNN. This method combines a deep learning-

based  CAD  approach,  transform  fusing  CNN,  utilizing
widely used segmentation techniques. Employing the Big
Kernel module for extracting specific shape features from
ultrasound  images,  the  model  is  evaluated  against
commonly  used  segmentation  algorithms  on  the  MTNS
dataset  and  other  accessible  datasets.

Chong Geng [20] introduces a Dual-route Mirroring U-
Net  (DMU-Net)  with  mutual  learning  for  segmenting
malignant thyroid nodules. DMU-Net utilizes two subnets
(U-shape  subnet,  inversed  U-shape  subnet)  and  three
modules  (pyramid  attention  module,  margin  refinement
module,  and  aggregate  module)  to  extract  contextual
information  and  margin  characteristics  from  ultrasound
images.  Comparative  evaluations  with  established
methods on the MTNS dataset and other datasets reveal
DMU-Net's superior performance.

The  accuracy  and  consistency  of  inter-observer
comparisons for ultrasound thyroid nodule diagnosis have
been improved by Yan Cui's [21] suggested categorization
of  regularized  dimensionality  reduction.  To  project  the
retrieved  feature  vectors  combined  with  CNN-predicted
malignancy  probabilities  into  2D  space,  use  a  spatial
segmentation  classifier  trained  on  2614  ultrasound
images. The proposed method combines the advantages of
CNN and  DRT  by  using  the  Uniform Approximation  and
Projection  of  the  Regularized  Classification  Variety
(CReUMAP). For the purpose of extracting features from
thyroid  ultrasound  pictures,  Ruiguo  Yu  [11]  presented
Feature  discretization-based  deep  clustering.  The
proposed  methods  include  a  greediness-based  label
reassignment method and a global-local rule discretization
method.  The first  reduces the loss fluctuation caused by
recombination  and  increases  the  expressiveness  of  the
representation  network  by  limiting  the  eigenvalues.

According  to  the  test  results,  the  new  FDDC  can
successfully  complete  6  classification  tasks.  The  tumor
classification  accuracy  rate  is  79.06%,  and  the  machine
classification accuracy rate is 96 17%. This recommended
method  makes  use  of  visualization  to  verify  the  FDDC's
feature  space  representational  capability.  To  diagnose
multimodal  thyroid  ultrasound  images,  Cheng  Zhao
created a self-supervised multimodal fusion network. The
recommended  system  consists  of  Three  ResNet18s  with
self-supervised learning,  as  their  initialization  is  initially
used  as  branches  to  retrieve  the  picture  data  for  each
modality.  The  background  information  of  the  three
modalities  is  cleaned  using  the  Multi-Head  Multimodal
Attention Branch, and subsequently, the knowledge from
each modality is fused for thyroid diagnosis. The findings
demonstrate that the multimodal thyroid ultrasound image
identification  approach  can  help  sonographers  identify
thyroid nodules quickly and precisely. In a self-assembled
dataset, the author confirms the methodology [22].

Several  magnification  parameters  were  used  in  Bing
Han's [9] proposed automatic classification approach for
thyroid abnormal images. The thyroid pathological images
in this suggested system are divided into PTC and normal
thyroid pathological images using an active classification
approach for papillary thyroid cancer (PTC) pathological
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images. This system's design used the attention process to
merge diseased images with various magnification factors,
simulating thyroid cancer detection under a microscope.
The  convolutional  neural  network's  uncertainty  and
representative  information  were  used  by  the  author  to
identify the best samples for annotation that would lower
labelling  costs.  The  results  of  the  experiments
demonstrate that our technique can successfully recognize
PTC on the VIP-TCHis dataset.

Muthu Subash Kavitha proposed employing a network
with  supervised  weight-learning  techniques  to  identify
thyroid cancer lymph nodes [23]. The authors introduced
an  end-to-end  trained  model  called  the  input-driven
leveraged segmentation network (LSIG), created without
pre- or post-processing functionalities. This model learns
appropriate parameter values based on the volumes where
various  objects  appear.  The  authors  innovatively
developed  a  reweighting  negative  control  (RNC)  mecha-
nism comprising a reweighting term (Rw) and a negative
control function (NcF) to enhance class co-occurrence and
regulate  false  positive  regions.  In  comparison  to  CNN-
based  networks  utilizing  ground-truth  (GT)  masks
generated from post-ablation single-photon emission tomo-
graphy  (SPECT/CT),  LSIG  demonstrated  notable  perfor-
mance  [24].  The  LSIG  model  exhibited  an  AUC  value  of
94.9%,  surpassing  the  previous  PTC  network  by  14.6%,
which utilized a fully guided LSFgCNN (Fg) model.

From the  above  papers,  the  research  gaps  identified
are Limited Dataset Size and Diversity, Narrow Focus on
Specific  Models,  Insufficient  Hyperparameter  Optimi-
zation,  Balanced  Performance  Metrics,  and  Comparison
with  Human  Diagnostic  Accuracy.  The  gap  bridging
strategies  are;

2.1. Expanding and Diversifying the Dataset
This  study utilized a  comprehensive  dataset  of  7,893

images from four different sources (PERSIAN, DDTI, ACR
TIRADS, and AUITD), ensuring a diverse representation of
thyroid  images.  By  addressing  the  limitations  of  dataset
size and diversity, the study enhances the generalizability
and  robustness  of  the  model’s  performance  across
different  demographic  and  clinical  settings.

2.2. Comprehensive Model Comparison
A  wide  range  of  transfer  learning  models  were

evaluated,  including  DenseNet169,  ResNet101,  and
various  EfficientNet  variants.  This  approach  provides  a
thorough  comparison,  identifying  the  most  effective
models for thyroid nodule classification and filling the gap
in narrow model focus.

2.3. Rigorous Hyperparameter Tuning
An  exhaustive  grid  search  strategy  was  employed  to

systematically  tune  hyperparameters  such  as  learning
rate,  batch  size,  optimizer  type,  and  dropout  rate.  This
rigorous optimization process ensures that the models are
performing at their best, addressing the gap in insufficient
hyperparameter optimization.

2.4. Balanced Evaluation Metrics
In addition to accuracy, the study monitored precision,

recall, and F1 score to provide a balanced assessment of
model  performance.  Ensuring  balanced  performance
across different metrics helps in creating models that are
not  only  accurate  but  also  reliable  and  effective  in  real-
world diagnostic scenarios.

3. THYROID NODULE IMAGE IDENTIFICATION FOR
PRE-PROCESSING

3.1. Threshold
The  simplest  technique  for  segmenting  images  is

thresholding. It can be used to create binary images from
grayscale  images  [25].  Thresholding  is  a  segmentation
technique that creates a binary image by dividing a given
grayscale  image  into  two  regions  based  on  threshold
values. A binary image is one whose pixels have only two
values, 0 and 1, and so uses only one bit  to record pixel
intensity.  So,  in  the  output  image,  pixels  with  intensity
levels more than the specified threshold will be classified
as white or 1, and those with lower values will be treated
as black or 0. Abbreviations and Acronyms

3.2. Noise Removal
Noise  often  spoils  pictures.  For  example,  noise  may

occur  while  taking  and  sending  the  photo.  The  role  of
noise  removal  in  image  processing  is  important.  Image
processing  performance  is  often  affected  by  noise
reduction.  In  color  image  processing,  a  number  of
strategies for noise removal are well established [26]. The
type of noise that affects the image determines the nature
of  the  noise  reduction  problem.  According  to  the  widely
recognized theory, Johnson-Nyquist noise (thermal noise),
which  includes  noise  from  capacitor  reset  noise,  is  the
main cause of amplifier noise. This noise is pixel-specific,
additive,  Gaussian, and signal-intensity dependent (“kTC
noise”). Here are a few illustrations of the various types of
visual noise:

1. Salt and pepper noise.
2. Shaped noise.
3. Rayleigh noise.
4. Gaussian noise.
5. Exponential noise.
6. Erlang (gamma) noise.

3.2.1. Gaussian Noise
According  to  the  widely  recognized  theory,  Johnson-

Nyquist noise (thermal noise), which includes noise from
capacitor reset noise, is the main cause of amplifier noise
[27].  This  noise  is  additive,  Gaussian,  pixel-specific,  and
signal-intensity  dependent  (“kTC  noise”).  The  result  of
random oscillations in the signal is white noise. There may
be greater noise when the blue channel of color cameras is
amplified  more  than  the  green  or  red  channels.  The
primary cause of the consistent noise level in the picture's
black  parts  is  amplifier  noise,  which  contributes  to  the
noise of an image sensor. Due to these effects, each pixel
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in  the image will  (usually)  experience a small  amount of
change  from  its  initial  value.  A  histogram  displays  the
typical  distribution  of  noise  and  plots  the  degree  of
distortion  of  a  pixel  value  against  its  frequency  (Eq  1).

(1)

3.2.2. Salt and Pepper Noise
Spike  noise,  impulse  noise,  independent  noise,  and

random noise are other names for salt  and pepper noise
[11].  An image's  salt  and pepper noise (sparse light  and
dark interruptions) makes some pixels stand out from the
background  in  terms  of  color  or  intensity.  “Salt  and
pepper noise” is the term used to describe the appearance
of  black  and  white  specks.  Dust  particles  within  the
camera and damaged or overheated CCD (Charge-coupled
device) components are frequent reasons. Bright regions
will appear as dark pixels in a picture with salt-and-pepper
noise and vice versa [14].

3.2.3. Rayleigh Noise
For  a  variable  with  a  positive  value,  the  Rayleigh

distribution  is  a  regular  distribution.  This  often  occurs
when the amplitude and direction components of a vector
are connected (Eq 2).

(2)

3.2.4. Exponential Noise
The probability distribution, known as the exponential

distribution, is used to represent how quickly events occur
in  a  Poisson  process.  It  is  an  instance  of  the  gamma
distribution  in  particular  (Eq  3).

(3)

3.2.5. Erlang (gamma) Noise
Theoretically,  random  noise  can  “represent”  a

mathematical function. A model is precisely what it sounds
like  it  is.  Based  on  probability,  we  may  describe  the
“distribution”  of  the  noise.  It  is  considerably  simpler  to
design filters to reduce noise once it has been quantified.
We'll only review the various probability density functions
(PDFs)  in  this  post  and  get  acquainted  with  six  distinct
noise models (Eq 4).

(4)

3.3. Normalization
Normalization in machine learning generally refers to

the process of transforming input data into a standard or
classification  model  to  improve  the  performance  and
stability  of  machine learning models  [15].  Normalization
can  help  improve  the  convergence  speed  of  training
algorithms, reduce the impact of outliers in the data, and
prevent  numerical  instability  in  the  models.  Natural
language  processing,  recommender  systems,  image  and
audio  recognition,  and  other  machine  learning
applications  frequently  use  normalization.

4. METHODS

4.1. Dataset and Image Pre-processing Phases
The thyroid ultrasonography (US) dataset presented in

this  study  is  helpful.  Two  thousand  four  hundred  fifty
thyroid US images were gathered between 2018 and 2020
as part of the Prospective Epidemiology Research Study in
Mashhad,  Iran  (PERSIAN),  a  significant  national  cohort
study [28]. The characteristics of ACR TIRADS, developed
by  skilled  medical  professionals,  are  provided  together
with  the  ROI  of  thyroid  nodules  on  these  US  images  in
XML  format.  ACR-TIRADS  classifies  the  images  in  the
collection  into  five  classes  (Tirads1-Tirads5).  Here,  we
have collected for PERSIAN (2450 thyroid images), DDTI
(480 images), and AUITD (3538 thyroid images). A graph
within  a  graph  is  an  “inset”,  not  an  “insert”.  The  word
alternatively is preferred to the word “alternately” (unless
you really mean something that alternates). Table 1 shows
the  number  of  images  in  each  dataset  used  for  thyroid
classification.  The  datasets  used  (PERSIAN,  DDTI,  ACR
TIRADS, and AUITD) are curated from reputable sources,
ensuring  high-quality  images  and  accurate  annotations.
High-quality  data  can  often  compensate  for  smaller
datasets  by  providing  clear  and  precise  information  for
model  training.  Each  dataset  includes  a  representative
sample  of  the  specific  medical  conditions  or  imaging
modalities  under  study.  This  targeted  approach  helps  in
building a robust model for the intended application, even
with a limited number of images. To mitigate the issue of
limited  data,  we  have  employed  advanced  data
augmentation  techniques.  These  techniques  artificially
increase the dataset size by generating modified versions
of  existing  images  through  transformations  such  as
rotations,  scaling,  flipping,  and intensity  variations.  This
helps  in  improving  the  model's  robustness  and
generalization  ability.

Table 1. Collections of dataset for thyroid nodule classification.

S.No. Dataset No. of Images

1 PERSIAN 2450
2 DDTI 480
3 ACR TIRADS 1425
4 AUITD 3538
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Fig. (1). Classification of thyroid nodules using Transfer learning methods.

4.2. Workflow of the Comparative Study
To  analyze  the  data,  a  Computer  running  Windows,

equipped with 8GB of RAM, was employed. Using a variety
of  transfer  learning  approaches,  the  features  from  the
photo  files  were  retrieved.  Two  separate  attribute  files
were  taken  from  the  images  to  define  the  person  and
gender.  Data  sets  used  for  training  and  testing  were
divided using the method of 10-fold cross-validation. The
first step in the procedure is to partition the data into n
groups. One group is utilized for testing, while the other
nine groups are used for training [29]. To use the entire
dataset  of  thyroid  imaging  data  for  both  testing  and
training,  this  procedure is  performed ten times with  the
groups  being  switched.  The  Python  program's  classi-
fication techniques were used to test attribute files made
for  thyroid  categorization,  and  the  best  classification
success  was  sought  after  [30].  The  study's  transfer
learning techniques, classification algorithms, and success
rates  are  discussed  in  the  Results  section.  The  study's
process is displayed below. Fig. (1) depicts various steps

followed for classifying thyroid nodules.

4.3. Classification

4.3.1. Random Forest Classification
Utilizing a random forest classification methodology in

machine learning is applied to classification problems [31].
A  prediction  is  made  using  an  ensemble  learning
technique that integrates different decision trees. Here is
how the random forest method functions:

Build a decision tree using a random subset of features
and  a  random  subset  of  training  data.  Each  tree  in  the
forest is trained individually with a unique random subset
of the training data. Each tree in the forest independently
predicts the class of input data during prediction [32]. The
final  prediction  is  made by  a  majority  vote  of  each tree.
Random forest classification has several advantages over a
discrete  decision  tree:  Random  forest  can  handle  both
categorical and continuous data. Random forests are less
invasive  than  individual  decision  trees  [33].  Random
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image pre
processing
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image

training testing

classification

preformance
analysis

thyroid
nodule
image
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forests can be high-dimensional data with many features.
Random  forests  provide  estimates  of  feature  values  and
can  be  used  for  feature  selection.  Random  forest  can
handle  imbalanced  datasets  by  using  class  weights  or
sampling  techniques.  However,  random  forest  also  has
some  limitations,  such  as:  Random  forest  can  be
computationally  expensive  for  large  datasets.  Random
forest is not well suited for extrapolation or extrapolation
beyond  the  range  of  the  training  data.  Overall,  random
forest  classification  is  a  powerful  algorithm  that  can  be
used for a variety of classification tasks, especially when
dealing with complex and high-dimensional datasets. Fig.
(2)  shows  the  decision  tree  built  by  a  random  forest
classifier.

4.4. Transfer Learning
Transfer  learning  is  a  stream  in  machine  learning

research that deals with storing knowledge gained while
solving  one  problem  and  applying  it  to  other  related
problems [34]. A person who can ride a bike, for instance,
could  find  it  easier  and  quicker  to  learn  how  to  use  a
scooter. When confronted with similar circumstances, the
person uses their ability to stay balanced while driving a
scooter  and  unintentionally  applies  what  they  have
learned. The capacity to retain information learned from
solving  one  problem and  use  it  to  solve  another  later  is
known as transfer learning. Models that make better use
of  existing  knowledge  and  learn  more  quickly  with  less
training data are developed using transfer learning.  The
most  advantageous feature of  transfer  learning is  that  a
fraction  of  the  trained  model  needs  learning  in  order  to
use it. We can achieve this and save time by using transfer
learning.

Fig. (2). Random forest classifier.
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4.4.1. VGGNET
Researchers  first  unveiled  VGGNet  (Visual  Geometry

Group  Network),  a  deep  convolutional  neural  network
architecture,  in  2014.  When  it  comes  to  computer  vision
tasks  like  picture  categorization  and  object  recognition,
VGGNet  is  renowned  for  its  efficiency  and  simplicity.  In
order to minimize the output's spatial dimension, VGGNet
employs  a  sequence  of  convolutional  layers  with  modest
filter  sizes  (3x3).  As  the  network  becomes  more  complex,
the number of filters eventually grows. The determination
of  architecture  often  involves  specifying  the  number  of
convolutional layers and the number of filters within each
layer. The architectures with 16 and 19 layers, respectively,
called VGG16 and VGG19, are the most widely used ones.
VGGNet has attained cutting-edge technology. Performance
on  a  variety  of  benchmark  datasets,  including  ILSVRC,
where it ranked among the best models. Many more deep-
learning  computer  vision  architectures,  including  the
Inception  and  ResNet  designs,  have  been  built  on  top  of
VGGNet.

4.4.2. AlexNet
Having undergone training on a dataset comprising over

a  million  images,  AlexNet  demonstrates  the  capability  to
classify images into 1000 distinct categories, encompassing
items  like  keyboards,  coffee  mugs,  pencils,  and  various
animals.  The  network  has  acquired  intricate  feature
representations across a range of photos. Upon receiving an
image  as  input,  the  network  produces  a  label  for  each
object  along  with  corresponding  probabilities  for  the
various  object  categories.  The  architecture  of  AlexNet
consists  of  five  convolutional  layers  and  three  fully
connected layers. To reduce the input's spatial dimensions,
the  first  two  convolutional  layers  have  large  filter  sizes
(11x11 and 5x5) and a stride of 4, and they are followed by
max pooling layers to further reduce the size. With a stride
of  1  and  no  pooling,  the  final  three  convolutional  layers
have  smaller  filter  sizes  (3x3).  The  use  of  the  Rectified
Linear  Unit  (ReLU)  activation  function,  dropout
regularisation, and data augmentation techniques were just
a few of the additional innovations that AlexNet introduced.
AlexNet  paved  the  way  for  many  other  deep  learning
architectures by demonstrating that deep neural networks
can perform significantly better than conventional machine
learning techniques for computer vision tasks.

4.4.3. DenseNet
Every  layer  is  connected  to  the  others  by  the  Dense

Convolutional  Network  (DenseNet).  They  solve  the
vanishing-gradient problem, greatly reduce the number of
parameters, enhance feature propagation, promote feature
reuse,  and  boost  feature  reuse.  DenseNet  achieves
enhanced  depth,  precision,  and  efficiency  in  training
convolutional networks by incorporating short connections
between layers near the input and those near the output.

4.4.4. ResNet
ResNet,  which  stands  for  Residual  Network,  is  an

architecture for deep learning that was initially presented
in  2015  by  Microsoft  Research  researchers  and  designed
specifically to tackle the problem of vanishing gradients in

exceptionally  deep  neural  networks.  This  convolutional
neural network (CNN) is tailored to address the challenge
encountered  in  training  normal  deep  neural  networks.  As
the  network's  depth  increases,  conventional  deep  neural
networks face difficulties due to the potential diminution of
gradients,  making  training  challenging.  This  issue  is
resolved  by  ResNet,  which  adds  a  “residual  block”  that
enables  the  network  to  pass  through  layers  that  are  not
significantly  contributing  to  the  final  result  and  better
maintain  gradient  flow.  A  residual  block  in  ResNet
comprises  two  convolutional  layers  with  a  shortcut  link,
which adds the input to the block's output. Following this
addition, a non-linear activation function, such as ReLU, is
applied to the output. ResNet architectures have achieved
state-of-the-art  performance  in  various  computer  vision
tasks,  including  but  not  limited  to  segmentation,  object
detection,  and  image  classification.  They  are  extensively
employed  in  numerous  fields,  including  autonomous
vehicles, imaging in the medical field, and video analysis.

4.5. Splitting of Data for Training and Testing
Machine  learning  employs  the  data  split  technique,

dividing  available  data  into  training  and  testing  sets  to
assess a model's performance on new data. The training set
is  utilized  for  model  development,  while  the  testing  set
evaluates  its  performance.  Although  a  common  practice
involves a 70% training and 30% testing split, this ratio may
vary  based  on  dataset  size  and  model  complexity.
Evaluating the model on a distinct testing set helps gauge
its generalization to new, untested data. A model exhibiting
good  performance  on  the  testing  set  is  more  likely  to
generalize well  to new data,  while poor performance may
indicate overfitting to the training set, necessitating model
adjustments.  Fig.  (3)  shows  the  10-fold  validation  of
training  and  test  data.

4.6. Performance Evaluation Metrics
The  performance  analysis  of  thyroid  categorization

systems is done using the confusion matrix. The columns of
the confusion matrix, a 2x2 matrix, contain the real samples
that should belong to each class, while the rows reflect the
estimated sample data for each class. The row and column
information  can  also  be  inverted  when  creating  the
confusion matrix. Precision, Recall, Accuracy, and F1-score
rates are scores derived by the confusion matrix in Table 2
below.
Table 2. Confusion matrix.

- Actual Class

- True False
Positive TP FP
Negative FN TN

Metrics for performance evaluation are used to evaluate
how  well  a  machine  learning  model  is  performing.  These
measures  are  used  to  assess  how  successfully  the  model
generalizes  to  new,  untrained  data  and  learns  from  the
training data. The challenge at hand and the model's aims
influence  the  choice  of  metrics.  Here  are  some  common
machine learning performance evaluation metrics:
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Fig. (3). 10 fold cross validation.

4.6.1. Accuracy
Accuracy is  determined by the percentage of  correct

predictions  made  by  the  model.  Calculate  accuracy  by
dividing  the  total  number  of  correct  predictions  by  the
total number of assumptions (Eq 5).

(5)

4.6.2. Precision
The fraction of accurate positive forecasts overall true

positive is how precision is calculated. When the objective
is to reduce false positives, it is employed (Eq 6).

(6)

4.6.3. Recall
Recall  measures  the  proportion  of  accurate  positive

predictions relative to all actual positive occurrences. It is
employed  when  the  objective  is  to  minimize  false
negatives  (Eq  7).

(7)

4.6.4. F1 Score
The F1 score serves as the harmonic mean of precision

and  recall,  providing  a  combined  metric  when  both
precision  and  recall  are  of  significance.

(8)

In  both  the  training  and  testing  phases,  a  model's
performance is evaluated using these metrics. They can be
used  to  identify  areas  where  the  model  is  performing
poorly and to adjust the model's parameters to improve its
performance.

5. RESULT AND DISCUSSION
Two  thousand  four  hundred  fifty  thyroid  US  images

were  gathered  between  2018  and  2020  as  part  of  the
Prospective  Epidemiology  Research  Study  in  Mashhad,
Iran (PERSIAN), a significant national cohort study. Along
with the ROI of thyroid nodules on these images, the ACR
TIRADS  characteristics—developed  by  qualified  medical
professionals—are provided in XML format. ACR-TIRADS
classifies  the  images  in  the  collection  into  five  classes
(Tirads1-Tirads5). The characteristics are extracted from
the dataset's pictures using a variety of transfer learning
algorithms. The dataset comprises four image collections:
PERSIAN, DDTI, ACR TIRADS, and AUITD, with a total of
7,893  images.  Despite  the  relatively  small  size,  the
datasets are high-quality and representative of the medical
imaging domain. The attribute file with the best success
rate was selected after each feature file had been tested
using  the  random  forest  technique.  Fig.  (4)  shows  the
various  evaluation  measures  of  classifiers  (Table  3).

The  performance of  each model  was  evaluated  using
accuracy, precision, recall, and F1 score metrics. Here, we
present the results and provide an in-depth analysis of the

Accuracy = 
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
 

Precision = 
𝑻𝑷

𝐓𝐏 +𝑭𝑷
    

Recall = 
𝑻𝑷

𝑻𝑷+𝑭𝑵
         

F1 Score = 
𝟐∗𝑻𝑷

𝟐∗𝑻𝑷+𝑭𝑷+𝑭𝑵
   

PERSIAN

ACR

TIRADS

DDTI

TDID

Iteration 1 Iteration 2 Iteration 3 Iteration N

calculation of sucess rate
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Fig. (4). Evaluation measures of various classification results.

Table 3. Classification results of thyroid nodule with respect to transfer learning algorithms.

No. Transfer Learning Method Accuracy Precision Recall F1 Score

1 ResNet50V2 0.7877 0.7843 0.7356 0.7763
2 EfficientNetV2B1 0.8100 0.8181 0.8456 0.8017
3 EfficientNetV2B0 0.8123 0.8012 0.8146 0.8333
4 VGG16 0.8246 0.8145 0.8344 0.8367
5 DenseNet201 0.8368 0.8245 0.8116 0.8345
6 EfficientNetV2B6 0.8491 0.867 0.8342 0.8123
7 EfficientNetB1 0.8614 0.8767 0.8674 0.8709
8 EfficientNetB7 0.8737 0.8456 0.8912 0.819
9 EfficientNetV2B3 0.8806 0.8564 0.8133 0.8265
10 ResNet50 0.8982 0.7612 0.8243 0.8324
11 EfficientNetB0 0.9105 0.7891 0.8567 0.8454
12 EfficientNetV2B2 0.9228 0.8453 0.8613 0.8444
13 EfficientNetB5 0.9351 0.8346 0.8675 0.6782
14 ResNet101 0.9474 0.8762 0.8345 0.8412
15 DenseNet169 0.9596 0.8767 0.8144 0.8675
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findings.  DenseNet169 achieved the  highest  accuracy  at
0.9596,  demonstrating  superior  overall  performance.  Its
precision (0.8767), recall (0.8144), and F1 score (0.8675)
metrics  indicate  a  balanced  and  effective  model.
ResNet101 also performed very well with an accuracy of
0.9474,  high  precision  (0.8762),  and  competitive  recall
and  F1  scores,  marking  it  as  a  strong  contender.  The
EfficientNet  family  consistently  showed  strong  perfor-
mance across different variants. Notably, EfficientNetB5,
EfficientNetV2B2,  and  EfficientNetV2B6  exhibited  high
accuracies  and  robust  performance  metrics.
EfficientNetB7 achieved a high recall (0.8912), indicating
its effectiveness in identifying positive cases,  albeit  with
slightly  lower  precision  (0.8456).  Classic  models  like
VGG16  and  ResNet50  demonstrated  solid  performance,
with  VGG16  achieving  an  accuracy  of  0.8246  and  a
balanced  F1  score  of  0.8367.  ResNet50  showed  strong
performance  with  an  accuracy  of  0.8982,  making  it  a
reliable  choice  for  comparison.  ResNet50V2,  while  a
classic, had the lowest accuracy among the models tested
(0.7877),  suggesting  it  may  not  be  as  effective  for  this
specific dataset compared to newer models. DenseNet169,
the  model  initially  chosen,  performed  exceptionally  well
with  the  highest  accuracy  and  strong  metrics  across
precision,  recall,  and  F1  score.  This  justifies  its  initial
selection  due  to  its  balanced  and  reliable  performance.
Table  4.  Hyperparameter  tuning  and  optimization
values.

Learning Rate Ranges Tested from 0.0001 to 0.1

Batch Size Values tested at 16, 32, 64, and 128
Number of Epochs Tested up to 100 epochs

Optimizer Adam, SGD, RMSprop
Dropout Rate Tested at 0.2, 0.4, 0.5, and 0.6
Weight Decay Ranges tested from 0 to 0.0005

5.1.  Hyperparameter  Tuning  and  Optimization
Process

To ensure the optimal performance of the models, we
performed  comprehensive  hyperparameter  tuning  and
optimization.  The  following  hyperparameters  were
considered  for  tuning  (Table  4).

A  grid  search  strategy  was  employed  for  systematic

hyperparameter  tuning,  involving  an  exhaustive  search
over  specified  hyperparameter  values.  The  primary
evaluation metric used for hyperparameter selection was
validation accuracy. Additionally, precision, recall, and F1
scores  were  monitored  to  ensure  balanced  performance
across different metrics. A 5-fold cross-validation method
was  used  to  evaluate  the  performance  of  different
hyperparameter configurations, ensuring that the selected
hyperparameters  generalize  well  across  different  data
subsets.  For  DenseNet169,  the  optimal  configuration
included a learning rate of 0.001, batch size of 32, Adam
optimizer, and a dropout rate of 0.5. For ResNet101, the
best results were obtained with a learning rate of 0.0001,
batch size of 64, RMSprop optimizer, and a dropout rate of
0.4. For EfficientNetB1, the optimal configuration involved
a learning rate of 0.0005, batch size of 32, SGD optimizer,
and a dropout rate of 0.4.

Table  5  above  displays  the  outcomes  of  the
DenseNet169 properties. The classification methods were
evaluated  based  on  several  performance  metrics,
including  accuracy,  recall,  precision,  and  F1  score.
Discriminant Analysis Linear Discriminant Analysis (LDA)
emerged as the top-performing classifier with an accuracy
of  92.46%,  outperforming  other  methods.  LDA  also
demonstrated  high  recall,  precision,  and  F1  score,
indicating  its  robustness  in  correctly  identifying  both
positive  and  negative  instances.  Linear  Model  Ridge
Classifier  and  Linear  Model  Ridge  Classifier  with  cross-
validation  (CV)  achieved  competitive  accuracy  scores  of
90.92%  and  90.01%,  respectively,  while  maintaining
balanced  performance  across  other  metrics.  Support
Vector  Machine  (SVM)  with  linear  kernel  and  Linear
Model  Logistic  Regression  with  CV  also  showed  strong
performance, with accuracy scores above 88%. Ensemble
methods,  such  as  the  Ensemble  Hist  Gradient  Boosting
Classifier, while slightly lower in accuracy at 81.54%, still
exhibited  respectable  performance  across  all  metrics.
Neural  Network  MLP  Classifier  and  Linear  Model
Logistics  Regression  lagged  behind  in  accuracy  but
maintained  moderate  performance  in  other  metrics.
Overall,  Discriminant  Analysis  LDA  stands  out  as  the
preferred  classifier  due  to  its  superior  accuracy  and
balanced  performance  across  all  evaluated  metrics  Fig.
(5).

Table 5. Results of DenseNet169 attributes obtained using different classification algorithms.

Classification Method Accuracy Recall Precision F1 Score

Linear model ridge classifier 0.9092 0.9007 0.9109 0.9038
SVM linear svc 0.8882 0.8885 0.8947 0.8912

Linear model ridge classifier cv 0.9001 0.9007 0.9109 0.9038
Ensemble hist gradient gradient-boosting classifier 0.8154 0.8164 0.8286 0.8234

Linear model logistic regression cv 0.8954 0.8955 0.9023 0.9032
Discriminant analysis linear discriminant analysis 0.9246 0.9233 0.9256 0.9315

Neural network MLP classifier 0.8677 0.8703 0.8832 0.8734
Linear model logistics regression 0.8431 0.8399 0.8499 0.8515
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Fig. (5). Evaluation measures of DenseNet169.

CONCLUSION AND FUTURE WORK
In  conclusion,  this  study  presents  a  comprehensive

evaluation of transfer learning models for thyroid nodule
classification,  addressing  several  gaps  identified  in
previous  research.  By  utilizing  a  diverse  dataset  and
conducting  rigorous  hyperparameter  tuning,  we
demonstrated the effectiveness of advanced deep-learning
techniques in accurately distinguishing between malignant
and  benign  thyroid  nodules.  Our  findings  highlight  the
superior  performance  of  models  such  as  DenseNet169,
ResNet101, and various EfficientNet variants, surpassing
traditional  diagnostic  approaches  reliant  on  human
evaluation.  The  study  emphasizes  the  potential  of
integrating AI techniques in medical diagnostics, offering
more  accurate  and  consistent  methods  for  detecting
thyroid  diseases.  By  providing  a  balanced  evaluation  of
model  performance  metrics,  including  precision,  recall,
and F1 score, we ensure the reliability and robustness of
our  findings.  Furthermore,  the  comparison  with  human
diagnostic accuracy underscores the practical implications
of  AI  in  improving  patient  outcomes  and  reducing
diagnostic  errors.  The  results  of  this  study  demonstrate
that  the  applied  transfer  learning  methods  significantly
enhance the ability to distinguish between malignant and
benign  conditions  compared  to  traditional  diagnostic
approaches reliant on the human eye. DenseNet169, with
its  optimal  hyperparameter  configuration,  achieved  the
highest  accuracy  of  95.96%,  indicating  its  superior
performance  in  correctly  identifying  disease  states.
Additionally,  models  such  as  ResNet101  and
EfficientNetB1  also  showed  remarkable  accuracy  and
balanced performance metrics,  further  underscoring  the
potential  of  these  advanced  deep-learning  models  in
medical  diagnostics.  These  models  not  only  improve

diagnostic  accuracy  but  also  offer  a  consistent  and
unbiased approach to evaluating medical images, thereby
reducing the likelihood of human error and variability. By
leveraging  these  state-of-the-art  transfer  learning
methods,  it  is  possible  to  achieve  a  higher  level  of
diagnostic  precision,  ultimately  leading to  better  patient
outcomes.  This  study  highlights  the  importance  of
integrating  advanced  AI  techniques  in  medical  practice,
paving  the  way  for  more  reliable  and  accurate  disease
detection.

AUTHORS' CONTRIBUTION
It  is  hereby  acknowledged  that  all  authors  have

accepted responsibility  for  the manuscript's  content  and
consented  to  its  submission.  They  have  meticulously
reviewed all  results  and  unanimously  approved  the  final
version of the manuscript.

LIST OF ABBREVIATIONS

PAC = Parallel Atrous Convolution Modulus
RNC = Reweighting Negative Control
GT = Ground-truth
NcF = Negative Control Function
Rw = Reweighting Term

ETHICS  APPROVAL  AND  CONSENT  TO
PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS
Not applicable.

 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Transfer Learning Method Accuracy Precision Recall



Thyroid Nodule Classification using Transfer Learning Methods 13

CONSENT FOR PUBLICATION
Not applicable.

AVAILABILITY OF DATA AND MATERIALS
The datasets and code used in this study are available

from the corresponding author upon request [V.R].

FUNDING
None.

CONFLICT OF INTEREST
Dr. Vinayakumar Ravi is the Associate Editorial Board

Member of The Open Bioinformatics Journal.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES
Yu H, Li J, Sun J, et al. Intelligent diagnosis algorithm for thyroid[1]
nodules based on deep learning and statistical features. Biomed
Signal Process Control 2022; 78: 103924.
Vinodhini  V,  Sathiyabhama  B,  Sankar  S,  Somula  R.  A  deep[2]
structured  model  for  video  captioning.  Int  J  Gaming  Comput-
Mediated Simulations 2020; 12(2): 44-56.
http://dx.doi.org/10.4018/IJGCMS.2020040103
Sun J, Wu B, Zhao T, et al. Classification for thyroid nodule using[3]
ViT with contrastive learning in ultrasound images. Comput Biol
Med 2023; 152: 106444.
http://dx.doi.org/10.1016/j.compbiomed.2022.106444
Vinodhini  V,  Vishalakshi  A,  Chandrika  G  N,  Sankar  S,[4]
Ramasubbareddy S. Predicting vasovagal syncope for paraplegia
patients  using  average  weighted  ensemble  technique.  J  Mobile
Multimed 135-62.
Sureshkumar V, Balasubramaniam S, Ravi V, Arunachalam A. A[5]
hybrid optimization algorithm‐based feature selection for thyroid
disease classifier with rough type‐2 fuzzy support vector machine.
Expert Syst 2022; 39(1): e12811.
http://dx.doi.org/10.1111/exsy.12811
Vidhushavarshini  S,  Sathiyabhama  B.  A  comparison  of[6]
classification techniques on thyroid detection using J48 and naive
bayes classification techniques. Proceedings of the International
Conference on Intelligent Computing Systems (ICICS 2017–Dec
15th-16th 2017) organized by Sona College of Technology, Salem,
. Tamilnadu, India, November 15, 2017.
http://dx.doi.org/10.2139/ssrn.3143380
Sathiya  T,  Sathiyabhama  B.  Fuzzy  relevance  vector  machine[7]
based  classification  of  lung  nodules  in  computed  tomography
images. Int J Imaging Syst Technol 2019; 29(3): 360-73.
http://dx.doi.org/10.1002/ima.22339
Reenadevi R, Sathiyabhama B, Sankar S. Breast cancer detection[8]
in  digital  mammography  using  a  novel  hybrid  approach  of  salp
swarm  and  cuckoo  search  algorithm  with  deep  belief  network
classifier. J Imaging Sci 2021; 69(5–8): 364-78.
http://dx.doi.org/10.1080/13682199.2022.2161149
Rajendran  R,  Balasubramaniam  S,  Ravi  V,  Sennan  S.  Hybrid[9]
optimization algorithm based feature selection for mammogram
images and detecting the breast mass using multilayer perceptron
classifier. Comput Intell 2022; 38(4): 1559-93.
http://dx.doi.org/10.1111/coin.12522
Reenadevi R, Sathiya T, Sathiyabhama B. Classification of digital[10]
mammogram images  using  wrapper  based  chaotic  crow search
optimization  algorithm.  Ann  Rom  Soc  Cell  Biol  2021;  25(5):
2970-9.
Yang  W,  Dong  Y,  Du  Q,  et  al.  Integrate  domain  knowledge  in[11]
training  multi-task  cascade  deep  learning  model  for
benign–malignant  thyroid  nodule  classification  on  ultrasound

images.  Eng  Appl  Artif  Intell  2021;  98:  104064.
http://dx.doi.org/10.1016/j.engappai.2020.104064
Yu  R,  Tian  Y,  Gao  J,  et  al.  Feature  discretization-based  deep[12]
clustering  for  thyroid  ultrasound  image  feature  extraction.
Comput  Biol  Med  2022;  146:  105600.
http://dx.doi.org/10.1016/j.compbiomed.2022.105600  PMID:
35667893
Zhang  X,  Lee  VCS,  Rong  J,  Liu  F,  Kong  H.  Multi-channel[13]
convolutional  neural  network  architectures  for  thyroid  cancer
detection. PLoS One 2022; 17(1): e0262128.
http://dx.doi.org/10.1371/journal.pone.0262128 PMID: 35061759
Kumar V, Webb J, Gregory A, et al.  Automated segmentation of[14]
thyroid  nodule,  gland,  and  cystic  components  from  ultrasound
images using deep learning. IEEE Access 2020; 8: 63482-96.
http://dx.doi.org/10.1109/ACCESS.2020.2982390  PMID:
32995106
Lu  Y,  Yang  Y,  Chen  W.  Application  of  deep  learning  in  the[15]
prediction of benign and malignant thyroid nodules on ultrasound
images. IEEE Access 2020; 8: 221468-80.
http://dx.doi.org/10.1109/ACCESS.2020.3021115
Zhang  X,  Lee  VCS,  Rong  J,  Lee  JC,  Liu  F.  Deep  convolutional[16]
neural  networks  in  thyroid  disease  detection:  A  multi-
classification  comparison  by  ultrasonography  and  computed
tomography.  Comput  Methods  Programs  Biomed  2022;  220:
106823.
http://dx.doi.org/10.1016/j.cmpb.2022.106823 PMID: 35489145
Li Z, Zhou S, Chang C, Wang Y, Guo Y. A weakly supervised deep[17]
active  contour  model  for  nodule  segmentation  in  thyroid
ultrasound  images.  Pattern  Recognit  Lett  2023;  165:  128-37.
http://dx.doi.org/10.1016/j.patrec.2022.12.015
Sathiyabhama  B,  Kumar  SU,  Jayanthi  J,  et  al.  A  novel  feature[18]
selection  framework  based  on  grey  wolf  optimizer  for
mammogram image analysis. Neural Comput Appl 2021; 33(21):
14583-602.
http://dx.doi.org/10.1007/s00521-021-06099-z
Balasubramaniam S, Velmurugan Y, Jaganathan D, Dhanasekaran[19]
S.  A  modified  LeNet  CNN  for  breast  cancer  diagnosis  in
ultrasound  images.  Diagnostics  2023;  13(17):  2746.
http://dx.doi.org/10.3390/diagnostics13172746 PMID: 37685284
Sundarakumar M R, Sharma R, Fathima S, et al. Improving data[20]
processing speed on large datasets in a Hadoop multinode cluster
using enhanced Apriori algorithm. J Intell Fuzzy Syst 2023; 45(4):
6161-77.
Reenadevi  R,  Sathiya  T,  Sathiyabhama  B.  Breast  cancer[21]
histopathological image classification using augmentation based
on optimized deep ResNet-152 structure. Ann Rom Soc Cell Biol
2021; 25(6): 5866-74.
Vincent  Paul  SM,  Balasubramaniam  S,  Panchatcharam  P,[22]
Malarvizhi  Kumar  P,  Mubarakali  A.  Intelligent  framework  for
prediction of heart disease using deep learning. Arab J Sci Eng
2022; 47(2): 2159-69.
http://dx.doi.org/10.1007/s13369-021-06058-9
Jayanthi J,  Lydia EL, Krishnaraj N, Jayasankar T, Babu RL, Suji[23]
RA.  An  effective  deep  learning  features  based  integrated
framework  for  iris  detection  and  recognition.  J  Ambient  Intell
Humaniz Comput 2021; 12(3): 3271-81.
http://dx.doi.org/10.1007/s12652-020-02172-y
Zhang X, Lee VCS, Rong J, Lee JC, Song J, Liu F. A multi-channel[24]
deep  convolutional  neural  network  for  multi-classifying  thyroid
diseases. Comput Biol Med 2022; 148: 105961.
http://dx.doi.org/10.1016/j.compbiomed.2022.105961  PMID:
35985185
Perumal  R,  Kaladevi  AC.  Early  prediction  of  coronary  heart[25]
disease  from  cleveland  dataset  using  machine  learning
techniques.  Int  J  Adv  Sci  Technol  2020;  29:  4225-34.
Mahesh  TR,  Kaladevi  AC,  Balajee  JM,  Vivek  V,  Prabu  M,[26]
Muthukumaran  V.  An  efficient  ensemble  method  using  k-fold
cross validation for the early detection of benign and malignant
breast cancer. Int J Integr Eng 2022; 14(7): 204-16.
Kavitha MS, Yudistira N, Ahn BC, Kurita T. Leveraging network[27]

http://dx.doi.org/10.4018/IJGCMS.2020040103
http://dx.doi.org/10.1016/j.compbiomed.2022.106444
http://dx.doi.org/10.1111/exsy.12811
http://dx.doi.org/10.2139/ssrn.3143380
http://dx.doi.org/10.1002/ima.22339
http://dx.doi.org/10.1080/13682199.2022.2161149
http://dx.doi.org/10.1111/coin.12522
http://dx.doi.org/10.1016/j.engappai.2020.104064
http://dx.doi.org/10.1016/j.compbiomed.2022.105600
http://www.ncbi.nlm.nih.gov/pubmed/35667893
http://dx.doi.org/10.1371/journal.pone.0262128
http://www.ncbi.nlm.nih.gov/pubmed/35061759
http://dx.doi.org/10.1109/ACCESS.2020.2982390
http://www.ncbi.nlm.nih.gov/pubmed/32995106
http://dx.doi.org/10.1109/ACCESS.2020.3021115
http://dx.doi.org/10.1016/j.cmpb.2022.106823
http://www.ncbi.nlm.nih.gov/pubmed/35489145
http://dx.doi.org/10.1016/j.patrec.2022.12.015
http://dx.doi.org/10.1007/s00521-021-06099-z
http://dx.doi.org/10.3390/diagnostics13172746
http://www.ncbi.nlm.nih.gov/pubmed/37685284
http://dx.doi.org/10.1007/s13369-021-06058-9
http://dx.doi.org/10.1007/s12652-020-02172-y
http://dx.doi.org/10.1016/j.compbiomed.2022.105961
http://www.ncbi.nlm.nih.gov/pubmed/35985185


14   The Open Bioinformatics Journal, 2024, Vol. 17 Sureshkumar et al.

using  controlled  weight  learning  approach  for  thyroid  cancer
lymph  node  detection.  Biocybern  Biomed  Eng  2021;  41(4):
1589-600.
http://dx.doi.org/10.1016/j.bbe.2021.10.003
Song W, Li S, Liu J, et al. Multitask cascade convolution neural[28]
networks for automatic thyroid nodule detection and recognition.
IEEE J Biomed Health Inform 2019; 23(3): 1215-24.
http://dx.doi.org/10.1109/JBHI.2018.2852718 PMID: 29994412
Lin X, Zhou X, Tong T, et al. A super-resolution guided network[29]
for  improving  automated  thyroid  nodule  segmentation.  Comput
Methods Programs Biomed 2022; 227: 107186.
http://dx.doi.org/10.1016/j.cmpb.2022.107186 PMID: 36334526
Li  G,  Chen R,  Zhang J,  Liu K,  Geng C,  Lyu L.  Fusing enhanced[30]
Transformer and large kernel CNN for malignant thyroid nodule
segmentation. Biomed Signal Process Control 2023; 83: 104636.
http://dx.doi.org/10.1016/j.bspc.2023.104636
Chi J,  Li Z, Sun Z, Yu X, Wang H. Hybrid transformer UNet for[31]

thyroid  segmentation  from ultrasound  scans.  Comput  Biol  Med
2023; 153: 106453.
http://dx.doi.org/10.1016/j.compbiomed.2022.106453  PMID:
36603434
Yu Z,  Liu S,  Liu P,  Liu Y.  Automatic  detection and diagnosis  of[32]
thyroid ultrasound images based on attention mechanism. Comput
Biol Med 2023; 155: 106468.
http://dx.doi.org/10.1016/j.compbiomed.2022.106468  PMID:
36841057
Kang  Q,  Lao  Q,  Li  Y,  et  al.  Thyroid  nodule  segmentation  and[33]
classification in ultrasound images through intra- and inter-task
consistent learning. Med Image Anal 2022; 79: 102443.
http://dx.doi.org/10.1016/j.media.2022.102443 PMID: 35537340
Gadermayr M, Tschuchnig M, Stangassinger LM, et al. Improving[34]
automated thyroid cancer classification of frozen sections by the
aid of virtual image translation and stain normalization. Comput
Methods Programs Biomed Update 2023; 3: 100092.

http://dx.doi.org/10.1016/j.bbe.2021.10.003
http://dx.doi.org/10.1109/JBHI.2018.2852718
http://www.ncbi.nlm.nih.gov/pubmed/29994412
http://dx.doi.org/10.1016/j.cmpb.2022.107186
http://www.ncbi.nlm.nih.gov/pubmed/36334526
http://dx.doi.org/10.1016/j.bspc.2023.104636
http://dx.doi.org/10.1016/j.compbiomed.2022.106453
http://www.ncbi.nlm.nih.gov/pubmed/36603434
http://dx.doi.org/10.1016/j.compbiomed.2022.106468
http://www.ncbi.nlm.nih.gov/pubmed/36841057
http://dx.doi.org/10.1016/j.media.2022.102443
http://www.ncbi.nlm.nih.gov/pubmed/35537340

	[1. INTRODUCTION]
	1. INTRODUCTION
	1.1. Ultrasound Image
	1.2. Thyroid and CAD(Computer Aided Diagnostics) System

	2. RELATED WORKS
	2.1. Expanding and Diversifying the Dataset
	2.2. Comprehensive Model Comparison
	2.3. Rigorous Hyperparameter Tuning
	2.4. Balanced Evaluation Metrics

	3. THYROID NODULE IMAGE IDENTIFICATION FOR PRE-PROCESSING
	3.1. Threshold
	3.2. Noise Removal
	3.2.1. Gaussian Noise
	3.2.2. Salt and Pepper Noise
	3.2.3. Rayleigh Noise
	3.2.4. Exponential Noise
	3.2.5. Erlang (gamma) Noise

	3.3. Normalization

	4. METHODS
	4.1. Dataset and Image Pre-processing Phases
	4.2. Workflow of the Comparative Study
	4.3. Classification
	4.3.1. Random Forest Classification

	4.4. Transfer Learning
	4.4.1. VGGNET
	4.4.2. AlexNet
	4.4.3. DenseNet
	4.4.4. ResNet

	4.5. Splitting of Data for Training and Testing
	4.6. Performance Evaluation Metrics
	4.6.1. Accuracy
	4.6.2. Precision
	4.6.3. Recall
	4.6.4. F1 Score


	5. RESULT AND DISCUSSION
	5.1. Hyperparameter Tuning and Optimization Process

	CONCLUSION AND FUTURE WORK
	AUTHORS' CONTRIBUTION
	LIST OF ABBREVIATIONS
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES


