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Abstract:

Purpose: The utility of predictive models for the prognosis of asthma disease that rely on clinical history and findings
has been on the constant rise owing to the attempts to achieve better disease outcomes through improved clinical
processes. With the prognostic model, the primary focus is on the search for a combination of features that are as
robust as possible in predicting the disease outcome. Clinical decisions concerning obstructive lung diseases such as
Chronic obstructive Pulmonary Disease (COPD) have a high chance of leading to results that can be misinterpreted
with  wrong  inferences  drawn  that  may  have  long-term  implications,  including  the  targeted  therapy  that  can  be
mistakenly  beset.  Hence,  we  suggest  data-centric  approaches  that  harness  learning  techniques  to  facilitate  the
disease prediction process and augment the inferences through clinical findings.

Methods: A dataset containing information on both symptomatic representations and medical history in the form of
categorical  data  along  with  lung  function  parameters,  which  were  estimated  using  a  spirometer  (with  the  data
basically being quantitative (numerical) in nature) was used. The Naïve Bayes classifier performed comparatively well
with  the  optimized  feature  set.  The  adoption  of  One-Class  Support  Vector  Machines  (OCSVM)  as  an  alternative
method to sampling data has resulted in the selection of an ideal representation of the data rather than the regular
sampling approach that is used for undersampling.

Results:  The  model  was  able  to  predict  the  disease  outcome  with  a  precision  of  86.1%  and  recall  of  84.7%,
accounting for an F1 measure of 84.5%.The Area under Curve (AUC) and Classification Accuracy (CA) were evaluated
to be 92.2% and 84.7% respectively.

Conclusion: Incorporating domain knowledge into the prediction models involves identifying clinical features that
are most relevant to the process of disease classification using prior knowledge about the disease and its contributing
factors, which can significantly enhance the productivity of the models. Feature engineering is centric on the use of
domain knowledge within clinical prediction models and commonly results in an optimized feature set. It is evident
from the experimental results that using a combination of medical history data and significant clinical findings result
in a better prognostic model
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1. INTRODUCTION
Spirometry is regarded as one of the most performed

investigation methods to gauge the pulmonary function in
patients  with  chest  diseases,  such  as  asthma.  However,
the  methodological  deployment  of  the  equipment  and
performance strategies require high degrees of attention
towards  quality  control,  and  these  have  been  well-
standardized  and  subjected  to  constant  revisions  from
time to time. Despite this,  most of the studies related to
prediction equations for spirometry have lost their utility
as they are several decades old and were carried out with
equipments  and  standardized  procedures  that  have
changed  a  lot  since  then  [1-3].  Added  to  this,  the  lung
health of the population has seen a dramatic change over
the years, leading to a failure in reliability. The health of
the lung and its functionality, to a large extent, is affected
by  age,  height,  weight,  ethnicity,  exposure  to  environ-
mental  factors,  and  socio-economic  status,  along  with  a
few other factors remaining unidentified. Additionally, no
“typical “or “normal” values can be applied to a common
population  [4-6].  Moreover,  in  order  to  have  a  specific
common scale across varying populations, the comparison
is made through expected values for patients of a specific
age, gender, and physical characteristics. These expected
values  are  broadly  called  predicted  values  and  are
generated  using  prediction  equations  built  using
regression  analysis  on  data  collected  from  a  healthy
population. A model that incorporates different sources of
disease  indicators  is  most  often  suggested  as  a  better
approach,  yielding  predictive  models  for  individual  risk
assessment that are of greater value to both patients and
clinicians.  A  wide  range  of  such  equations  for  lung
functions  have  been  developed,  and  there  is  a
considerable  difference  in  the  predicted  values  [7-9].  Of
the several such predictive equations including American
Thoracic  Society  and  the  European  Respiratory  Society
(ATS/ERS), The Global Lung Function Initiative (GLI), The
Association  for  Respiratory  Technology  &  Physiology
(ARTP) and various others, ARTP reference equations for
lung function has been used for generating the predicted
values  for  forced  expiratory  volume  in  1  second  (FEV1)
and  Forced  vital  capacity  (FVC)  as  it  is  considered  to
generalize  on  several  populations  and  a  deeper  analysis
has  shown  that  it  performs  well  for  most  spirometry
parameters.

Feature Engineering involves tasks such as:

(i) Combination of multiple features
(ii) Creation of new features
(iii) Extraction of features from the original features.
All  three  tasks  were  targeted  in  our  approach  for

integrating domain knowledge into the model developed.
While  the  first  two  tasks  involve  manual  intervention  in
the inclusion of features derived from those existing on the
recommendations of the clinical work as per the literature
available, the last task involves the application of a filter-
based feature selection machine learning approach that is
data-driven  and  is  tailored  to  suit  the  nature  of  data
available.

2. MATERIALS AND METHODS

2.1. Data Description and Acquisition
A dataset containing a mix of clinical findings from the

pulmonary  function  test  data,  along  with  the  clinical
symptoms, was used to validate the proposed prognostic
model. The dataset is mixed in that it contains information
on both symptomatic representations and medical history
in  the  form of  categorical  data  along  with  lung  function
parameters  estimated  using  a  spirometer  (with  the  data
basically  being  quantitative  (numerical)  in  nature).
Feature  engineering  involves  the  adoption  of  domain
knowledge  to  generate  features  so  that  it  makes  the
prediction  process  more  effective  for  well-tailored
machine learning models. In addition to the available lung
function  parameters,  we  generate  new  features  from  a
host of anthropometric indices included in the dataset by
employing ARTP respiratory equations [10, 11].

The validation of the feature-driven prediction model is
performed  by  deploying  MSFET  for  the  extraction  of
significant features that signify asthma severity indicators.
MSFET involves the selection of severity indicators from
the  available  set  of  features  using  feature-scoring
techniques. This is followed by a comparative analysis of
the  various  machine  learning  classifiers.  Logistic
regression,  Support  vector  machine,  and  Naive  Bayes
classifiers  were  used  to  validate  the  performance  of  the
model, and the best-performing classifier was adopted for
the approach used. Further deep-learning techniques were
also explored for  the same [12,  13].  The performance of
the model was evaluated on the complete and optimized
feature  sets  obtained  via  MSFET,  and  the  inferences
drawn  from  an  empirical  analysis  are  presented.
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We deployed the data documented during a study on
the  operation  of  the  lungs  and  its  diseases  by  the
University  of  Innsbruck  in  the  district  of  Brixlegg  in
Austria.  The  dataset  included  a  variety  of  attributes
perceived as covariates with respect to lung disease. The
data contained the responses recorded for 1549 children.
The missing values for the attributes were recorded as -1.
The  variables  with  respect  to  which  the  disease  was
expressed  included  the  degree  of  pollution  in  the
environment  at  the  place  of  residence  characterized
through  three  categorical  levels,  extremely  polluted,
moderately polluted, and highly polluted with ozone, along
with  the  other  attributes  including  parental  character-
istics,  such as details  with respect to paternal/  maternal
smoking, besides parental level of education and existence
of  comorbidities  including  cold,  cough  and  existing
allergies. The gender attribute was encoded as 0 for males
and 1 for females. A variable on the presence/absence of
bronchial  tube  disease,  one  of  the  most  important
parameters that help in ascertaining asthma as a disease
rather than a symptomatic presentation, was also included
in  the  data  collected.  PEF,  the  maximum  speed  of
expiration (airflow at exhalation), as measured with a peak
flow  meter,  was  also  included.  Furthermore,  clinical
findings  in  the  form  of  spirometer  readings  obtained  by
performing spirometry were recorded for the predominant
and most common pulmonary function parameters.

2.1.1. Balanced Dataset Creation
The initial data containing 1549 samples consisted of

187  subjects  with  asthma,  and  the  remaining  1362
samples  represented  non-asthmatics,  illustrating  a
problem  of  class  imbalance.  Of  the  187  subjects  with
asthma, only 163 samples were selected by eliminating the
rest,  which  contained  missing  values  for  most  of  the
attributes.  On similar lines,  samples with missing values
were  eliminated  in  the  other  group  representing  non-
asthmatics,  yielding  a  complete  non-asthmatic  dataset.
About  12%  of  the  inliers,  estimating  163  subjects,  were
drawn  from  the  total  non-asthmatics  using  OCSVM.

Overall, 326 instances covering 163 subjects with asthma
and 163 non-asthmatics constituted the input dataset.

The input data represents a class-balanced dataset, as
the number of asthmatics balances with the other group
representing the non-asthmatics. One class SVM is one of
the  preferred  approaches  to  eliminate  outliers  and
produce  highly  dense  regions  of  data  when  all  the
instances belong to the same class. Further, a multistage
feature  extraction  technique  was  used  to  extract  the
predominantly  contributing  risk  factors  [6,  7].  The
features extracted are further used in the reduced feature
set  to  achieve  the  task  of  predicting  the  outcome  of
asthma disease. A comparative analysis of the prediction
results is performed by adopting the traditional classifiers
stated above.

Fig. (1) illustrates the process involved in the creation
of  a  balanced  dataset.  The  data  is  preprocessed  by
eliminating instances containing missing values. A subset
of  the  data  constituting  the  asthmatics  is  first  drawn,
followed  by  the  extraction  of  non-asthmatics.  OCSVM
algorithm is then applied to the latter group to draw the
most  concentrated  inliers  that  approximate  the  sample
size  as  that  of  the  other  group  (asthmatics).  The  two
subsets  are  then  merged  to  form  the  balanced  dataset.

2.2.  Model  Building  using  Domain  Knowledge  and
Feature Engineering

Pulmonary  function  tests  involving  results  revealing
lung  functionality  play  a  major  role  in  the  process  of
making a prognosis of the disease and the assessment of
treatment  effects.  However,  it  could  lead  to  mis-
management  of  the  related  disease  and  the  patients
affected in the case of encountering differences in the way
the lung function is expressed and interpreted [14-16]. Of
the  several  respiratory  lung  equations  that  thrive  on
predicting  the  expected  levels  of  PFT  parameters  for  a
given  height,  weight,  and  gender,  we  try  to  adopt  the
ARTP reference equations by introducing a few more lung
function  parameters  for  effectively  predicting  asthma
predisposition  [17-19].

Table 1. Variable description.

Variable Code Type

Environmental pollution zone Zone Categorical (Three categories)
Allergies Aller Categorical (Dichotomous)

Smoking status –mother Msm Categorical (Dichotomous)
Smoking status –father Fsm Categorical (Dichotomous)

Cold symptoms Cold Categorical (Dichotomous)
Cough Cough Categorical (Dichotomous)

Age Age Numeric
BMI Bmi Numeric

Lung capacity in liters Fvc Numeric
Speed of airflow when exhalation done Pef Numeric

Speed after 75% exhalation is done Fef75 Numeric
Speed after 50% exhalation is done Fef50 Numeric

Respiratory disease Lung_dis Categorical (Dichotomous)
Height Height Numeric
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Variable Code Type

Weight Weight Numeric
Level of education Socio Categorical

Tiffeneau-Pinelli index Tpi Numeric
Actual to Predicted FVC Actp Numeric

Fig. (1). Balanced data creation.

Initially,  a  few  attributes,  including  identification
number,  month  of  birth  and  examination,  day  of  month,
and examination,  were eliminated as we found that  they
do not significantly contribute to the prediction process.
However, the “age” attribute was deduced from the year
of examination and the year of birth, which were included
in the raw data. Subjects containing missing values for any
of  the  attributes  were  eliminated.  Additional  features
indicative  of  pulmonary  function  parameters  fevp  and
fvcp,  representing  predicted  values  for  FEV1  and  FVC,
were added to the dataset.

The fevp and fvcp were computed and deduced using
the existing attributes,  “height” and “age” for the males
and  females  separately  using  the  formulae  published  by
the  Association  for  Respiratory  Technology  and  Physio-
logy.  The  figures  in  the  formulae  are  based  on  a
regression model from a cohort study where “height” is in
meters and “age” is in years and is expressed as follows
for male and female genders separately:

(i) Male:

(1)

(2)

(ii) Female:

(3)

(4)

Using  fevp  and  fvcp,  we  further  evaluated  the  ratio
between both, characterizing the Tiffeneau-Pinelli index, a
common measure used by clinicians for the monitoring of
lung functionality, which was added to the existing set of
features. The ratio between the actual fvc recorded by the
test and the predicted fvc computed as shown above was
also included. Thus, the resulting dataset now included a
host  of  features  incorporating  clinical  findings  and
symptomatic and medical history. The feature “bmi” was
added to the set of existing attributes as it was found to be

(Table 1) contd.....
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 fev1 = 4.30 * height - 0.029 * age - 2.49  

 fvc   = 5.76 * height - 0.026 * age - 4.34  

fev1 = 3.95 * height - 0.025 * age - 2.60 

fvc =   4.43 * height - 0.026 * age - 2.89
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one of the indicators for diseases in the children of the age
group under study, as per the literature [20-22].

A  summary  of  the  different  variables  involved  in  the
dataset is presented in Table 1.

2.3. Balanced Data Creation using OCSVM

2.3.1. Deploying One Class SVM
One  class  SVM  offers  a  different  approach  to

classification  when  compared  to  standard  algorithms  by
modeling the distribution of one class only, and is one of
the most preferred solutions in the case of data exhibiting
class  imbalance.  The  one-class  SVM is  used  for  training
only on one class, which in our case represents the non-
asthmatics  outnumbering  the  asthmatics,  thereby
adopting  a  strategy  to  eliminate  samples  that  would  be
regarded  as  outliers.  The  OCSVM  learning  algorithm
attempts to input the data into a high-dimensional feature
space  while  iteratively  searching  the  margin  that
maximizes the hyperplane that best separates the training
data  from  the  origin.  The  OCSVM  may  be  viewed  as  a
regular two-class SVM where all the training data lies in
the first class, and the origin is taken as the only member
of the second class [23, 24].

One-Class Support Vector Machines (OC-SVMs) are a
natural extension of SVMs. In order to identify distrustful
observations, an OCSVM approximates a distribution that
encompasses the best of the observations and then labels
them as “suspicious” for those that lie far from them with
respect  to  a  suitable  metric.  An  OCSVM  solution  is
constructed  by  estimating  a  probability  distribution
function  that  treats  most  of  the  observed  data  more
prospective  than  the  rest  and  a  decision  rule  that
separates this observation by the largest possible margin.
Involving  a  quadratic  programming  problem,  the
computational  complexity  of  the  learning  phase  is
exhaustive,  but  once  the  decision  function  is  decided,  it
can be used to effortlessly predict the class label of unseen
data.  Further,  the  method  is  seen  to  be  effective  at
handling data containing both continuous and categorical
values, and, itwas adopted for the data under study.

Solving the OCSVM optimization problem is equivalent
to solving the dual quadratic programming problem (Eqs
5-7).

(5)

With the constraint

(6)

and

(7)

where  α  is  a  lagrange  multiplier  (or  “weight”  on
instance  “I”  such  that  vectors  associated  with  non-zero
weights  are  called  “support  vectors”  and  exclusively
determine the optimal hyperplane), ν is a parameter that

controls the trade-off between maximizing the distance of
the  hyperplane  from  the  origin  and  the  number  of  data
points contained by the hyperplane, “n” is the number of
points  in  the training dataset,  and K (xi,xj)  is  the kernel
function. Using the kernel function to project input vectors
into  a  feature  space,  we  allow  for  nonlinear  decision
boundaries.  Given  a  feature  map  (Eq  8):

(8)

wherein, Φ maps training vectors from input space to a
high dimensional feature space, we can define the kernel
function as (Eq 9):

(9)

With  this,  the  feature  vectors  do  not  need  to  be
computed  explicitly,  and  in  fact,  this  capability  greatly
improves  computational  efficiency  in  directly  computing
kernel values.

The  adoption  of  OCSVM as  an  alternative  method  to
sampling  data  has  resulted  in  the  selection  of  an  ideal
representation  of  the  data  rather  than  the  regular
sampling  approach  that  is  used  for  undersampling,  as
there are all chances of leaving out significant instances
that might be contributing to the prediction capability as
the choice of samples happens randomly. With sampling,
there is no underlying computational restriction when the
samples  are  drawn  from  the  original  population,  and,  it
might not be a preferred approach to represent the overall
population effectively [25, 26].

3. RESULTS AND DISCUSSION
Furthermore,  by  calculating  scores  that  determine

whether an association between two categorical variables
of  the  sample  would  reflect  their  true  association  in  the
population,  the  chi-square  statistic  estimates  the
dependence  between  the  class  attribute  (target  feature)
and  each  of  the  features.  In  addition,  by  evaluating  an
attribute’s  ability  to  discriminate  between  classes  in
relation to similar data instances, ReliefF assigns scores to
features. The concept of finding variations in the feature
values between pairs of closest neighbour instances forms
the  basis  of  ReliefF  scores.  Every  time  a  hit  occurs,  the
feature  scores  drop,  indicating  that  a  neighbouring
instance pair with the same class has a different feature
value. On the other side, the score rises if a miss occurs
that indicates a nearby instance pair with a different class.

The  predictors  adversely  affecting  the  classification
process identified via  their negative scores by the Relief
algorithm  were  eliminated,  and  the  reduced  feature  set
was subsequently used for the classification task. Table 2
shows  the  feature  scores  for  the  individual  features
computed using feature ranking techniques,  Information
gain,  and  Gini  decrease  and  are  ranked  by  their  scores.
The box plots are shown for the first six predictors, which
are  observed  to  significantly  differentiate  the  two
populations.

min ( ½) ∑ αi αj K(xi,xj)

0 ≤  αi ≤  n/ νn  

 ∑ αi = 1 

Φ: X  RN  

K(x,y)  = < Φ (x), Φ(y) >  
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Table 2. Ranking scores.

Feature Information Gain Gini

Pef 0.131 0.085
Lung_dis 0.130 0.087

fef50 0.125 0.083
Fsm 0.124 0.069
Cold 0.105 0.054
Bmi 0.099 0.067
Fvc 0.088 0.059
Tpi 0.055 0.037

Cough 0.054 0.036
Zone 0.033 0.021
Aller 0.028 0.018
Actp 0.014 0.010

The  box  and  whisker  plots  depict  the  data
concentrations  and  explain  the  divergence  of  extreme
values  from  most  of  the  data.  Five  values,  namely  the
minimum  value,  the  first  quartile,  the  median,  the  third
quartile,  and  the  maximum  value,  are  used  to  construct
the plot, which best supports the comparison of other data
values  with  respect  to  them  [27-29].  The  box  plot
distribution gives a projection of how tightly the data may
be  grouped  or  skewed while  giving  a  clear  indication  of
the symmetry of data, which may be inferred as follows.

Positively  Skewed:  Whenever  the  distance  from  the
median to the maximum is larger than the distance from
the median to the minimum, then the box plot is said to be
positively skewed.

Negatively  Skewed:  Whenever  the  distance  from  the
median to the minimum is larger than the distance from
the median to the maximum, then the box plot is said to be

negatively skewed.
Symmetric: The box plot is taken to be whenever the

median  is  equidistant  from  the  maximum  and  minimum
values.

The box plot method adopted can be used as a reliable
means  to  estimate  some  of  the  vital  lung  function
parameters irrespective of the differences in the general
population [30].

3.1.  Characterizing  Asthma  Populations  with  Box
Plots

Figs.  (2a-c)  adopt  box  plots  to  depict  the  data
concentrations  of  the  discrete  features,  namely  cold,
paternal smoking, and lung disease, chosen by the MSFET
technique. The labels “0” and “1” along the bars indicate
non-asthmatics and asthmatics, respectively. While “blue”
represents absence, “red” represents presence. It can be

 

 (a) Cold 

(b) Paternal smoking  

Fig. 2 contd.....
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Fig. (2a-c). Box plots for categorical features chosen by MSFET.

(c) Lung disease 

 

(a) PEF 

 

 

(b) FEF50

Fig. 3 contd.....
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Fig. (3a-c). Box plots for continuous features chosen by MSFET.

Table 3. Performance evaluation of optimized vs. complete feature set.

Optimized Combined Feature Set

Method AUC CA F1 Precision Recall
SVM 0.940 0.834 0.833 0.843 0.834

Naive Bayes 0.922 0.847 0.845 0.861 0.847
Logistic Regression 0.922 0.840 0.840 0.846 0.840

Complete Raw Feature Set
SVM 0.885 0.801 0.799 0.812 0.801

Naive Bayes 0.883 0.828 0.828 0.833 0.828
Logistic Regression 0.857 0.764 0.763 0.768 0.764

observed  that  the  features  “cold”  and  “Paternal  smoking”
are  dormant  in  the  category  representing  non-asthmatics.
The feature representing “lung disease” is, however, present
in  both  groups,  though  the  proportion  of  it  is  higher  in
asthmatics,  as  per  the  data  density  observed  in  the  two
groups.

Figs. (3a-c) on similar lines depict the box plots for the
numerical attributes PEF, FEF50, and BMI, respectively. It
is  observed  that  a  PEF  and  FEF50  of  5.244+1.459  and
3.077+  0.942,  respectively,  characterize  an  asthmatic
population  with  a  BMI  of  17.402+2.69.

It can be observed from Table 3 that of all the classifiers,
the  Naïve  Bayes  classifier  performed  comparatively  well
with  the  optimized  feature  set.  The  model  was  able  to
predict the disease outcome with a precision of 86.1% and
recall of 84.7%, accounting for an F1 measure of 84.5%. The
AUC  and  CA  were  evaluated  to  be  92.2%  and  84.7%,
respectively.  Furthermore, when the raw dataset excluded
the features generated by feature engineering but included
all the spirometer readings along with the symptomatic and
history data were included, the model performed low, with

the naïve Bayes classifier performing comparatively better
with  a  reduced  F1-measure  of  82.8%  accounting  for  a
precision and recall  of  83.3% and 82.8% respectively.  The
AUC  and  CA  obtained  with  the  complete  feature  set  also
showed a decline compared to the results with the optimized
feature set. The sensitivity, which is most desirable from any
of the clinical decisions, is quite low with the raw feature set
(82.8%) as compared to the optimized feature set (84.7%). It
is  evident from this  fact  that  it  is  of  utmost  importance to
use the optimized feature set, which can always improve the
prediction  outcomes  and  enhance  the  performance
efficiency  of  the  models.  With  the  optimized  feature  set
containing  the  additional  features  generated  by  feature
engineering,  the  classification  accuracy  was  considerably
increased. Feature engineering further places a significant
impact  in  scenarios  involving  large  data  where  there  are
exceedingly a greater number of features and where some of
the useful, previously unknown features can be regenerated
by  using  existing  features  backed  by  knowledge  of  the
relevant  domain.

(c) BMI 
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CONCLUSION
It is evident from the experimental results that using a

combination of medical history data and significant clinical
findings  results  in  a  better  prognostic  model.  Informative
spirometer parameters specific to the disease diagnosis play
a vital role in the accurate prediction of the disease, as the
same  parameters  are  used  to  judge  a  variety  of  related
respiratory diseases, and a very small margin between them
could  be  the  basis  for  differentiation.  Neither  the  clinical
findings from spirometry nor the medical history alone can
result  in  an  optimal  performance  of  the  model.  Clinical
decisions  concerning  obstructive  lung  diseases  such  as
COPD have a high chance of leading to results that can be
misinterpreted with wrong inferences drawn that may have
long-term implications, including the targeted therapy that
can  be  mistakenly  beset.  Hence,  we  provide  data-centric
approaches  that  harness  machine  learning  techniques  to
facilitate the disease prediction process, which can augment
the inferences through clinical findings.
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