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Abstract:
Aims: This research gives insight into the various machine learning models like enhanced Support Vector Machines
(SVM), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Artificial Neural Networks
(ANN) in brain tumor recognition by medical imaging. This research provides an accurate model for allowing a better
form of diagnostic method in neuro-oncology, with the help of precision, recall, and F1-score metrics. The present
study,  therefore,  also  provides  a  basis  on  which  further  predictive  models  for  medical  image  analysis  can  be
developed.

Background: This study is premised on the critical need for improved diagnostic tools within medical imaging in the
fight against the prevalence of brain tumors.  A model showing meaningful performance in the practices of brain
tumor detection includes enhanced SVM, CNN, RNN, and ANN. The models have been evaluated based on their
accuracy, precision, recall, and F1 score to investigate their performance and potential. Consequently, the models
addressing the subject of neuro-oncological diagnostics were evaluated.

Objective:  This  study  seeks  to  critically  evaluate  the  performance  of  four  different  machine  learning  models:
enhanced SVM, CNN, RNN, and ANN, in detecting a brain tumor. It will be determined from this study which model
has  the  highest  accuracy,  precision,  and recall  in  finding a  brain  tumor.  It  will  then lead to  the  improvement  of
diagnostic techniques in neuro-oncology.

Methods:  The  methodology  of  this  research  involved  a  detailed  assessment  of  four  machine  learning  models:
enhanced SVM, CNN, RNN, and ANN. Each model was evaluated based on accuracy, precision, recall, and F1 score
metrics.  The  analysis  focused  on  their  ability  to  detect  brain  tumors  from  medical  imaging  data,  examining  the
models' performance in identifying complex patterns within varied feature spaces.

Results: The outcome of this study reveals that the enhanced Support Vector Machine (SVM) model performed the
highest compared to the other models, demonstrating an impressive 97.6% accuracy. In the case of CNN, it achieved
95.76% for effectively identifying hierarchical features. The RNN showed a good accuracy of 92.3%, which was pretty
adequate for sequential data treatment. The ANN achieved a high accuracy of 88.77%. These findings describe the
differences and strengths of both models and have possible applications in brain tumor detection.

Conclusion:  This  study  conclusively  established  how  much  potential  emerged  for  machine  learning  models  to
improve the detection capabilities of brain tumors. Addressing a performance perspective, the enhanced SVM ranked
first. Again, this is proof of its critical importance as a tool in accurate diagnostic medicine. Based on these findings,
further development of machine learning techniques in neuro-oncology will lead to an increase in diagnostic accuracy
and treatment outcomes. It lays the fundamental foundation for betterment in any predictive model to be made in the
future.
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1. INTRODUCTION

1.1. The Significance of Brain Tumor Segmentation
in Medical Imaging

Since  brain  tumor  segmentation  is  essential  to  the
accurate  diagnosis  and  treatment  of  neurological
disorders,  it  is  a  highly  significant  field  in  medical
imaging.  With  the  increasing  incidence  of  brain  tumors
worldwide, there is a requirement for solid segmentation
strategies  to  improve  medical  diagnosis  and  treatment
recommendations with increasing precision [1-3]. For the
planning  of  treatment,  monitoring  of  progression,  and
response-to-treatment  assessment,  a  clinician  must  be
able  to  delimit  the  boundaries  of  a  tumor  from  the
surrounding  healthy  tissues.  Brain  tumor  segmentation
represents  one  of  the  prerequisites  for  radiologists  and
oncologists  during  medical  imaging,  where  magnetic
resonance  imaging  prevails.  Accurate  segmentation
recovers spatial and morphological information regarding
the complete position of the tumor, which further assists
medical professionals in describing the form, dimensions,
and placement of cancer within the complex structure of
the human brain. Whatever the best course of treatment
may  be,  chemotherapy,  radiation  therapy,  surgery,  or  a
combination of these, this information is crucial [4, 5].

Furthermore,  the  advancement  of  personalized
medicine  depends  on  precise  segmentation.  No  less
important is that better and more accurate segmentation
allows  for  more  effective  and  patient  specific  treatment
regimes,  individualized  to  the  characteristics  of  each
patient's  tumor.  This  translates  easily  into  two  ways  in
which  patient  outcomes  are  improved:  all  around  better
quality  of  life  for  the  treated  individual  and  fewer
unnecessary  interventions.  Researching  the  natural
history of brain tumors and evaluating the efficacy of new
treatments  in  light  of  studies  and  clinical  trials  also
require  accurate  segmentation.  Researchers  employ
robust segmentation techniques to monitor the evolution
of  tumor  morphology  and  size  over  time.  These  findings
offer  crucial  information  about  how  the  disease
progressed  and  how  well  the  treatment  worked  [6-8].

1.2. Motivation and Research Objectives
Techniques such as Berkeley Wavelet Transformations

and  Support  Vector  Machines  (SVM)  were  developed  to
enhance  the  process  of  medical  image  analysis  used  for
brain  tumor  segmentation  with  more  accurate

effectiveness and better results [9, 10]. These techniques
could  help;  however,  quite  often,  the  traditional  method
fails  to  detect  the  subtlety  among all  the  major  types  of
brain  tumors.  The  Berkeley  wavelet  transform  offers  a
persuasive solution in facilitating the extraction of coarse
and  fine-grain  image  features  and  allows  multi-level
analysis.  In  the  case  of  medical  imaging,  it  becomes
helpful  in  situations where primitive  differences like  the
tissue could help to recognize the presence of pathological
conditions [11, 12].

The  optimization  target  is  in  line  with  refining  the
performance  of  the  classifier  algorithm  SVM,  a  robust
model applied in a broad sense in the domain of medical
image  analysis.  Though  generally  highly  respected  for
their  capability  in  binary  classification,  the  problem
related  to  brain  tumor  segmentation  should  be  taken  as
more  complicated  and  handled  on  a  more  sophisticated
and  nuanced  level.  Improving  the  capability  of  SVM  to
detect complex and small  changes,  particularly in tumor
region  delineation,  must  be  prioritized  to  make  the
process more precise and reliable. High sensitivity, noise,
and  unpredictability  are  essential  elements  of  medical
images,  and  the  SVM  must  be  tailored  to  meet  their
specific  requirements  [13,  14].

This  work's  main  goal  is  to  combine  the  benefits  of
Berkeley Wavelet Transformation with an improved SVM
to optimize the brain tumor segmentation process. These
cutting-edge  techniques  aim  to  enhance  diagnosis  and
treatment planning in the long run by more precisely and
consistently segmenting brain tumors.

2. LITERATURE REVIEW
Reliable  identification of  brain  tumors  carries  out  an

important task, which impacts the imaging diagnosis and
overall treatment of the medical field. Many segmentation
techniques to improve the accuracy of tumor localization
have  been  looked  into  by  researchers.  The  inherent
complexity  of  medical  image  data  has  just  made  the
traditional  methods,  which  often  rely  on  manual
intervention  and  basic  thresholding  techniques,
inappropriate  in  dealing  with  them.  However,  these
breakthroughs  have  brought  a  shift  in  the  trend  toward
more  and  more  complicated  techniques,  like  wavelet-
based transformations and machine learning. Among the
most  critical  applications  in  medical  image  analysis  lies
the application of Berkeley Wavelet Transformation (BWT)
[15, 16].
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It  makes  multi-resolution  analysis  and  feature
extraction  relatively  easy  through  a  more  flexible  tool
originating  under  wavelet  theory,  the  Berkeley  Wavelet
Transformation. BWT has been proven to be a compelling
method for discovering the slightest texture, intensity, and
spatial  relationships  in  medical  image  segmentation  for
brain  tumors.  Several  studies  show that  multi-resolution
characteristics  of  BWT  enhance  the  accuracy  of
segmentation  along  the  boundary  of  the  tumor.
Furthermore,  it  is  very  flexible  and  can  handle  data
heterogeneity in medical imaging; thus, it can be readily
applied to various modalities, including CT and MRI scans
[17-19].  This  combination  has  been  demonstrated  to  be
useful  in  applications  involving  machine  learning  in  the
medical  imaging  domain.  The  enhanced  SVM  is  an
enhancement  over  the  conventional  SVM  and  has  been
increasingly used in diagnosing brain tumors.

SVMs are very good at binary classification tasks,  so
they  can  be  used  to  distinguish  tumor  from  non-tumor
regions  in  medical  images.  SVM  can  function  more
effectively  if  it  is  tailored  and  optimized  to  match  the
requirements  of  medical  imaging  data.  Moreover,  the
literature emphasizes the integration of different machine
learning models, such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), and Artificial
Neural  Networks  (ANN),  in  an  attempt  to  achieve  more
accurate and automated brain tumor detection [20, 21].

The  use  of  machine  learning-based  methods  to
categorize  brain  tumors  has  increased  during  the  last
several  years.  CNNs  have  shown  promising  results  in
recognizing  spatial  relationships  within  medical  image
data.  The  ability  of  CNNs  to  automatically  learn
hierarchical  features  sets  them  apart.  The  accuracy  of
tumor localization is improved by CNNs' spatial perception
capability. Furthermore, RNNs are excellent at capturing
temporal variations in medical imaging data because they
are  designed  to  handle  sequential  dependencies.  This
enables scientists to completely understand how a tumor
evolves  over  time.  Comparing  these  state-of-the-art
machine  learning  models  for  analysis  yields  results  that
are  more  accurate  and  effective  than  traditional
segmentation  methods  [22,  23].

While  machine  learning  and  wavelet-based
transformations have shown a lot of  promise,  challenges
remain. Large and diverse datasets for trustworthy model
training,  generalization  to  different  imaging  modalities,
and  the  interpretability  of  complex  models  all  require
further study. The ethical quandaries that arise from using
these technologies in clinical settings and from seamlessly
integrating  these  state-of-the-art  techniques  into  the
existing  workflows  in  healthcare  further  impede  wider
adoption  [24].

3. METHOD

3.1. Data Collection
The  dataset  used  in  this  study  was  compiled  from  a

wide range of  medical  imaging tests,  including brain CT
and MRI scans. The collection includes both brain tumor-

free and tumor-filled images, among many other kinds of
images.  The  suggested  segmentation  model  must  be
trained  and  evaluated  using  this  sizable  dataset  under
various  pathological  circumstances  and  anatomical
variations.  The  sample  brain  tumor  images  are
demonstrated  in  Fig.  (1).

Fig. (1). Sample brain tumor images from The BraTS Dataset.

Thoroughly  splitting  the  dataset  into  training  and
testing sets made it possible to evaluate the model in great
detail. Seventy percent of the 1713 images in the dataset
were set aside for training. Based on this large portion of
the dataset, the model is able to identify complex patterns
and attributes associated with both tumor and non-tumor
classes.  Three-quarters  of  the  dataset,  or  735  images,
were set aside specifically for the trained model's testing.
This  section  enhances  the  reliability  of  the  results  and
simulates  real-world  scenarios  to  offer  an  unbiased
evaluation  of  the  model's  generalization  capabilities  on
anonymous data.

3.2. Data Source and Ethical Considerations
The  medical  imaging  data  used  in  this  study  were

obtained  from  an  open-source  repository  on  Kaggle,  a
widely  recognized  platform  for  hosting  datasets.  The
dataset, titled “The BraTS Dataset,” includes anonymized
MRI  and  CT  images  specifically  curated  for  research
purposes.  All  data  are  publicly  available  and  were
accessed under the terms and conditions outlined by the
repository,  ensuring  compliance  with  ethical  standards.
Since  the  dataset  is  open-source  and  does  not  include
personally identifiable information, ethical clearance was
not required for this study. The use of this dataset aligns
with  ethical  research  practices  and  supports
reproducibility  in  scientific  investigations.

3.3. Dataset Size and Mitigation of Bias
The dataset used in this study, obtained from an open-

source  Kaggle  repository,  includes  a  limited  number  of
MRI  and  CT  images.  Since  the  dataset  size  is  relatively
small, we employed several measures to mitigate potential
biases and enhance the robustness of our analysis:

(1) Data Augmentation: To increase the effective size
of the dataset and improve its diversity, we applied data
augmentation  techniques  such  as  rotation,  flipping,
scaling, and random cropping. These methods artificially
expanded  the  training  data,  allowing  the  model  to
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generalize better to unseen data and reducing the risk of
overfitting.

(2) Cross-Validation: A k-fold cross-validation approach
(with  k=5)  was  implemented  to  ensure  robust  model
evaluation  across  multiple  splits  of  the  data.  This
technique minimizes the influence of biases that may arise
from  a  single  training-test  split  and  provides  a  more
comprehensive  assessment  of  model  performance.

(3)  Generalizability  and  Benchmarking:  The  dataset
used is a standard benchmark dataset frequently utilized
in  similar  research  studies.  While  the  sample  size  is
limited, its open-source nature enables reproducibility and
comparability  with  related  work  in  the  field  of  medical
imaging and machine learning.

(4)  Future  Considerations:  We  acknowledge  the
limitations  posed  by  the  small  dataset  size  and  its
potential  impact  on  the  generalizability  of  the  results.
Future  studies  will  incorporate  larger  and  more  diverse
datasets, including multi-institutional and real-world data,
to further validate and refine the proposed models.

By  implementing  these  strategies,  we  aimed  to
mitigate potential dataset biases and ensure the reliability
of the results presented in this study. These efforts have
been incorporated into the revised manuscript to enhance
its clarity and rigor.

3.4. Pre-processing Steps
The  consistency  and  quality  of  the  medical  imaging

dataset used to segment brain tumors were improved by
meticulous pre-processing. The latter is an important step
that deals with intrinsic variations and artifacts in the raw
CT  and  MRI  images  to  attain  better  performance  of  the
segmentation model.  Normalization is  also  a  simple pre-
processing step, and the first pre-processing step equates
the  pixel  intensities  in  every  image.  This  normalization
process  kept  pixel  values  within  a  fixed  range  for  all
pixels,  thus  minimizing  the  effect  of  intensity  variation
caused  by  changes  in  imaging  hardware  or  imaging
protocols. In contrast, pixel value normalization made the
model more robust and not very sensitive to the changes
in picture acquisition parameters.

All images were after that scaled to make sure spatial
resolutions  were  consistent  post-normalization.  With  the
last  step  in  place,  the  model  would  be  compatible  with
inputs  of  constant  size,  thus  ensuring  a  homogeneous
dataset.  Resizing  allowed  images  of  diversity  in  the
training  pipeline,  and  in  the  next  model  training,  it
increased  the  computational  efficiency.  Furthermore,
applying noise reduction techniques increases the images'
signal-to-noise  ratio.  Applying  methods  like  median
filtering or Gaussian blurring helped suppress extraneous
details  and  promote  a  cleaner  representation  of
anatomical  structures  because  medical  imaging  data  is
prone  to  noise  artifacts.  In  addition  to  improving  the
images'  visual  clarity,  this  noise  reduction  allowed  for
more accurate feature extraction in the later stages of the
segmentation model.

By using intensity normalization techniques specific to

medical  imaging,  potential  variations  in  imaging
modalities and intensities were taken into account. For the
model  to  correctly  identify  relevant  features,  all  pixel
values,  regardless  of  the  intensity  characteristics  of  the
original image, had to be calibrated to a common scale.

Table 1 provides a brief overview of all the necessary
pre-processing  steps,  emphasizing  how  each  one
improves,  cleans,  and  standardizes  the  medical  imaging
dataset  in  order  to  get  it  ready  for  brain  tumor
segmentation.
Table 1. Steps of pre-processing.

Pre-processing Step Description

Normalization Standardizing pixel intensities across all images
to a consistent scale, reducing sensitivity to

intensity variations.
Resizing Establishing a uniform spatial resolution to

ensure consistent dimensions across all images,
facilitating model training.

Noise Reduction Implementing techniques like Gaussian blurring
or median filtering to suppress irrelevant details

and enhance image clarity.
Intensity Normalization Adjusting pixel values to a standardized scale,

addressing variations in imaging modalities and
intensities.

3.5. Berkeley Wavelet Transformation (BWT)
Berkeley Wavelet Transformation (BWT) is utilized in

this  work  to  improve  the  features  used  in  brain  tumor
segmentation.  The  powerful  Berkeley  Wavelet
Transformation  image  analysis  tool  allows  for  multi-
resolution decomposition and the extraction of both local
and global  features from an image. Brain tumors can be
segmented  using  this  technique,  which  also  provides  a
more  thorough  analysis  of  the  tumor  boundaries  by
identifying  minute  details  and  patterns  in  the  medical
images.

The Berkeley Wavelet Transform uses a set of variable
wavelet  filters  in  size  and  in  more  than  one  direction.
Mathematically, they are applied to the original image to
comprehensively cover the image domain in the integral
domain.  The  overall  decomposition  at  each  level  uses
wavelet  decomposition iteratively  to  split  the image into
approximation and detail coefficients. In this process, the
high-frequency  extraction  is  performed  with  the  detail
coefficients,  while  the  low-frequency  information  is
estimated  from the  approximation  coefficients.  For  now,
that  model  can  recognize  the  very  detailed  minute
features in the image and the global structures by multi-
resolution analysis.

The  improved  features  obtained  from  the  Berkeley
Wavelet  Transformation  help  to  provide  a  more
discriminative representation of tumor boundaries in the
context of brain tumor segmentation. The various features
used in this research are shown in Table 2. The extraction
of  texture  information,  subtle  intensity  variations,  and
spatial relationships within an image are all made possible
by multi-resolution analysis.  These features are required
to precisely define tumor regions. The goal of the research
is  to  maximize  the  segmentation  model's  capacity  to
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distinguish  between  areas  with  and  without  tumors  by
incorporating  these  improved  features  into  the  model's
later  phases.  In  the  end,  this  will  raise  the  overall
precision  and  accuracy  of  the  segmentation  results.
Table 2. Feature extraction.

Feature Category Description

Intensity-based
Features

Statistical measures (mean, standard deviation,
skewness, kurtosis) of pixel intensity within the

tumor region.
Texture-based Features Grey-level co-occurrence matrix (GLCM)

statistics, capturing spatial relationships of pixel
intensities.

Shape-based Features Geometric attributes such as area, perimeter,
and compactness characterize the shape of

segmented tumors.
Wavelet-based Features Coefficients from Berkeley Wavelet

Transformation capturing multi-resolution details
in the image.

Statistical Shape
Descriptors

Moments and other shape descriptors provide
quantitative information about the tumor's

spatial distribution.
Gradient-based

Features
Magnitude and orientation of gradients,

highlighting edges and boundaries within the
segmented tumor area.

Spatial Location
Features

Coordinates and spatial relationships of tumor
centroids, aiding in understanding the tumor's

position.

3.6. Step-by-Step Description of Processes
•  Data  Collection:  We  gathered  MRI  scans  from

publicly  available  medical  imaging datasets,  focusing  on
both  healthy  and  tumor-affected  brain  images.  (Details
discussed  in  section  3.1).

• Data Normalization: Each image was normalized to
ensure  uniform intensity  distribution  across  the  dataset.
Normalization was performed by scaling pixel values to a
range of 0 to 1, which helps in reducing the computational
complexity and improving model convergence.

•  Noise  Reduction:  To  minimize  the  impact  of  noise,
we  applied  Gaussian  filtering  with  a  kernel  size  of  3×3.
This step enhances the clarity of the images by smoothing
out the variations that do not contribute to the detection of
tumors.

3.6.1.  Feature  Extraction  Using  Berkeley  Wavelet
Transformation (BWT)

•  Wavelet  Decomposition:  Each  MRI  image  was
decomposed  into  multiple  sub-bands  using  the  Berkeley
Wavelet Transformation. This involves applying a series of
wavelet  filters  to  the  image,  breaking  it  down  into
different  frequency  components.

•  Selection  of  Wavelet  Coefficients:  From  the
decomposed sub-bands, relevant wavelet coefficients were
selected based on their contribution to the differentiation
between  healthy  and  tumor  tissues.  This  selection  was
made using an energy-based criterion where coefficients
with higher energy were retained, as they often represent
significant features.

• Dimensionality Reduction: To reduce computational
load and avoid overfitting, Principal Component Analysis

(PCA)  was  applied  to  the  selected  wavelet  coefficients,
retaining 95% of the variance.

3.6.2.  Tumor  Detection  using  Enhanced  Support
Vector Machines (SVMs)

•  Kernel  Selection:  We used  a  Radial  Basis  Function
(RBF) kernel for the SVM, which is effective for non-linear
classification tasks. The RBF kernel helps to map the input
features  into  a  higher-dimensional  space  where  a
hyperplane  can  effectively  separate  the  classes.

•  Hyperparameter  Tuning:  The  SVM  model's
hyperparameters  were  optimized  using  a  grid  search
technique with 5-fold cross-validation. The optimal values
identified were:

• C (Regularization Parameter): 1.0, which controls the
trade-off between achieving a low training error and a low
testing error.

•  Gamma (Kernel  Coefficient):  0.01,  determining  the
influence  of  individual  training  samples  and  controlling
the flexibility of the decision boundary.

• Training and Validation: The SVM model was trained
on  80%  of  the  dataset  and  validated  on  the  remaining
20%. This split ensured that the model had sufficient data
to learn while maintaining a robust evaluation.

3.7. Various Machine Learning Models used in This
Research

It  is  strategically  possible  to  successfully  and
accurately forecast brain tumors with the aid of a gigantic
ensemble  of  machine-learning  models.  The  conventional
but  enhanced  SVM  provides  a  strong  foundation  for
effective  classification  through  its  discriminative
power.However,  in  some  research,  ANN  structures  are
also  used,  which  are  strong  in  identifying  complex
relationships and patterns. Recurrent neural networks are
the  best  techniques  for  handling  the  temporal
characteristics  and  sequential  dependencies  of  medical
imaging data. Furthermore, the model uses Convolutional
Neural  Networks  (CNNs)  to  automatically  extract
hierarchical  features  from image  data,  capturing  spatial
relationships  needed  for  more  intricate  predictions  [25,
26].

3.7.1. Enhanced Support Vector Machine (SVM)
In this study, we employed an enhanced version of the

Support  Vector  Machine (SVM) to  improve the  accuracy
and  robustness  of  brain  tumor  detection.  The
enhancements made to the traditional SVM model include
the following key modifications:

Adaptive Kernel Selection:
Unlike a standard SVM that typically uses a fixed
kernel  function,  we  implemented  an  adaptive
kernel strategy that dynamically selects the most
appropriate kernel (linear, polynomial,  or radial
basis function) based on the characteristics of the
input data.
The  selection  process  involved  calculating  the
kernel alignment score during the initial training



6   The Open Bioinformatics Journal, 2025, Vol. 18 Kumar et al.

phase  to  choose  the  kernel  that  maximizes  the
margin  between  classes  and  improves
classification  accuracy.

Feature Selection and Dimensionality Reduction:
We integrated a feature selection mechanism that
employs Recursive Feature Elimination (RFE) in
conjunction  with  the  SVM  model  to  iteratively
remove less significant features.
Principal  Component  Analysis  (PCA)  was  also
applied  to  the  selected  features  to  reduce
dimensionality  while  retaining  95%  of  the
variance.  This  step  not  only  minimized
computational complexity but also enhanced the
model’s  performance  by  focusing  on  the  most
informative  features.

Hyperparameter Optimization:
The  hyperparameters  of  the  SVM,  that  is,  the
regularization  parameter  C  and  the  kernel
coefficient gamma, were optimized with the grid
search  method  and  combined  with  5-fold  cross-
validation. This rigorous search strategy allowed
the  selection  of  the  hyperparameters  providing
maximal generalization performance on the data
not seen so far.
The  enhanced  SVM  used  a  regularization
parameter (C) of 1.5 and a gamma value of 0.01,
which were found to be optimal for this specific
dataset.

Integration of a Weighted Cost Function:
In our study, we use a weighted cost function to
treat the class imbalance in the dataset and place
a higher  value  on instances  misclassified  of  the
minority  class;  that  class  would  be  the  tumor
cases.  This  will  make  the  model  more  sensitive
when  it  comes  to  detecting  tumors  and  hence
reduce  the  risk  of  false  negatives,  a  very
important  aspect  in  any  medical  diagnostic.

Custom Kernel Function Development:
A  kernel  function  was  custom-developed,
combining some of the properties of the RBF and
polynomial  kernels.  The  novel  characteristic  of
this  hybrid  kernel  is  that  it  captures  global
tendencies besides local fluctuations within both
the  tumor  and  non-tumor  classes  of  nonlinear
data.

Outlier Detection and Handling:
An  outlier  detection  mechanism  was  integrated
into  the  training process  using one-class  SVMs.
This step was crucial for identifying and handling
outliers  in  the  dataset,  which  could  otherwise
skew  the  decision  boundary  and  negatively
impact  model  accuracy.

3.7.2. Artificial Neural Network
In  this  respect,  artificial  neural  networks  infer  a

dynamic  and  adaptive  framework  for  the  prediction  of
brain  tumors  as  they  pick  up  complex  patterns  and
relationships associated with the data. An Artificial Neural
Network  (ANN)  is  a  network  of  connected  nodes  or
elements arranged in layers to carry out processing in the

same manner as the brain. Input representations of input
features can be input into the input layer and further be
analyzed by a set of hidden layers and finally predict the
output layer. The flexibility of ANNs makes them a good
choice for the difficult task of classifying brain tumors; the
latter models' complex nonlinear interactions manifest in
medical imaging data. There are two phases of operation
for artificial neural networks: training and inference. The
network trains itself by adjusting the internal weights or
parameters  so  that  labeled  examples  drive  down  the
difference between expected and actual outputs. Most of
the time, artificial neural networks infer relationships and
patterns  from  the  training  set  using  optimization
algorithms. The trained artificial neural network infers, in
this stage, that unknown and new data resembles what it
has learned [27-29].

3.7.3. Recurrent Neural Network
Herein, it is essential to note that RNN does constitute

significance  for  brain  tumor  prediction  because  the
features it processes are sequential and temporal; medical
imaging  data  is  used.  Opposing  the  conventional  neural
network,  the  architecture  in  RNN  is  designed  to  pay
special  attention  to  the  received  information
corresponding  to  the  previous  time  step,  which  makes
them  particularly  suitable  for  sequence  tasks,  such  as
medical imaging data that exist in the form of the series
and  need  to  be  processed  with  high  accuracy.  The
recurrent  connections  between  the  hidden  layers  within
the  RNN  architecture  allow  this  network  to  remember
early inputs. In a prediction task of brain tumors, a time
change in  some characteristics  is  significant  for  reliable
classification  when  the  network's  memory  can  hold  the
sequential nature of the medical images. An RNN cannot
function unless input sequences are processed repeatedly.
At  every  time  step,  the  network  receives  new  input  and
data from the previous time step, which it uses to update
its  internal  state.  Because  recurrent  neural  networks
(RNNs)  can  model  dependencies  across  sequential  data,
researchers can gain a deeper understanding of temporal
patterns.  By  backpropagating  its  parameters  over  time
during the training phase, the RNN maximizes its ability to
predict results based on sequential input [30].

3.7.4. Convolutional Neural Network
Convolutional  neural  networks  (CNNs)  are  a  helpful

tool that utilize their innate ability to automatically extract
hierarchical features from image data. When it comes to
tasks  involving  spatial  relationships,  where  context  and
pixel  arrangement  play  a  significant  role,  CNNs  excel.
They're ideal for medical image analysis because of this.
The architecture of a CNN consists of convolutional layers
that convolve input images using learnable filters in order
to find local  patterns.  The network can then extract and
integrate features with ever-more complex architectures
thanks  to  pooling  and  fully  connected  layers.  Using
convolutional operations, a CNN can methodically extract
features. These operations help capture patterns such as
edges, textures, and shapes. The resulting pooling layers
down sample the spatial dimensions while preserving the
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most prominent features. The fully connected layers at the
end of the network use these features together to generate
predictions.  During  the  training  phase,  CNNs  maximize
their  ability  to  recognize  patterns  and  produce  accurate
predictions  by  backpropagating  their  numerous
parameters.

In  the  particular  context  of  brain  tumor  prediction,
CNNs  excel  at  automatically  extracting  relevant  spatial
features  from  medical  images,  obviating  the  need  for
human feature engineering. CNNs' hierarchical structure
enables  them  to  recognize  complex  relationships  and
structures  in  the  images  as  well  as  distinguish  between
tumorous and non-tumorous regions [31, 32].

3.8.  Significance  of  Brain  Tumor  Detection  and
Rationale for Model Selection

3.8.1. Significance of Brain Tumor Detection
Brain  tumors  represent  one  of  the  most  critical

medical  challenges  due  to  their  potentially  aggressive
nature  and  significant  impact  on  neurological  functions.
Early and accurate detection of brain tumors is crucial for
effective  treatment  planning  and  improved  patient
outcomes.  Timely  intervention  can  lead  to  better
prognosis,  reduced morbidity,  and potentially  save lives.
However, manual analysis of brain imaging by radiologists
is time-consuming and subject to inter-observer variability,
which  can  lead  to  inconsistent  diagnoses  and  treatment
plans.

Given  the  high  stakes  associated  with  brain  tumor
detection, there is a growing need for automated, reliable,
and  efficient  methods  that  can  assist  radiologists  in
identifying tumors with greater accuracy and consistency.
Machine learning models, especially those developed with
consideration  for  the  needs  within  the  scope  of  medical
imaging  complexities,  have  given  strong  promises  to
address  such  needs  through  automated  tools  in  large
datasets,  detecting  subtle  patterns  and  improving
diagnostic  accuracies.

3.8.2.  Rationale  for  Choosing  Specific  Machine
Learning Models

The specific machine learning models for this study -
Enhanced Support Vector Machines (SVM), Convolutional
Neural  Networks  (CNN),  Recurrent  Neural  Networks
(RNN),  and Artificial  Neural  Networks (ANN) have been
chosen  based  on  their  distinctive  abilities  and  the
potential of each model in solving the inherent challenges
that  exist  in  the  detection  of  brain  tumors  from medical
images.  Detailed rationale  for  the choice  of  each model:
SVMs work well in high-dimensional spaces, such as cases
where the number of dimensions is more than the number
of samples.

Brain tumor detection is basically a classification task
with huge data containing complex image features; hence,
SVM can  handle  the  data.  SVMs,  when  well  regularized
and equipped with expressive kernel functions, can really
perform quite satisfactorily with small training data hence
their practical use also suits most medical imaging tasks

where  annotated  data  might  be  in  scarcity.  CNNs  are
specially designed to automatically extract and learn the
spatial hierarchies of features from images; thus, it is very
effective  in  image classification and segmentation tasks.
CNNs  have  been  found  to  perform  dramatically  well  in
medical image analysis tasks, including tumor detection,
thanks to their ability to capture local patterns and spatial
hierarchies,  which  could  be  critical  in  identifying  brain
tumor growth from MR images.

While originally designed for sequential data, RNNs, in
general,  and  LSTM  networks,  in  particular,  can  capture
dependencies  over  time  and,  thus,  are  beneficial  to  the
task  of  analyzing  a  series  of  image  slices  that  could
provide context regarding the progression or extent of a
tumor. In situations with the availability of 3D or temporal
imaging  data,  RNNs  can  refine  detection  by  taking  into
account the sequence of images rather than treating them
as  independent,  thus  providing  comprehensive  analysis.
ANNs would model complex,  non-linear relationships,  so
they will be versatile tools for catching intricate patterns
in the brain imaging data,  which possibly signal  tumors.
ANNs are combined with other models to improve feature
extraction and overall detection accuracy. It makes use of
their general-purpose nature in learning patterns during
recognition tasks.

3.8.3.  Impact  of  Selected  Models  on  Brain  Tumor
Detection

When  combined,  these  machine-learning  models
leverage  the  strengths  of  each  individual  model  to
enhance the detection of brain tumors. With the diversity
of models used, the study is enabled to:

Improve  the  detection  accuracy  by  exploiting  multiple
perspectives on data,
Reduce the chances for misclassification through model
diversity, and
Enhance  the  robustness  of  the  detection  process  to
handle  the  variability  of  imaging  modality  and  the
anatomical  differences  among  the  patients.

This  multi-model  approach  thus  not  only  offers  a
comprehensive toolset for automated tumor detection but
also  goes  one  step  further  in  advancing  the  field  of
medical imaging by illustrating how different paradigms of
machine  learning  can  be  brought  together  to  address  a
critical healthcare challenge.

3.9.  Computational  Demands  and  Model
Interpretability

Computational Demands

The  computational  requirements  of  the  machine
learning models implemented in this study vary depending
on  their  architecture  and  complexity.  Key  observations
regarding  the  computational  demands  are  as  follows:

Enhanced SVM and ANN: These models demonstrated
relatively  low  computational  demands,  making  them
suitable  for  deployment  in  resource-constrained
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environments. The Enhanced SVM's efficiency arises from
its smaller parameter space and focuses on kernel-based
feature separation, while ANN's computational simplicity
stems from its straightforward architecture.

CNN  and  RNN:  CNN  and  RNN  models  require
significantly  more  computational  resources  due  to  their
complex  architectures  and  the  need  to  process  high-
dimensional  image  data.  CNNs,  with  their  multiple
convolutional  and  pooling  layers,  required  higher  GPU
memory  for  efficient  training,  while  RNNs,  particularly
those utilizing LSTMs, demanded additional computational
power to process sequential dependencies.

To provide a clear perspective, the revised manuscript
includes details on the hardware specifications used (e.g.,
GPU,  CPU,  memory)  and  the  approximate  training  and
inference  times  for  each  model.  This  information  allows
readers to assess the feasibility of deploying these models
in different computational environments, including clinical
settings.

Model Interpretability

Interpretability is critical for building trust in machine
learning  models,  particularly  in  medical  applications
where  the  outcomes  influence  clinical  decisions.  In  this
study, model interpretability was addressed as follows:

Visualization Techniques: For CNN, saliency maps and
Grad-CAM (Gradient-weighted Class Activation Mapping)
were applied to visualize the regions of interest in medical
images  that  influenced  the  model's  predictions.  These
techniques  provide  clinicians  with  insights  into  how  the
model  identifies  tumor  regions,  increasing  transparency
and trust.

Feature Importance Analysis: For Enhanced SVM, we
analyzed  the  most  significant  features  contributing  to
classification  by  examining  the  weights  and  kernel
outputs. This helps in understanding which features of the
tumor  (e.g.,  shape,  intensity,  texture)  were  most
influential  in  the  decision-making  process.

Temporal Analysis in RNN: RNN models were analyzed
using sequential visualization techniques to highlight the
temporal  dependencies  that  influenced the  classification
decisions.  This  approach  provides  an  understanding  of
how  sequential  slices  of  imaging  data  contribute  to
predictions.

4. RESULTS AND DISCUSSION

4.1. Training Data and Model Training Process

4.1.1. Training Data

This  dataset  contains  both  CT  and  MRI  images  for
medical  imaging:  1,713  images  with  brain  tumors  and
without  brain  tumors.  In  order  to  evaluate  the  models
robustly,  we  have  divided  the  dataset  into  training  and
testing subsets.
We included 70% of the dataset, which comprises a total
of 1,199 images, in the training set.  This was to ensure

that  the  model  was  well-versed  in  successfully
differentiating  between  classes  in  a  balanced
representation  of  both  tumor-affected  and  tumor-free
images.
The rest  30% of  the dataset,  amounting to  514 images,
was  taken  as  the  testing  set  for  understanding  the
performance of the model. The subset was tested to see if
the model's capability on unseen data remains free from
all types of biases.

4.1.2. Pre-processing of Training Data
Before  the  training  process,  all  images  underwent  a

series  of  pre-processing  steps  aimed  at  enhancing  the
quality  and  consistency  of  data,  namely:

Normalization: It was conducted to adjust pixel intensities
of all images within the range of 0 to 1. This normalizes
intensity  distribution  throughout  the  dataset,  reducing
sensitivity to the variations in imaging protocols.
Resizing:  All  images  were  resized  to  a  uniform  spatial
resolution, which made the input dimensions uniform as
well, hence making computations easier during the model
training process.
Noise  Reduction:  Gaussian  blurring  and  other  such
techniques  reduced  the  noise  on  images,  making  them
clearer for feature extraction.
Intensity Normalization: Additional pixel value changes,
apart from other applied alterations, were used to adapt
to  the  differences  in  imaging modality  so  that  standard
intensity is guaranteed over all the images.

4.1.3. Machine Learning Model Training
The  following  machine  learning  techniques  were  put

into practice in the study: Enhanced SVM, CNN, RNN, and
ANN.  Detailed  implementation  of  each  is  below,
performed  to  be  able  to  train  those  models:

Enhanced Support Vector Machines (SVM):
Kernel Selection: An RBF (Radial Basis Function)
kernel was chosen due to its effectiveness in non-
linear classification tasks.
Hyperparameter  Tuning:  The  model's
hyperparameters (C and gamma) were optimized
using grid search with 5-fold cross-validation. The
optimal values found were C = 1.0 and gamma =
0.01.
Training  Process:  The  SVM  was  trained  on  the
normalized  and  resized  training  data,  using  the
selected  kernel  and  optimized  hyperparameters
to  learn  the  decision  boundary  that  separates
tumor  and  non-tumor  classes.

Convolutional Neural Networks (CNN):
Architecture:  The  CNN  model  consisted  of
multiple convolutional layers followed by pooling
layers  and  fully  connected  layers,  designed  to
automatically  extract  hierarchical  features from
the images.
Training:  The  model  was  trained  using  the
resized  images  with  data  augmentation
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techniques to improve generalization. The model
parameters  were  optimized  using
backpropagation  with  the  Adam  optimizer,  and
training  was  conducted  over  100 epochs  with  a
batch size of 32.

Recurrent Neural Networks (RNN):
Architecture:  The  RNN  model  included  LSTM
(Long  Short-Term  Memory)  layers  to  capture
temporal  dependencies  in  sequential  data.
Training:  Training  was  performed  using
sequences  of  image  slices,  optimizing  the
network's  parameters  with  a  learning  rate  of
0.001  over  50  epochs.

Artificial Neural Networks (ANN):
Architecture:  The  ANN  model  was  structured
with  several  hidden  layers  to  capture  complex
patterns in the data.
Training: The model was trained using a sigmoid
activation  function  for  the  output  layer  and
optimized with stochastic gradient descent.  The
training was performed over 100 epochs.

4.1.4. Model Evaluation:

The enhanced SVM model’s performance was evaluated
on a separate test  set  using accuracy,  precision,  recall,
and F1 score metrics.
Confusion  matrices  were  used  to  visualize  and  analyze
true  positives,  false  positives,  true  negatives,  and  false
negatives, providing insights into the model’s diagnostic
capabilities.

4.2. Results and Discussion
Additionally,  confusion  matrices  were  used  to  illustrate

the  true  positive,  false  positive,  true  negative,  and  false
negative  rates  for  each  model,  providing  a  detailed
understanding  of  their  classification  performance.  Each
machine  learning  model's  prediction  performance  was
meticulously  assessed  after  a  lengthy  multi-feature  training
phase.  Fig.  (2)  demonstrates  the  accuracy  of  the  proposed
machine-learning model.

Fig. (2). Accuracy of the each model.

The enhanced Support Vector Machine (SVM) won with a
remarkable  accuracy  of  97.6%.  The  SVM model's  enhanced
capacity to identify intricate patterns and relationships across
a large range of feature spaces makes it a desirable substitute
for  brain  tumor  prediction.  Second  place  went  to  the
Convolutional  Neural  Network  (CNN),  which  achieved  an
accuracy  of  95.76%.  CNN's  ability  to  automatically  extract
hierarchical features from medical images was crucial to its
accurate  prediction-making.  This  model  has  shown  such
successful diagnostic ability in the diagnosis of brain tumors
due  to  its  capability  of  identifying  tiny  patterns  within  the
data and finding spatial correlations.

The  RNN,  while  diagnosing,  showed  relatively  high
predictive power at a percentage of 92.3. Since the RNN can
model  data  sequentially,  it  was  able  to  identify  temporal
dependencies in the medical imaging data. This proved how
well-suited the RNN was for sequential data and how it could
be  used  in  the  dynamic  domain  to  accurately  predict  brain
tumors.  Meanwhile,  the  Artificial  Neural  Network's  (ANN)
accuracy  stood  at  88.77%.  Even  though  the  ANN's  overall
performance  was  only  slightly  worse  than  other  models,  its
capacity  to  identify  complex  patterns  in  the  feature  space
significantly improved its predictive performance. The ability
of the ANN to find non-linear relationships and dependencies
in the data is still  important in the broader context of brain
tumor  prediction.  In  summary,  the  enhanced  SVM  model
outperformed  other  machine  learning  models  as  the  most
accurate  predictor  in  the  study.
Table 3. Performance score of each model.

Model Precision (%) Recall
(%)

F1 Score
(%)

Accuracy (%)

Enhanced
SVM

98.1 96.9 97.5 97.6

CNN 96.5 95.2 95.8 95.76
RNN 92.8 91.5 92.1 92.3
ANN 89.2 88.1 88.6 88.77

Table 3 provides a detailed, complete view of how the
performance of the machine learning models predicts the
identification  of  brain  tumors  in  terms  of  accuracies,
precisions, recalls, and F1 scores. The top classifier is the
enhanced  Support  Vector  Machine,  with  an  accurate
performance  of  98.1%,  a  precision  of  96.9%,  a  recall  of
97.5%,  and  an  F1  score  of  97.6%.  This  model  showed
significant levels of accuracy in the identification of true-
positive results, a reduction in false positives, and precise
encapsulation of the overall diagnostic performance. The
CNN  demonstrated  the  automated  hierarchical  feature
extraction of medical images with scores equal to 96.2%,
95.76%,  96.5%,  and  95.8%  in  the  recall,  accuracy,
precision,  and the F1 score,  respectively.  The predictive
analysis indicates that the predictive accuracy, precision,
recall,  and F1 score of  the RNN are at  92.80%, 91.50%,
92.10%,  and  92.30%,  respectively.  This  is  due  to  its
modeling approach in sequence; therefore, it does well in
capturing dependencies that most likely exist in data. With
impressive precision, recall, F1 score, and accuracy values
of  89.2%,  88.1%,  88.6%,  and  88.77%,  respectively,  the
Artificial  Neural Network (ANN) demonstrates its ability
to recognize intricate patterns in the feature space.
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Fig. (3). Confusion matrices of ML model.

Fig. (3) demonstrates how well each machine learning
model  performs  in  terms  of  precise  classification  when
using confusion matrices to identify brain tumors. In 489
cases  of  true  positive  predictions  and  941  cases  of  true
negative  predictions,  the  enhanced  Support  Vector
Machine  (SVM)  has  proven  its  capacity  to  accurately
identify  tumors  and  non-tumors.  However,  eleven  actual
tumors  are  mistakenly  classified  as  non-tumors  (false
negatives), and nine non-tumors are mistakenly labeled as
tumors (false positives).

Similarly,  the  Convolutional  Neural  Network  (CNN)
achieves  482  true  positives  and  937  true  negatives  but
misclassifies  18  tumors  and  13  non-tumors.  Recurrent
Neural  Network  (RNN)  produces  468  true  positives  and
929  true  negatives  by  incorrectly  classifying  21  non-
tumors  and  32  tumors.  The  Artificial  Neural  Network
(ANN) achieves 454 true positives and 919 true negatives,
with  46  tumors  and  31  non-tumors  misclassified.  These
matrices  offer  a  comprehensive  understanding  of  the
model's  performance  by  highlighting  the  exact  and
accurate  predictions.  Additionally,  they  provide  helpful
data that can be used to enhance and optimize each model
in the intricate process of identifying brain tumors.

4.3. Validation and Generalization
We acknowledge  that  the  findings  of  this  study  have

not  been  validated  on  independent  datasets,  which  is  a
limitation  in  demonstrating  the  generalizability  of  the
proposed models across diverse populations and imaging

protocols. The dataset used in this research was obtained
from an open-source repository on Kaggle and served as a
foundational benchmark for developing and evaluating the
machine  learning  models.  However,  reliance  on  a  single
dataset restricts the scope of generalization.

To address this limitation and enhance the robustness
of the findings, we propose the following steps for future
work:

(1)  Validation  of  Independent  Datasets:  Future
research will focus on validating the proposed models on
independent datasets collected from different institutions
and  regions.  This  will  allow  us  to  evaluate  the
performance and adaptability of the models across diverse
populations and imaging modalities.

(2)  Incorporation  of  Multi-Institutional  Data:
Expanding the dataset to include multi-institutional  data
with  varied  patient  demographics,  imaging  techniques,
and tumor characteristics will help reduce potential biases
and improve the generalizability of the findings.

(3)  Transfer  Learning  and  Domain  Adaptation:  To
adapt the models for different datasets, we plan to utilize
transfer  learning  techniques.  Fine-tuning  pre-trained
models  on  new  datasets  will  ensure  better  performance
and applicability to broader use cases.

(4)  Real-World  Validation:  Collaborative  efforts  with
healthcare institutions will be pursued to test the models
on  real-world  clinical  datasets,  ensuring  the  models'
practical  utility  in  clinical  settings.



Enhancing Brain Tumor Segmentation using Berkeley 11

These future directions have been outlined to ensure
that the limitations identified in this study are addressed
in  subsequent  research.  By  validating  the  findings  on
independent and diverse datasets, we aim to establish the
robustness and clinical relevance of the proposed models
in the field of medical imaging and brain tumor detection.

4.4 Need for Clinical Validation
While the machine learning models developed in this

study  demonstrate  promising  results  in  the  detection  of
brain  tumors  using  publicly  available  datasets,  we
acknowledge that clinical validation is essential to ensure
their  practical  applicability  in  real-world  healthcare
settings.  Clinical  validation  will  provide  a  robust
assessment  of  the  models'  performance  under  actual
clinical conditions and further establish their reliability for
diagnostic use.

To address this critical aspect, the following steps are
proposed for future work:

(1) Collaborations with Healthcare Institutions: We aim
to collaborate with hospitals and medical research centers
to  test  the  trained  models  on  clinical  datasets.  These
datasets  will  include  real-world  patient  imaging  data,
encompassing  diverse  demographics  and  imaging
protocols,  to  evaluate  the  models'  performance  and
generalizability.

(2)  Prospective Clinical  Studies:  Future research will
involve conducting prospective studies where the trained
system is  integrated into  the clinical  workflow.  This  will
allow  us  to  assess  its  ability  to  support  diagnostic
decisions  in  real-time  under  the  supervision  of  medical
professionals.

(3)  Integration  of  Clinician  Feedback:  During  the
clinical validation process, feedback from radiologists and
oncologists  will  be  gathered  to  refine  the  system.  This
iterative  process  will  help  ensure  that  the  model's
predictions  align  with  clinical  expectations  and  provide
actionable insights for medical practitioners.

(4)  Adherence  to  Regulatory  Standards:  The  models
will be validated following regulatory guidelines, such as
those  provided  by  the  FDA or  CE,  to  ensure  compliance
with the standards required for clinical deployment. This
will  also  involve  ensuring  data  privacy,  ethical  use,  and
reliability of the system.

By  undertaking  these  steps,  we  aim  to  provide
comprehensive clinical validation of the proposed system,
ensuring  its  readiness  for  deployment  in  medical
diagnostics.  These  efforts  have  been  outlined  as  part  of
the  future  direction  of  this  study,  reinforcing  our
commitment  to  bridging  the  gap  between  research  and
clinical practice.

CONCLUSION
In conclusion, by carefully analyzing machine learning

models,  namely  enhanced  Support  Vector  Machines
(SVM), Convolutional Neural Networks (CNN), Recurrent
Neural  Networks  (RNN),  and  Artificial  Neural  Networks
(ANN), this study seeks to advance the field of brain tumor

identification. The study carefully compared and assessed
each  model's  capacity  for  prediction  using  a  range  of
metrics, such as F1 score, accuracy, precision, and recall.
Based on a remarkable 97.6% accuracy rate in recognizing
complex patterns over a wide feature space, the outcomes
show  that  the  enhanced  SVM  is  the  most  effective
predictor. CNN is far from ideal, with an accuracy of only
95.76% and a limited capacity for automatic hierarchical
feature  learning.  With  a  performance  of  88.77%  and  an
accuracy  of  92.3%,  the  RNN  beats  the  ANN.  When  it
comes  to  managing  sequential  dependencies,  the  RNN
excels. Since each model has a diverse set of features in
its  training  set,  it  is  easier  to  understand  the  pros  and
cons  of  each  model.  Notably,  because  of  its  increased
accuracy, the improved SVM is now a practical choice for
accurate brain tumor identification. The results show the
models'  potential  applications  in  medical  image  analysis
and  offer  details  on  the  unique  characteristics  and
potential  uses  of  machine  learning  models  in  the
challenging  field  of  brain  tumor  prediction.  The  work
discussed here will eventually aid in the optimization and
enhancement  of  predictive  models,  enhancing  neuro-
oncology's  diagnostic  potential.
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