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Abstract:
Background: The main emphasis of this study is on the medical Computed Tomography (CT) imaging denoising
technique, which plays a major role in interpreting patient illness information for medical diagnosis. CT imaging is
indispensable for accurate disease diagnosis, but image quality is affected by noise and other artifacts. The primary
objective is to improve the accuracy of denoising algorithms, which consequently increases early disease prediction
and enhances the accuracy of diagnostic outcomes.

Objective: The major objective was to examine the performance of method noise-based Low-dose CT (LDCT) image
denoising technique using a Convolutional Neural Network (CNN) in medical imaging. This method aims to suppress
noise, improve image quality, and effectively minimize radiation exposure. This method enhances the accuracy of the
denoising algorithm, enabling more precise disease diagnosis. Method noise, or residual noise, plays a major role in
denoising CT images while preserving fine details and minimizing other artifacts generated during the denoising
process.  Method  noise  includes  the  omitted  structural  features  and  other  minute  artifacts,  which  are  resolved
through CNN-based denoising techniques. This approach elevates the overall imaging quality and clarity, resulting in
better diagnostic accuracy.

Methods: The study includes a systematic, method noise-based approach to determine the performance of denoising
algorithms  in  diagnosing  various  diseases  from medical  CT  images  that  are  often  affected  by  Gaussian  noise.  It
involves  selecting  a  comprehensive  dataset,  applying  a  method  noise  approach  using  CNN,  and  evaluating  the
outcomes through quantitative measures, such as PSNR, SNR, and SSIM. This comparison aims to assess diagnostic
interpretation,  thereby  improving  the  accuracy  and  efficacy  of  the  method  noise-based  technique  in  CT  medical
imaging.

Results: The results illustrate the differential accuracy and performance of CT image denoising techniques when
compared to standard filtering methods, as well as after the application of method noise-based denoising techniques.
Implementing quantitative measures, such as PSNR, SNR, and SSIM, aims to improve healthcare diagnostics.

Conclusion: The study concludes that method noise-based CT image denoising algorithms effectively mitigate noise
and artifacts while retaining the corners, contours, and precise details of CT images, subsequently improving the
efficiency and accuracy of predicting diagnostic results.
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1. INTRODUCTION
CT  imaging  is  an  advanced  radiological  imaging

practice  that  diagnoses  different  diseases  in  a  more
effective  manner.  However,  the  increasing  use  of  CT
images is associated with increased radiation risk [1, 2].
The CT imaging quality is influenced by the x-ray radiation
dose.  A  higher  radiation  dose  yields  better  results  but
poses  adverse  effects  on  patients.  In  contrast,  low-dose
tomographical images are susceptible to noise, blurriness
in edges, and other artifacts that affect image clarity. The
major  sources  of  distortion  or  noise  interference  in  CT
images  occur  during  the  image  acquisition  and  trans-
mission  process.  CT  image  noise  represents  random
changes  in  pixel-intensity  values.  Therefore,  CT  image
denoising techniques are necessary to obtain high-quality
images  using  low  radiation.  The  denoising  methods  are
essential  for  suppressing  noise  from  affected  areas  in
images, enabling precise restoration of clean images and
detailed diagnosis of health concerns. However,  noise in
CT images, such as blurriness, edges, and sharp features,
can  impact  image  clarity,  making  it  difficult  to
discriminate  noisy  factors  during  the  denoising  process.
The enhanced images can result in the loss of critical data.
Gaussian noise often influences CT images [3].  Gaussian
or  statistical  noise  occurs  in  image  processing  due  to
sensor noise and analog electronic circuitry interference.
The  noise  distribution  in  tomographical  images  is
characterized  using  noise  variance  and  an  image
reconstruction algorithm. After analyzing noise variance in
noisy CT images, various denoising methods were applied
to  improve  image  quality.  These  approaches  include
spatial  domain  filtering  techniques,  frequency  domain
filtering techniques [4], total variation methods, Non-Local
Means filtering method (NLM) [5] and Block-Matching 3D
filtering  method  (BM3D)  [6],  Weighted  Nuclear-Norm
Minimization  method  (WNNM)  [7],  and  K-singular  value
decomposition method (KSVD) [8].

CT  image  denoising  is  mainly  categorized  into
sinogram filtering methods, iterative reconstruction, post-
processing, and Deep learning-based denoising methods.
Sinogram  filtering  methods  [9-11]  operate  on  raw  data,
known as sinograms, which are filtered before the image
reconstruction  process.  These  techniques  primarily
suppress Gaussian, Poisson noise, and other artifacts from
multiple  projections  (sinograms)  before  the  filter-back
projection  process.  For  example,  sinogram  filtering
techniques include the Wiener and Total Variation filters,
which  accurately  process  noise  statistics.  However,
sinogram  filtering  methods  often  suffer  from  a  lack  of
projection  information  and  loss  of  spatial  resolution,
leading  to  low  contrast,  blurred  edges,  and  loss  of  fine
details in the filtered images.

Iterative  reconstruction  methods,  such  as  those
described in  previous  studies  [12,  13],  reconstruct  high-
quality CT images by iteratively optimizing the results and
minimizing  the  difference  between  measured  and
estimated projection information. These methods integrate
projection characteristics with prior information about the
image to achieve better spatial resolution while effectively

suppressing  noise  and  other  artifacts.  Examples  of
iterative  reconstruction  techniques  include  non-local
means  and  Total  Variation-based  priors,  both  of  which
significantly  reduce  noise  and  artifacts.  However,  the
frequent  iterations  between  the  sinogram  and  image
domains, along with limited reconstruction speed, hinder
the efficient acquisition of sinogram information.

Post-processing  methods  are  proficient  at  effectively
denoising  noisy  CT  images  by  processing  reconstructed
images  without  relying  on  projection  information.
Examples include the block-matching 3D filtering method
[14],  the  Dictionary  Learning  method  [15],  and  the
Adaptive  NLM  filtering  method  [5].

In the modern era, deep learning denoising techniques
have  been  utilized  to  resolve  the  difficulties  of  LDCT
denoising. The DnCNN architecture is a progressive model
for  CT  imaging  in  which  an  end-to-end  deep  neural
network  approach  directly  extracts  image  features  and
learns  from  noisy  images  to  elevate  clean  images.  Deep
learning-based  denoising  methods  enable  models  to
automatically  extract  and  learn  all  features  from
designated input information without human intervention
[16]. In particular, recent developments in deep learning
denoising  techniques  have  been  significant  in  solving
LDCT denoising issues. For example, deep CNN is widely
applied  in  the  medical  field  of  LDCT  image  denoising,
providing  faster  execution  speed  and  learnability.
However,  it  often results  in  over-smoothing,  resulting in
the erosion of structural information.

CNN-related  super-resolution  imaging  has  especially
been opted for a low-dose CT image denoising approach
[17].  Residual  Encoder-Decoder  CNN  (REDCNN)  and
wavelet  networks  were  introduced  to  address  the
denoising  challenges  in  LDCT  images,  with  REDCNN
replacing the pooling layers of U-Net with convolutional-
deconvolutional  layers.  REDCNN  effectively  enhances
noise  reduction,  structural  preservation,  and  lesion
detection.  Additionally,  DnCNN  methods  reduce  noise,
blurriness, and other artifacts, thereby improving patient
diagnostic outcomes.

1.1. Major Contributions
The major objective of the research interpretation is to

effectively  incorporate  the  method  noise  concept  for  CT
image  denoising.  The  method  noise-based  CT  imaging
denoising  technique  is  a  combination  of  a  CNN-based
approach and the application of method-noise. The method
of noise serves as a post-processing approach, mainly used
for  suppressing  noise,  edge  preservation,  structural
preservation,  and  fine  detail  preservation.

The paper is classified into five sections. In Section 1,
an  introduction  is  presented.  Section  2  describes  the
related work. Section 3 describes the use of method noise
in  CT  image  denoising.  Section  4  describes  the  experi-
mental analysis of the study, and section 5 describes the
conclusion of the paper and explains future challenges.

2. LITERATURE REVIEW
CT  image  denoising  plays  a  crucial  role  in  reducing
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noise in CT images while preserving edges, sharp features,
and  fine  details  to  enhance  image  quality  and  maintain
diagnostic precision. The literature review focuses on both
the strengths and limitations of each denoising technique.

Singh et al. [11] proposed a method noise-based CNN
architecture  for  denoising  low-dose  CT  images,  where
method noise was applied during the training of the CNN
model. This approach automatically extracts features from
images to denoise noisy CT images, with the noise method
primarily used in training, where noise is explicitly added
to  the  CT  images.  The  CNN  architecture  eliminates  the
need  for  manual  feature  extraction,  and  the  DnCNN
architecture has demonstrated improved performance in
challenging  CT  image  denoising  tasks.  However,  the
suggested method is constrained in its ability to effectively
analyze complex noise patterns.

Diwakar et al. [18] introduced a new method aimed at
enhancing  LDCT  imaging  quality  with  lower  radiation
doses, thereby improving diagnostic accuracy. The study
demonstrated  that  an  NLM  filter  with  wavelet  thre-
sholding could be used to suppress noise while preserving
detailed information. The NLM filter operates on a patch-
based  approach  to  reduce  noise  and  other  minute
artifacts,  while  method  noise  is  employed  as  a  post-
processing  technique  to  ensure  edge  preservation,
improved  CT  image  quality,  and  superior  denoising
performance.  However,  training  the  CNN  model  for
denoising  remains  computationally  intensive.

Diwakar [3] provided an overview of various denoising
approaches  for  low-dose  CT  images  aimed  at  enhancing
image  quality  and  clarity.  The  comprehensive  survey
covered  different  noise  patterns,  characteristics,  and
denoising  methods.  The  study  highlighted  several
denoising  techniques  designed  to  improve  diagnostic
accuracy by enhancing the visibility of detailed anatomical
structures. However, challenges in preserving edges and
fine  details  during  the  denoising  process  remain  a  key
limitation.

Trung  et  al.  [19]  investigated  various  deep-learning
techniques related to patch-based and CNN methods for
denoising noisy low-dose tomographic images. The novel
method  employs  a  dilated  CNN  to  extract  the  global
features  of  CT  images  by  expanding  the  receptive  field,
while a preprocessing method is utilized to enhance image
feature  extraction,  and  a  post-processing  method
effectively  refines  the  denoised  CT  images.  This  study
proposes  a  lightweight  model  that  is  computationally
efficient  and  reduces  blur,  noise,  and  loss  of  structural
information. In real-world scenarios, maintaining patient’s
medical information introduces additional challenges that
may  affect  image  quality.  A  primary  limitation  is
hyperparameter tuning, which complicates the attainment
of satisfactory denoising results.

Zhang  et  al.  [20]  focused  on  minimizing  radiation
exposure during low-radiation CT scans while maintaining
the diagnostic quality of reconstructed low-radiation tomo-
graphic images by reducing noise and other artifacts. The
study compares various denoising deep learning network

models, including CNN models, encoder-decoder models,
generative adversarial networks (GANs), and transformer
models, to achieve improved denoising performance. The
CNN model yields better denoising results, while the GAN
method  produces  denoised  CT  images  that  exhibit
perceptual  similarity  to  standard-dose  CT  images.
Transformer-based  methods  capture  global  contextual
information  about  images.  The  trade-off  between
computational cost and denoising efficacy remains crucial.

Li  et  al.  [21]  developed  an  image  domain  denoising
approach  utilizing  a  Cycle  Consistent  Generative
Adversarial Network (Cycle-GAN) for LDCT imaging. The
proposed study introduces Cycle-GAN, Identity-GAN, and
GAN-CIRCLE to enhance the computational performance
and capability  of  LDCT image denoising,  evaluating per-
formance  using  PSNR  and  SSIM  metrics.  A  literature
review  demonstrated  improved  denoising  performance
with  reduced  computational  time.

Park et al. [22] suggested a Fidelity GAN (f-GAN) deep
learning  denoising  approach  to  reduce  noise  in  LDCT
imaging  by  utilizing  unpaired  training  data.  The  f-GAN
generates  an  accurate  generator  by  minimizing  the
weighted sum of two losses: Kullback-Leibler divergence
between the distributions of generated and standard-dose
CT  data  and  L2  loss  between  low-radiation-dose  CT
images  and  generated  images.  This  method  ensures  the
preservation of typical features while mitigating noise. The
study  emphasizes  that  deep  learning  approaches  are
heavily  reliant  on  computational  resources.

Deep  learning  methods  require  substantial  compu-
tational resources for denoising LDCT images. Yang et al.
[23] proposed a denoising approach based on GANs that
incorporates  Wasserstein  distance  and  similarity  in
perceptual  features  to  improve diagnostic  accuracy.  The
study  proposes  Wasserstein  distance,  improving  GAN
performance  and  perceptual  loss  to  mitigate  noise  in
LDCT  imaging.  The  study  focuses  on  noise  suppression,
artifact  minimization,  and  structural  fine-detail  preser-
vation, yielding promising results in medical CT imaging.
However,  the  method may not  handle  all  types  of  noise,
and their characteristics exist in low-dose images.

Li et al. [24] proposed the Progressive Cyclical Convo-
lutional  Neural  Network  (PCCNN)  approach  that
effectively  suppresses  noisy  areas  and  other  artifacts  in
unpaired data, reducing the use of paired NDCT and LDCT
image  pairs.  The  PCCNN  includes  a  noise  transmission
model  that  transfers  noise  from  low-dose  images  to
normal-dose  images,  and  a  multistage  denoising  frame-
work  exploits  the  progressive  module,  which  comprises
multistage wavelet transform to suppress noise from LDCT
images. The PCCNN does not introduce new artifacts like
blurriness,  owing  to  its  high  resolution  and  complete
image  fine  detail  preservation.  The  efficacious  noise
suppression  is  achieved  through  the  multistage  wavelet
transform approach. However, the main limitation is that
the  medical  data  evaluation  relies  only  on  one  dataset
from the  American Association  of  Physicists  in  Medicine
(AAPM),  requiring  further  investigation  to  determine  its
generalizability.
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Ziyad  et  al.  [25]  proposed  a  framework  intended  to
improve the early detection of lung cancer in low-dose CT
images.  The  PCCNN  network  encompasses  a  noise
transfer  model  to  transfer  noise  that  exists  in  LDCT
images  to  normal-dose  images.  Furthermore,  the
multistage  denoising  network  effectively  utilizes  a
progressive  module  comprising  a  multistage  wavelet
transform  to  suppress  noise  from  LDCT  images.  This
hybrid  approach  does  not  result  in  significant  new
artifacts, such as blurriness, due to its high resolution and
complete preservation of fine image details.

3. METHOD
It is assumed that the original computed tomographic

images are generally contaminated with Gaussian noise. In
this  context,  the  CT  imaging  noise  is  typically  evenly
distributed across the image surface, following a normal
Gaussian distribution. A denoising convolutional network
(CNN) is implemented to suppress additive white Gaussian
noise (AWGN),  resulting in improved quality  of  low-dose
CT (LDCT) images. The ensemble approach influences the
method  noise-based  CT  image  denoising  by  applying  a
convolutional  neural  network  to  preserve  edges  and
structural  details.

The  generalized  noise  model  in  the  CT  image  is
interpreted  as  (Eq.  1):

(1)

Where Y1 is the distorted or noisy CT image, X1 is the
original  or  clean image,  T is  the transform function that
distorts  the  original  image,  N1  denotes  additive  white
Gaussian noise,  and sigma (σ)  is  the standard deviation.
Typically,  noise  in  CT  images  follows  a  Gaussian
distribution. Method noise is a post-processing approach
that  can  be  applied  after  image  acquisition  and
transmission to preserve edges and structural information
(Eq. 2):

(2)

The differentiation between the noisy CT images and
the processed (denoised) output image serves as method
noise.  The  basic  assumption  is  that  CT  images  are
distorted by Gaussian noise. Noisy or distorted images are
denoised using the Wiener filter, and the resulting image
is  considered  as  the  denoised  CT  image.  However,  the
denoised  tomographic  images  still  experience  blurring,
noise, and minor artifacts. Therefore, applying the method
noise-based  CNN  image  features  to  the  previously
denoised  image  will  yield  superior  results  in  reducing
noise  while  preserving  more  structural  details.

3.1. Schematic Diagram of Methodology
The  schematic  diagram  of  the  methodology  is

described  in  Fig.  (1).

Fig. (1). CT image denoising.
(1a). Denoising technique, (1b). Denoising technique using method noise.

Y1=T(X1) + N1

Method noise = Noisy input image
-Denoised image output.
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3.2. Step-by-step Procedure of Methodology
Input: Read noisy CT image (A).
Output: Final denoised CT image (E).
Step  1:  Apply  any  denoising  technique  on  CT  image

(A).
Step 2: Apply the wiener filter to the noisy CT image

(A).
Step 3: Display denoised CT image (B).
Step 4: Calculate Residual image C = A - B.
Step  5:  Calculate  image  D  by  applying  CNN-based

architecture  to  Residual  Image  C.
Step 7: Calculate image E = B+D.
Step  8:  E  denotes  the  final  denoised  (enhanced)  CT

image.
Here, A denotes the original distorted image, C is the

residual image, and E is the final denoised CT image.
Method noise-based denoising is a multistep approach

for  denoising  noisy  CT  images.  The  first  step  involves
reading  a  noisy  CT  image  (A).  Typically,  most  of  the  CT
images suffer from Gaussian noise, which often degrades
image  clarity  and  quality.  Initially,  any  denoising  tech-
nique is applied to the noisy CT image (A). A Wiener filter
is then used on the noisy image (A) to minimize noise and
other  minor  artifacts,  resulting  in  the  filtered  CT  image
(B).  However,  the  filtered  or  denoised  image  typically
retains  high-frequency  components  and  minor  artifacts,
which may impact diagnostic accuracy.

The  noise-making  method  involves  identifying  the
omitted  noise  patterns  in  the  denoised  CT  image  (B),
which is achieved by subtracting the denoised CT image
(B)  from the  source  noisy  CT  image  (A)  to  calculate  the
residual  image  (C).  This  residual  image  reveals  the
remaining noisy patterns. By applying a CNN architecture
to  the  residual  image  (C),  the  CNN  effectively  captures
and  distinguishes  complex  noise  patterns  and  relevant
image  features,  enabling  the  removal  of  noise  while
preserving  important  information  in  the  CT  image  (D).
Finally,  the denoised CT image (B) is  combined with the
generated  noise-captured  image  (D)  to  create  the  final
denoised  CT  image  (E).  This  final  denoised  CT  image,
produced using the noise method with CNN, guarantees
comprehensive  noise  reduction,  thereby  improving  the
quality  of  the  CT  image  and  enhancing  the  accuracy  of
diagnostic imaging analysis.

3.3. Significance of Methodology
CT  images  are  commonly  affected  by  Gaussian  noise

and  other  minute  artifacts,  which  significantly  suppress
image quality,  complicate  image analysis  and restoration,
and  weaken  diagnostic  accuracy.  During  the  acquisition
process,  random  fluctuations  in  radiation  levels  or
interference  from  electronic  circuitry  frequently  cause
Gaussian noise. This noise typically impairs the quality and
clarity  of  CT  images,  ultimately  reducing  patient  diag-
nostic  outcomes,  unlike  traditional  denoising  approaches,
which  may  struggle  to  differentiate  between  noise  and

important structural details. These methods frequently fail
to  handle  complex  noise  patterns,  resulting  in  over-
smoothing and artifacts, such as metal artifacts or photon
starvation.

Traditional denoising techniques may face constraints in
effectively suppressing noise in CT images while preserving
edges  and  structural  information.  Various  conventional
techniques,  including  Wiener,  mean,  median,  non-local
means  (NLM),  Gaussian  filter,  discrete  wavelet,  curvelet,
contourlet,  and  shearlet  transform,  have  been  applied  to
denoise noisy CT images. However, these images often still
exhibit blurriness, noise, and other artifacts.

In  contrast,  the  ensemble  method,  combined  with
method  noise-based  CNN  approach,  effectively  denoises
noisy  CT  images  while  preserving  crucial  diagnostic
information.  Method  noise  serves  as  a  post-processing
technique that captures residual noise patterns remaining
in  an  image  after  denoising.  It  represents  the  disparity
between  the  noisy  image  and  the  enhanced  CT  image.
Applying  the  method  noise  approach  using  CNNs  to
denoised CT images enhances clarity and quality compared
to  conventional  techniques.  Thus,  the  method  noise
approach  yields  improved  denoising  results,  leading  to
better  image  quality  for  accurate  patient  diagnosis.

4. RESULT AND DISCUSSION
The  following  section  presents  the  experimental

outcomes  related  to  the  denoising  technique  before  and
after utilizing the method noise-based denoising technique
using  CNN  on  noisy  CT  images  to  evaluate  denoising
effectiveness.  The  CT  images  were  obtained  from  the
ECLAP  public  lung  image  database  [26].  The  proposed
approach was validated using performance metrics, such as
Peak  Signal-to-Noise  Ratio  (PSNR),  Signal-to-Noise  Ratio
(SNR),  and  Structural  Similarity  Index  Measure  (SSIM).
Graphical  evaluations  of  the  CT  images  are  provided  as
evidence  to  enhance  their  efficacy.  The  images  shown  in
Figs.  (1-3)  are  represented  as  grayscale  images  using
MATLAB  2022b.

Fig.  (4a)  illustrates  the original  clean CT images.  The
clean CT image was corrupted by adding Gaussian noise, as
represented in Fig. (4b), with various noise variances (σ =
5,  10,  15,  20).  This  addition  of  Gaussian  noise  leads  to
blurriness  in  the  clean  CT  image.

During  the  experimental  process,  Gaussian  noise  was
applied  to  the  CT  scan  images,  resulting  in  a  noise
distribution that followed a Gaussian pattern. The purpose
of the qualitative analysis is to test the quality of computed
tomographic images to provide accurate diagnostic results
and  to  examine  the  performance  and  accuracy  of  the
denoising technique at different noise variances. Denoising
was performed on a noisy CT image with a size of (512x512)
to  substantiate  the  efficiency  of  the  method  noise-based
denoising  technique  and  to  improve  qualitative  and
quantitative assessment. Initially, a standard Wiener filter
was employed for denoising the noisy CT images, followed
by an evaluation of the performance between the traditional
filter  method  and  the  method  noise-based  denoising
technique using CNN. Here, PSNR, SNR, and SSIM metrics
were applied to measure performance.



6   The Open Bioinformatics Journal, 2024, Vol. 17 Katta et al.

Fig. (2). CT original noise-free image dataset.

Fig. (3). Gaussian noisy CT image dataset.

Fig. (4a,b). Outcomes of the impact of wiener-filter without and with method noise-based CT image denoising using CNN with noise
variance (σ=5).

The PSNR was utilized to evaluate the performance of
the  denoising  approach  effectively.  Simulated  CT  images
were  used  for  quantitative  analysis,  where  higher  PSNR
values  indicated  better  denoising  results.  PSNR  is
calculated  as  (Eq.  3,4):

(3)

(4)

Where  MSE  indicates  the  mean-square-error  among
clean  CT  image  in  conjunction  with  denoised  CT  image.

p(i,j) denotes the clean CT image.

q(i,j) denotes the denoised CT image.
u  x  v  denotes  pixel’s  size  of  clean  and  denoised  CT

image.
In medical imaging, SNR is a fundamental concept used

to measure the quality of CT scan images. It quantifies the
relationship  between  the  desired  signal  and  the  noisy
information.

In  the  context  of  denoising  CT  images,  SNR  can  be
calculated  as  follows  (Eq.  5):

(5)

The signal denotes the intensity strength of the given

PSNR =  𝟏𝟎𝒍𝒐𝒈𝟏𝟎 (
𝟐𝟓𝟓𝐗𝟐𝟓𝟓

𝐌𝐒𝐄
)

MSE =   
𝟏

𝒖𝒗
 ∑  ∑  

𝐪
𝐢=𝟏

𝐩
𝐢=𝟏 [𝐩𝐢,𝐣 − 𝐪𝐢,𝐣 ]

𝟐

SNR   =   20. log10(
𝒔𝒊𝒈𝒏𝒂𝒍

𝒏𝒐𝒊𝒔𝒆
)
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CT  images,  while  noise  signifies  the  strength  of  the
unwanted variations in the normal pixel values present in
the images.

SSIM  quantifies  the  similarity  between  the  denoised
CT image and the original CT image. It is primarily based
on three determinants: contrast, luminance, and structure.
Furthermore, the range of SSIM values is from -1 to 1 (Eq.
6):

(6)

x illustrates the original or clean CT image.
y illustrates the filtered or denoised CT image.
µx and µy represent the mean and σxy is covariance of x

and y and σx, σy represents standard deviation of x and y,
respectively,  C1=(m1D)2,  C2=(m2D)2  are  constants  to
maintain stability during division with zeros, and D is the
dynamic variation in the range of pixel’s intensity values
between 2bits-per-pixel -1 and m1= 0.01 and m2 = 0.03.

Gaussian  noise  variance  (σ  =  5,  10,  15,  20)  was
applied to the original CT image to test the denoising at
different noise levels. After obtaining the noisy CT images,
they  were  denoised  using  a  Wiener  filter  and  compared

with  the  results  from  the  method  noise-based  CNN
technique,  as  shown  in  Figs.  (4-7).

In the context of  the wiener filter,  the method noise-
based approach evaluates performance using PSNR, which
shows good results,  no new artifacts  are generated,  and
fine  detail  preservation  is  done  effectively  at  noise
variance σ = 5 (before method noise PSNR =26.7258 dB,
after  method  noise  PSNR  =36.0159),  σ=10  (before
method  noise  PSNR  =  21.5199  dB,  after  method  noise
PSNR = 36.5476dB), σ = 15 (before method noise PSNR
=18.4166 dB, after method noise PSNR =36.8506 dB), and
σ =20 (before method noise PSNR =17.1852, after method
noise PSNR = 36.3446 dB) (Tables 1-4).

In the context of evaluating SNR in a wiener filter, CT
imaging  quality  is  measured  by  estimating  the  ratio  of
existing  signal  strength  to  noise  intensity  level.
Quantitative analysis of SNR takes place at different noise
variances,  for  instance,  at  σ  =  5  (before  method  noise
SNR=20.4936  after  method  noise  SNR=27.0069),  σ=10
(before method noise SNR= 16.0766, after method noise
SNR=27.5345),  σ=15  (before  method  noise  SNR=
13.2027,  after  method  noise  SNR=27.8361),  and  σ=20
(before  method  noise  SNR=11.9811,  after  method  noise
SNR=27.3301).

Fig. (5). Outcomes of the impact of wiener-filter without and with method noise-based CT image denoising using CNN with noise variance
(σ=10).

Fig. (6). Outcomes of the impact of wiener-filter without and with method noise-based CT image denoising using CNN with noise variance
(σ=15).

SSIM (x, y) =
(𝟐µ𝐱µ𝒚+𝐂𝟏)(𝟐𝛔𝒙𝒚+𝐂𝟐)

(µ𝒙
𝟐 +µ𝒚

𝟐+𝐂𝟏)(𝛔𝒙
𝟐 +  𝛔𝒚

𝟐+𝐂𝟐)
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Fig. (7). Outcomes of the impact of the wiener-filter without and with method noise-based CT image denoising approach using CNN, with
a noise variance (σ = 20).

Table 1. PSNR, SNR, and SSIM values for the Wiener filter, without and with method noise-based denoising
approach using different noise intensities (σ = 5,10,15,20).

Noise
Level

Without Method
Noise With Method Noise Without Method

Noise With Method Noise Without Method
Noise With Method Noise

PSNR PSNR SNR SNR SSIM SSIM

5 26.7258 36.0519 20.4936 27.0069 0.81056 0.9045
10 21.5199 36.5476 16.0766 27.5345 0.75017 0.91955
15 18.4166 36.8506 13.2027 27.8361 0.68607 0.92601
20 17.1852 36.3466 11.9811 27.3301 0.6178 0.91633

Table  2.  PSNR comparison  without  and  with  method  noise-based  denoising  approach  using  mean,  median,
gaussian,  (NLM)  Non-Local  Means,  (DWT)  discrete  wavelet  transform,  curvelet  transform,  contourlet
transform, and shearlet transform for CT images with various Gaussian noise intensities (σ = 5,10,15,20).

PSNR

Gaussian Noise at Different Intensities

Noise variance (σ) 5 10 15 20

Denoising
Technique

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Mean [9] 26.0529 35.1902 21.1500 36.1468 18.3205 36.9291 16.0248 37.7658
Median [3] 27.1834 34.9312 21.8863 35.3494 18.7096 35.8488 16.2900 36.3849

Gaussian [27] 20.3523 36.5518 16.5739 37.4813 15.2431 37.4031 13.3729 37.7327
Wiener [10] 26.7258 36.0159 21.5199 36.5476 18.4166 36.8506 17.1852 36.3446

NLM [5] 27.0700 39.7800 21.8700 38.4300 20.0600 38.2400 17.8200 38.7300
DWT [9] 34.7791 53.5667 30.4699 52.3177 28.2170 51.5375 26.5655 50.7858

Curvelet Transform [4] 27.5145 53.0083 19.3993 45.4610 15.1998 41.3716 14.0099 40.2282
Contourlet Transform

[28] 27.0568 53.0261 19.3171 45.4123 15.1500 41.3616 14.0064 40.2205

Shearlet Transform
[29] 35.4502 37.2012 28.1213 35.4545 24.7320 33.5540 22.8103 32.1602

In the context of evaluating SSIM to measure similarity
among two images,  i.e.,  the  clean  or  original  image  and
the  denoised  CT  image,  quantitative  analysis  of  SSIM is
carried out at different noise variances, such as at σ = 5
(before  method  noise  SSIM=0.8105,  after  method  noise
SSIM=0.9040), σ=10 (before method noise SSIM=0.7501,

after method noise SSIM=0.9195), σ=15 (before method
noise  SSIM=0.6860,  after  method  noise  SSIM=0.9260),
and  σ=20(before  method  noise  SSIM=0.6178,  after
method  noise  SSIM=0.9163).  The  method  noise-based
denoising  technique  gives  improvised  SSIM  results  in
terms of how well the image-denoising method preserves
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structural details and perceptual quality.
The performance of various denoising techniques was

compared  with  and  without  the  method  noise-based
approach.  A  detailed  quantitative  analysis  evaluated
standard  denoising  techniques  using  PSNR,  SNR,  and

SSIM, as shown in Figs. (8-13). In this comparative study,
different  denoising  techniques  were  analyzed,  and  their
performance was assessed under various Gaussian noise
levels  (σ  =  5,  10,  15,  and  20),  which  typically  degrade
their effectiveness.

Table  3.  SNR  comparison  without  and  with  method  noise-based  denoising  approach  using  mean,  median,
gaussian, (NLM) non-local means, DWT, curvelet transform, contourlet transform, and shearlet transform for
CT images with various Gaussian noise intensity levels (σ=5,10,15,20).

SNR

Gaussian Noise at Different Intensities

Noise Variance (σ) 5 10 15 20

Denoising
Technique

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With Method
Noise

Without
Method
Noise

With Method
Noise

Without
Method
Noise

With Method
Noise

Mean [9] 21.2511 30.3884 16.3481 31.3450 13.5187 32.1273 11.2230 32.9639
Median [3] 22.3815 30.1293 17.0844 30.5476 13.9078 31.0470 11.4882 31.5830

Gaussian [27] 11.9456 27.5597 8.6754 28.4881 7.2412 28.4135 5.7235 28.7356
Wiener [10] 20.4936 27.0069 16.0766 27.5345 13.2027 27.8361 11.9833 27.3301

NLM [5] 22.2600 34.9800 17.0700 33.6300 14.5800 15.2600 13.0200 33.9300
DWT [9] 29.9779 48.7648 25.6681 47.5159 23.4152 46.7356 21.7637 45.9840

Curvelet Transform [4] 22.7126 48.2065 14.5975 40.6592 10.3981 36.5698 9.2081 40.2282
Contourlet Transform

[28] 22.7666 48.2242 14.5152 40.6105 10.3481 36.5598 9.2045 40.2206

Shearlet Transform
[29] 31.7083 35.0912 24.3712 31.7124 20.8742 29.8119 18.3733 28.7910

- - - - - - - - -

Fig. (8). Comparison of PSNR values without and with method noise-based denoising approach using wiener filter by applying various
Gaussian noise levels(σ=5,10,15,20).
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Table 4. SSIM comparison without and with for method noise-based denoising approach using mean, median,
gaussian, (NLM) non-local means, DWT, curvelet transform, contourlet transform, shearlet transform for CT
images added with various Gaussian noise intensities (σ=5,10,15,20).

SSIM

Gaussian Noise at Different Intensities

Noise Variance (σ) 5 10 15 20

Denoising
Technique

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Without
Method
Noise

With
Method
Noise

Mean [9] 0.7874 0.8976 0.7254 0.9166 0.6624 0.9280 0.6070 0.9381
Median [3] 0.7827 0.8874 0.7072 0.8947 0.6339 0.9006 0.5687 0.9069

Gaussian [27] 0.5946 0.9303 0.5246 0.9479 0.4883 0.9521 0.4590 0.9536
Wiener [10] 0.8105 0.9040 0.7501 0.9195 0.6860 0.9260 0.6178 0.9163

NLM [5] 0.8934 0.9607 0.8183 0.9543 0.7697 0.9531 0.7318 0.9567
DWT [9] 0.6057 0.8216 0.4344 0.8196 0.3386 0.8183 0.2856 0.8167

Curvelet Transform [4] 0.5494 0.9963 0.2350 0.9748 0.1329 0.9436 0.1101 0.9298
Contourlet Transform

[28] 0.5515 0.9962 0.2336 0.9751 0.1300 0.9446 0.1091 0.9300

Shearlet Transform [29] 0.8685 0.9253 0.5350 0.8692 0.3753 0.8256 0.2817 0.7910

Fig. (9). Comparison of SNR values without and with method noise-based denoising technique by applying various Gaussian noise levels
(σ=5,10,15,20).

After  applying  the  method  noise-based  approach,
improvements in the quality of the denoised images were
observed.  This  approach  consistently  enhanced  image
quality,  even at  higher Gaussian noise levels.  PSNR was
used  to  evaluate  the  imaging  quality  of  the  denoised
images compared to the original  noise-free images,  with
higher PSNR values indicating better imaging quality. For
example, the outcome of the Wiener filter is shown in Fig.
(8).  It  was  observed  that,  without  the  method  noise
approach, the PSNR values decrease significantly as noise

levels (σ) increase. Specifically, the PSNR was 26.7258 dB
for σ = 5, dropping to 17.87 dB for σ = 20. However, when
the  method  noise-based  approach  was  applied,  a  notice-
able  improvement  in  the  PSNR  values  of  the  medical
images  occurred.  For  σ  values  of  5,  10,  15,  and  20,  the
PSNR values were 36.0159 dB, 36.5476 dB, 36.8506 dB,
and  36.3446  dB,  respectively.  The  method  noise-based
approach not only enhanced the PSNR but also ensured a
more  consistent  increase  in  PSNR,  even  as  noise  levels
rose.
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Fig. (10). Comparison of SSIM values without and with method noise denoising approach using wiener filter by applying various Gaussian
noise levels(σ=5,10,15,20).

Fig. (11). Comparison of PSNR values for various denoising techniques at different gaussian noise intensity levels (σ=5,10,15,20) for CT
images, without and with a method noise-based approach.

The  SNR  was  used  to  evaluate  the  strength  of  the
signal  compared  to  the  noise  present  in  an  image.  A
higher  SNR  indicated  a  better-quality  image  with  less
noise.  For  instance,  without  the  method  noise-based
approach, the standard Wiener filter showed an SNR value
of 20.4936 dB for σ = 5, which dropped to 11.9833 dB for
σ  =  20.  In  contrast,  when  the  method  noise-based
approach was applied, a significant increase in SNR was
observed  as  noise  levels  rose,  as  shown  in  Fig.  (9).  The

SNR values were 27.0069 dB for σ = 5, 27.5345 dB for σ
= 10, 27.8361 dB for σ = 15, and 27.3301 dB for σ = 20.

Similarly,  the  SSIM  values  showed  notable
improvements at different noise levels. SSIM was used to
evaluate perceptual image quality by comparing structural
information, contrast, and luminance between two images.
SSIM  indicates  the  similarity  between  two  images,  with
values  ranging  from  0  to  1,  where  1  signifies  complete
similarity between the original and distorted images, and
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0  indicates  no  similarity.  The  SSIM  values  before  the
method noise-based approach was applied to the Wiener
filter  were  0.8105  for  σ  =  5  and  0.6178  for  σ  =  20.  In
contrast, after applying the method noise-based approach,
the SSIM values for  σ = 5,  10,  15,  and 20 were 0.9040,
0.9195,  0.9260,  and  0.9163,  respectively,  indicating

improved  structural  similarity  despite  increased  noise
levels,  as  shown  in  Fig.  (10).  Furthermore,  after  the
method  noise-based  approach  was  implemented,  the
PSNR,  SNR,  and  SSIM  values  not  only  stable  but  also
consistently  increased  with  higher  noise  levels.

Fig. (12). Comparison of SNR values for different denoising methods at various gaussian noise intensity levels (σ=5,10,15,20) for CT
images, without and with a method noise-based approach.

Fig. (13). Comparison of SSIM values for various denoising techniques at different Gaussian noise intensity levels (σ=5,10,15,20) for CT
images, without and with method noise-based approach.
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Overall,  the  quantitative  analysis  from  Figs.  (8-13)
demonstrates  that  the  method  noise-based  approach  is
highly  effective  at  managing  higher  noise  levels  and
maintaining  fine  image  details  while  improving  PSNR,
SNR,  and  SSIM  values  as  noise  levels  rise.  The
comparative  results  of  this  study  emphasize  that  the
method noise-based technique is an efficient approach for
superior  denoising  in  CT  images,  ultimately  enhancing
diagnostic  accuracy.

CONCLUSION
Denoising CT images in the medical imaging process is

difficult,  particularly  in  CT  imaging,  where  minute
anatomical  features  must  be  maintained.  These  images
contain a lot of information, which makes noise reduction
difficult.  The  method  noise  approach,  implemented  as  a
post-processing  step  using  CNNs,  outperforms  classic
denoising  algorithms.  This  two-step  approach  includes
twice  filtering  the  noisy  CT  images,  which  efficiently
reduces  noise  to  a  higher  degree.  Method  noise-based
denoising  improves  precision,  reducing  blurriness  and
minute  artifacts.  This  method  greatly  maintains  the
structural information of the image, sharp edges, and fine
details, making it especially useful for a variety of medical
imaging applications. The denoised image obtained after
the  method  noise  has  greater  noise  reduction  and
smoothness without adding additional artifacts. The use of
the  method  noise  approach  with  CNNs  improves  the
denoising  process,  resulting  in  improved  results  and
diagnostic  accuracy  for  patients  by  conserving  crucial
image  information.

CT imaging has played a significant role in the medical
diagnostic  imaging  field  over  the  last  decade.  It  is
commonly  used  to  diagnose  various  diseases  in  detail.
However, repeated exposure to radiation may increase the
risk  of  cancer,  making  it  necessary  to  limit  radiation
exposure.  LDCT image denoising is  essential  to  mitigate
this  radiation  risk.  While  various  denoising  methods
typically assume Gaussian noise in real-world CT images,
these  images  may  also  be  affected  by  complex  noise
patterns. Therefore, developing denoising techniques that
address diverse noise sources is a major challenge.
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