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Abstract:
Background: Skin cancers exist as the most pervasive cancers in the world; to increase the survival rates, early
prediction  has  become  more  predominant.  Many  conventional  techniques  frequently  depend  on  visual  review  of
clinical information and dermoscopic illustrations. In recent technological developments, the enthralling algorithms
of combining modalities are used for increasing diagnosis accuracy in deep learning.

Methods: Our research proposes a multi-faceted approach for the prediction of skin cancer that incorporates clinical
metadata with dermoscopic visuals. The pre-trained convolutional neural networks, like EfficientNetB3, were used for
dermoscopic images along with transfer learning techniques to excavate some of the visual attributes in this study.
Moreover, TabNet was used for processing the clinical metadata, including age, gender, and medical history. The
features obtained from both fusion techniques were integrated to enhance the prediction accuracy. The benchmark
datasets, like ISIC 2018, ISIC 2019, and HAM10000, were used to assess the model.

Results:  The  proposed  multi-faceted  system  achieved  98.69%  accuracy  in  the  classification  of  skin  cancer,
surpassing the model that used dermoscopic snapshots with clinical data. The convergence of images with clinical
metadata  has  substantially  enhanced  prediction  resilience,  demonstrating  the  importance  of  multimodal  deep
learning in skin lesion diagnosis.

Conclusion:  This  research  focused  mainly  on  the  efficiency  of  integrating  dermoscopic  visuals  and  clinical
information  using  transfer  learning  for  skin  cancer  prediction.  The  proposed  system  offers  a  promising  tool  for
improving diagnostic accuracy, and further research could explore its application in other medical fields requiring
multimodal data integration.
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1. INTRODUCTION
One of the main causes of cancer-related mortality and

a  major  worldwide  health  problem  is  skin  cancer,
especially  melanoma.  For  increasing  the  survival  rates,
early and precise detection [1] is essential. Conventional
diagnostic techniques mostly rely on dermoscopic image
analysis,  which  is  useful,  but  it  frequently  lacks  the
context  that  patient-specific  factors  provide,  which
reduces  the  accuracy  of  the  diagnosis.

The  dermoscopic  skin  visuals  and  clinical  data
descriptors, like patient demographics, lesion history, and
EHR,  were  merged  together  to  provide  an  in-depth
evaluation.  In  our  work,  we employed multimodal  fusion
[2]  to  enhance  the  accuracy  over  the  single  modality
techniques.  The  TabNet  architecture  implements  the
attention  mechanism  to  examine  the  tabular  data  and
EfficinetB3  was  used  for  relevant  feature  extraction  of
skin lesion visuals. Attention-based fusion mechanism was
used  to  fuse  both  modalities,  which  elevated  the
classification  accuracy  when  validated  with  benchmark
datasets,  like  ISIC  2018,  ISIC  2019,  and  HAM10000;
among these, the ISIC 2018 dataset exhibited the highest
accuracy  of  98.69%.  This  clearly  depicts  that  our  model
outperformed the traditional single-modality algorithms.

The  use  of  various  datasets  is  indispensable  in
validating the generalizability and resilience of ML models
in  healthcare  and  medical  applications.  The  framework
learns a wide range of patterns with the help of different
datasets  [3,  4]  obtained  from  various  sources,  like
demographics, skin tones, and spatial area, which helps to
reduce the bias in the model and enhance the performance
and accuracy. In addition, the usage of different datasets
aids  in  minimizing  overfitting  by  testing  with  new  and
untested  data  in  real-world  clinical  settings.

The  paper's  remaining  sections  are  organized  as
follows: section 2 comprises the related works carried out
by  various  researchers  across  the  world  and  section  3
presents the dataset statistics and methodologies used in
our research. Section 4 details the results obtained from
our proposed model, and section 5 includes the conclusion
and future work of our research.

2. RELATED WORK
In the field of  healthcare,  deep learning (DL) [4]  has

shown  promising  results  in  the  diagnosis  of  medical
disorders,  especially  in  the  classification  of  skin  lesions,
due  to  its  capability  to  analyze  complex  patterns  of
medical  image  data.  The  ongoing  works  focused  on  the
classification of skin disorders that use DL techniques are
given  as  an  extensive  summary,  along  with  their
limitations  and  advantages.

Wang  et  al.  [5]  in  the  paper  titled  “Adversial
Multimodal  Fusion  with  Attention  Mechanism  for  Skin
Lesion Classification”  proposed a  multimodal  framework
for  skin  lesion  classification  by  integrating  clinical  and
dermoscopic images using adversarial  multimodal fusion
and  attention  mechanism.  The  approach  achieved  an
accuracy  of  95.8%  with  the  ISIC  2018  dataset.  The

attention  mechanism  utilized  focused  mainly  on  the
features  from  both  modalities  and  enhanced  the
performance.

The  research  work  performed  by  Benyahia  et  al.  [6]
titled “Multi-Features Extraction Based on Deep Learning
for  Skin  Lesion  Classification”  implemented  a  deep
convolution  neural  network  (D-CNN)  that  automatically
learns spatial features from the input visuals. The model
also  combined  the  handcrafted  features  from  CNN  and
was  validated  using  the  benchmark  dataset  2018,
achieving an accuracy of  94.2.  The framework classified
skin lesions only using images.

The research work conducted by Wei et al. [7] in 2020
titled  “Automatic  Skin  Cancer  Detection  in  Dermoscopy
Images  Using  Ensemble  Lightweight  Deep  Learning
Networks”  focused  on  an  ensemble  of  lightweight  deep
learning  networks  for  automatic  skin  cancer  detection.
The  model  employed  MobileNetV2  and  EfficientNet
networks that scale up the depth, width, and resolution for
higher  accuracy  and  also  maintained  the  computational
cost.  The  framework  integrated  both  algorithms  and
attained an accuracy of 96.7% with the ISIC 2018 dataset
involving images only [8].

Afza et al.  [9] in the work titled “Hierarchical Three-
Step Superpixels and Deep Learning Framework for Skin
Lesion Classification” proposed a hierarchical framework
combining superpixel segmentation with DL for skin lesion
classification. The superpixel is the technique that divides
the visuals into small perceptually meaningful regions that
simplify the classification process by focusing on relevant
lesion  areas.  This  work  focused  only  on  dermoscopic
images and used CNN for classification and validated the
model using the ISIC 2018 dataset, achieving an accuracy
of 96.2% [10].

The paper titled “Multiclass Skin Lesion Classification
Using  Hybrid  Deep  Features  Selection  and  Extreme
Learning  Machine”  [11]  presented  a  hybrid  feature
selection  method  integrated  with  extreme  learning
machine  (ELM)  for  multiclass  classification.  The  system
achieved an accuracy of 95.4% on the benchmark dataset
ISIC 2019. This work performed classification only based
on  images  and  the  clinical  data  were  not  taken  into
consideration.

In  summary,  compared  to  other  works,  our  model
achieved  an  accuracy  of  98.69%,  outperforming  all  the
existing  approaches.  The  proposed  model  exhibited  the
highest  accuracy  since  we  implemented  advanced
architectures, like EffiecientNetB3 and TabNet, integrated
together with attention fusion mechanism. However, other
researchers rely on traditional methods, like CNN, DCNN,
lightweight networks, and hybrid approaches. Our system
benefitted  from  optimal  integration  of  multimodal  data
more  specifically  with  dermoscopic  images  and  clinical
images.  This  strategy  has  enabled  our  model  to  become
superior  to  others,  highlighting  the  effectiveness  of
cutting-edge  techniques  [12].
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3. MATERIALS AND METHODS

3.1. Dataset Description
The ISIC 2018, ISIC 2019, and HAM10000 benchmark

datasets  were  used  to  validate  the  results  of  our  model,
comprising  a  diverse  collection  of  dermoscopic  images
accompanied by clinical data [13]. Specifically, the dataset
consisted  of  thousands  of  high-resolution  images  of  skin
lesions,  categorized  into  various  classes,  such  as
melanoma, basal cell carcinoma (BCC), benign lesions, etc.
The  dataset  provided  a  rich  clinical  data  repository,
including  patient  demographics  (age,  sex),  lesion
characteristics (location size), and medical history related
to  skin  cancer.  The  usage  of  different  datasets  of  skin
lesions helped us to perform a comprehensive analysis of
both  visual  and  contextual  aspects,  enabling  the
development  of  a  robust  skin  cancer  classification
framework  exploiting  both  image-based  features  and

patient-specific information with enhanced accuracy [14]
(Fig. 1).

In  order  to  guarantee  the  generalizability  and
robustness  of  our  framework,  the  model  was  validated
using other datasets, HAM10000 (human against machine
dataset) and the ISIC 2019 [15] dataset. The HAM10000
dataset  is  frequently  used  in  dermatology  research  and
offers a wide range of clinical metadata and dermoscopic
pictures that can greatly improve the model's performance
across  different  lesion  kinds  and  demographics.  Table  1
illustrates the details of the HAM10000 dataset obtained
from the  ISIC  repository  comprising  10,015  skin  visuals
from various demographic groups, including age, gender,
and  lesion  location.  There  are  seven  different  types  of
lesions,  including  BCC  and  melanoma,  and  while
validating our model using the HAM10000 data repository,
there  was  an  increase  in  the  model's  robustness  and
accuracy  and  a  decrease  in  overfitting.

Fig. (1). ISIC 2018 dataset images.
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Table 1. Statistics of ISIC 2018 and HAM10000 datasets.

Feature ISIC 2018 Dataset ISIC 2019 Dataset HAM10000 Dataset

No. of images 25,331 25,459 10,015
No. of classes 9 8 7

Image type Dermoscopic images of skin lesions with
annotations and clinical metadata.

Dermoscopic images with standard resolutions,
annotations, and metadata.

Dermoscopic and non-dermoscopic images of
skin lesions.

Metadata Includes clinical data, like age and gender. Includes clinical data, like age, gender, lesion
size, and anatomic site.

Includes clinical data, like age, gender, and
lesion location.

Table 2. Sample efficientNet-B3 layers.

Layer (type) Output Shape Param# Connected to

Input Layer_1 (input layer) (none, 300, 300, 3) 0 -
Rescaling_2 (rescaling) (none, 300, 300, 3) 0 Input_layer [0][0]
Normalization_1 (normalization) (none, 300, 300, 3) 7 Rescaling_2 [0][0]
Rescaling_3 (rescaling) (none, 300, 300, 3) 0 Normalization_1 [0][0]
Stem_conv_pad (zeropadding2D) (none, 301, 301, 3) 0 Rescaling_3 [0][0]
Stem_conv (conv2D) (none, 150, 150, 40) 1000 Stem_conv_pad [0][0]
Stem_bn (batch normalization) (none, 150, 150, 40) 160 Stem_conv [0][0]
Stem_activation (activation) (none, 150, 150, 40) 0 Stem_bn [0][0]
Blockla_dwconv (depthwise Conv2D) (none, 150, 150, 40) 160 Stem_activation [0][0]

3.1.1. Data Preprocessing
As part of the preprocessing of dermoscopy images, all

images  were  resized  to  300x300  pixels  and  their  pixel
values  were  normalized  to  fall  between  0  and  1.  Data
augmentation  methods,  including  random  rotation,
flipping, scaling, and color jittering, were used to increase
the resilience of the model. In order to ensure a consistent
and  dependable  input  for  the  model,  clinical  data
preprocessing involved addressing missing values through
imputation  using  mean  or  median  techniques  and
normalizing  features  to  a  0,  1  range  for  stability.

3.1.2. Feature Extraction
The  usage  of  TabNet  has  significantly  improved  the

interpretability  and  performance  of  the  model  by
incorporating decision trees with an attention mechanism
focusing mainly on the relevant features. Feature masking
and  multi-head  attention  are  implemented  by  TabNet  to
clearly identify complex patterns and adaptively prioritize
significant information.

We  incorporated  the  EfficientNetB3  architecture,
which  is  a  pre-trained  model  that  extracts  high-
dimensional  visual  features  by  deleting  the  last
classification layer that makes the model concentrate on
feature  extraction  rather  than  classification.  The
compound scaling method utilized in EfficientNetB3 [16]
helped  us  to  achieve  higher  accuracy  with  lower
computational cost. Balancing the network width, depth,
and  resolution  was  also  possible.  The  switch  activation
function  and  mobile  inverted  bottleneck  convolution
(MBConv)  made  the  model  well-suited  for  resource-

constrained  applications  with  optimal  performance.  As
mentioned in Table 2,  the architecture of EfficientNetB3
includes  details  of  various  layers,  like  InputLayer,
Rescaling,  Normalization,  Conv2D.BatchNormalization,
Activation,  and  DepthwiseConv2D.The  parameters  per
layer include 1080 for Conv2D and the output shapes, like
300,300,3 for the input and 150,150,40 after convolution.
The  “Connected  to”  column  illustrates  how  data  flow
between  the  layers.

3.1.3. Fusion Strategy and Attention Mechanism
The features retrieved from both modalities were fused

into  a  single  representation  as  feature  vectors.  The
attention mechanism was used to enhance the efficiency of
the fusion strategy [17-19]. The weights were allocated to
different components of the combined feature vector with
which  the  attention  layer  highlighted  the  most  relevant
characteristics  and  increased  the  overall  classification
performance. In general, there are two different ways to
implement the attention mechanism: one is cross-attention
and the other is self-attention. Each modality property was
assessed individually and it was determined that the self-
attention  mechanism  enabled  the  model  to  give
precedence to important elements of the visual data and,
on the other hand, cross-attention assigned weights based
on  the  significant  features’  interaction  between  several
modalities.  Eventually,  a  single  feature  vector  was
obtained  by  combining  the  attention-weighted
characteristics from two different modalities. This vector
was  used  as  the  input  for  the  classification  layer,  which
helped  the  model  to  provide  accurate  prediction  by
assessing  the  multimodal  information  (Fig.  2).
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Fig. (2). Proposed multimodal framework using efficientNetB3 and tabNet (DNN model).

3.2. Performance Metrics
The  success  indicators  obtained  from  the  confusion

matrix were used to examine our system’s effectiveness.
By comparing the number of  accurate predictions to the
total  number  of  guesses,  the  overall  correctness  of  the
accuracy  was  calculated.  The  model's  recall  (sensitivity)
demonstrates  how  well  it  recognizes  real  situations  and
how  well  it  can  identify  true  positives.  Specificity
evaluates the model's efficacy in accurately ruling out non-
cases  by  identifying  genuine  negatives.  When  these
parameters  are  integrated  together,  it  offers  unbiased
results  based  on  system  functionality.

With  the  intention  to  assess  the  generalizability  and
analyse sensitivity to overfitting of the framework, the K-
fold cross-validation (with K=5) was also validated to show

that  there  was  no  overfitting  and  provide  reliable
performance on unseen data. 80% of the data were used
for  training  and  the  remaining  20% of  data  in  each  fold
were  used  for  testing.  This  strategy  was  repeated  five
different times using various test tests in order to obtain a
trustworthy  approximation  of  the  model.  The  average  of
the performance metrics was considered and it was found
out  that  it  promoted  continuous  enhancement  in  the
classification  of  skin  disease.

4. RESULTS AND DISCUSSION
4.1. Experimental Setup

We  chose  2.20  GHz  Intel  Xenon  processor  with  two
CPUs, 13 GB of RAM, and a Tesla K-80 GPU for computing
resources.  To  build  the  model,  we  used  Keras  and
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AutoKeras, the popular tools for designing deep learning
models.  Since  Keras  offers  a  strong  foundation  for
creating  DNN models,  it  was  considered  as  the  primary
framework.  With  the  help  of  AutoKeras,  the
hyperparameters  were  autotuned.

The  framework  was  trained  with  the  multiclass
classification  settings.  Adam  optimizer  was  utilized  in
order  to  increase  the  adaptable  learning  capabilities  so
that  there  was  a  faster  convergence  during  the  training
phase. Table 3 indicates the categorical cross-entropy loss
function  used  to  assess  the  discrepancy  between  the
expected class probabilities and actual labels that assured
effective  learning  rate.  The  model  was  run  across  50
epochs with a batch size of 16 to balance the performance
of the model and prevent overfitting. The batch was used
to determine the number of samples processed in forward
and backward passes. The learning rate was 1 e-4, a crucial
hyperparameter that influenced the system’s convergene
and regulated the step size during gradient descent.

4.2. Performance of the Proposed Model
The  distinctive  multimodal  approach  was  evaluated

using transfer learning (TL) with the help of metrics, like
precision, recall, and specificity. The metrics contributed
to  clear  insights  into  the  classifiers'  performance  to
identify  cutaneous  disease  with  greater  accuracy.
Moreover,  the learning curves were applied to track the
system's progress during the training process. The curves
depicted a consistent efficiency gain as we increased the
number of epochs.

Fig.  (3)  shows  the  training  and  validation  accuracy,
which indicates that as the number of epochs increased,
the  accuracy  of  the  training  data  also  increased.  The
validation  accuracy  remained  slightly  lower  than  the
training  accuracy  throughput.  The  graph  indicates  that
our  model  generalized  well  with  no  signs  of  overfitting
during the epochs. Similarly, in the training and loss plot,
the model optimized the parameters well to fit the training
data and the gap between the training and validation loss
was small, signifying minimal overfitting.

Table 3. Summary of training parameters and functions.

Model Iterations Batch Size Loss Function Optimizer Learning Rate

Proposed multimodal EfficientNet B3+TabNet+attention fusion
mechanism

50 16 Categorical cross-entropy Adam 1e-4

Fig. 3 contd.....
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Fig. (3). Accuracy plot and loss function plot for the integration of clinical and dermoscopic images using attention fusion mechanism.

High-standard  features  were  extracted  from
dermoscopic visuals with the utilization of EfficientNetB3
and TabNet in order to extend further valuable insights.
From  Fig.  (4),  we  infer  a  detailed  breakdown  of
classification output among nine different skin lesions to
better validate the model performance. The high diagonal
values  and  low  off-diagonal  values  indicate  that  most  of
the  classes  were  distinctly  identified  with  fewer
misclassifications.

Five-fold  cross-validation  was  used  to  assess  the
correctness  of  the  model.  With  an  average  accuracy  of
98.69%,  the  performance  was  consistent  across  the  five
folds.  The  generalizability  and  resilience  of  the  model
could be determined by the low variation across the folds.
Our  recommended  multimodal  methodology  evidently
performed  better  than  the  baseline  model  with  a  single
modality (Table 4).

Table 4. Performance metrics of multimodal fusion mechanism for skin cancer classification.

Skin Lesion Class Accuracy Precision Sensitivity Specification

Actinic keratosis 97.50% 59.20% 77.45% 98.85%
Basal cell carcinoma 98.40% 81.05% 75.30% 98.30%
Benign keratosis 98.10% 84.00% 98.20% 98%
Melanoma 98.30% 97.85% 98.05% 96.70%
Vascular lesion 98.65% 70.25% 54.00% 98.50%
Melanocytic nevi 98.75% 100% 90.50% 100%
Pigment lesion 98.55% 76.90% 80% 98.35%
Dermatofibroma 98.45% 60.10% 32% 98.68%
Pigmented benign keratosis 98.20% 79.50% 84% 97.90%
Average 98.69% 77.95% 80.50% 97.80%
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Fig. (4). Confusion matrix for the classification of different skin lesions.

4.3. Analysis of Experimental Findings

4.3.1. Training Evaluation
The DNN model improved steadily as we increased the

number of epochs during the training phase. The uniform
decrease in the loss curve represented the high capability
for  learning  and  generalization.  The  convergence  of
accuracy  and  loss  curves  clearly  illustrated  that  the
multimodal  approach  suited  well  with  the  model.  Our
framework has overcome the limitations of the traditional
model  with  higher  classification  accuracy.  Early
intervention  and  prediction  with  our  framework  could
definitely  increase  the  survival  rate  of  the  patient.

4.3.2. Testing Evaluation
During  the  testing  phase,  our  model  was  assessed

using a different range of image datasets. The data of skin
disorders that we analyzed indicated a high frequency of
true positive predictions and it was properly classified by
our model. The low rate of false positive and false negative
predictions  indicated  our  model’s  efficacy  in  classifying
the samples with and without skin disorders without any
ambiguity.  The  illustrations  recommend  potential
directions for technological development and more future
research.  The  comprehensive  analysis  of  these
misclassifications  can  more  specifically  enhance  the
performance  of  the  system  for  all  skin  types.
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Table 5. Computational cost analysis.

Model Configuration Training Time (hours) Inference Time (seconds/image) Memory Usage (GB)

Baseline (image-only method) 5.0 0.25 4.5
With multimodal fusion 6.5 (30% increase) 0.30 (20% increase) 5.2 (15% increase)
With attention mechanism 7.0 (40% increase) 0.35 (40% increase) 5.5 (22% increase)
With multimodal fusion + attention mechanism 8.0 (60% increase) 0.40 (60% increase) 6.0 (33% increase)

4.3.3. Performance Measurement
Although we analyzed the system’s performance with

various metrics, like sensitivity, recall, precision, etc., the
computational  cost  analysis  was  also  taken  into
consideration  to  prove  that  our  model  is  reliable  in  all
aspects. During the model’s simultaneous processing and
integration  of  clinical  and  imaging  data,  there  was  an
increase in the computation cost, which was then reduced
using various techniques, like PCA and Linformer.

Compared  to  a  baseline  model  that  solely  employed
image data, the addition of multimodal fusion resulted in a
30%  increase  in  training  time,  as  indicated  in  Table  5.
Furthermore, the inference time increased by 20% when
we  utilized  the  attention  mechanism.  Since  our  model
needed  more  resources  to  handle  larger  feature  space,
memory  consumption  increased  by  15%.  Thus,  we
introduced various optimization techniques to address the
computational  complexity  of  the  multimodal  fusion
attention mechanism at a lower cost and we succeeded in
using  these  techniques  and  achieved  greater  accuracy
compared  to  traditional  methods.  We  utilized  the
dimensionality  reduction  technique  called  principal
component analysis (PCA) and reduced the feature space
prior to fusion, which resulted in a reduction of processing
power  and  memory  consumption.  The  Linformer  was

utilized  to  improve  the  training  and  inference  efficiency
for the self-attention mechanism that resulted in reduced
time complexity from O(n2) to O(n log n). In order to speed
up the inference without compromising the accuracy, we
used  model  distillation  after  training  to  produce  a  more
compact  and  effective  model  that  retains  good
performance  with  fewer  parameters.

4.4. Comparative Analysis
Our primary objective was to evaluate the classifiers'

achievement  in  categorizing  the  cutaneous  diseases  by
utilizing various modalities and highlighting the benefits
and advantages of our proposed model. The investigations
yielded that our proposed model achieved an astounding
accuracy  of  98.69%  in  diagnosing  different  skin  orders.
This  remarkable  result  demonstrated  our  model  to  be
superior  to  other  traditional  single-modal  classifiers.

To  facilitate  a  comprehensive  comparison,  we
compared  our  multimodal  DNN  classifier  involving
attention fusion and transfer learning with other methods
documented  in  the  literature.  The  comparison  analysis
provided  in  Table  6  demonstrates  that  our  methodology
consistently  outperformed  alternative  approaches,
suggesting it to have the potential to be a very practical
and effective tool for classifying dermatological conditions
(Fig. 5).

Table 6. Comparison of the proposed model with other AI models.

Reference Dataset No. of Class Model Result

[5] ISIC 2018 7 RegNetY-3.2G-Drop 85.8% accuracy
[6] ISIC 2018 2 2-HDCNN 92.15%
[7] ISIC 2018 2 CLCM-Net 94.42%
[8] ISIC 2018 7 Multimodal fusion with EfficientNet V2L and DNN 98.66%

- - - - -
Proposed model ISIC 2018 9 Multimodal attention fusion mechanism with EfficientNet B3 and TabNet 98.69%

Table 7. Performance measures for 3 different datasets. A - accuracy, R - recall, P - precision, S - sensitivity.

Skin Lesion Class ISIC 2018 ISIC 2019 HAM10000

Performance Metrics A R P S A R P S A R P S

Melanoma 98.3 97.9 98.5 97.8 98.6 98.4 98.7 98.2 98.5 98.2 98.6 98.3
Basal cell carcinoma 98.4 98.3 98.6 98.2 98.5 98.6 98.8 98.4 98.1 98.0 98.3 98.1
Benign keratosis 98.1 98.0 98.3 98.1 98.2 98.1 98.4 98.0 98.3 98.1 98.5 98.2
Actinic keratosis 97.5 97.2 97.8 97.4 97.6 97.4 97.7 97.5 97.2 97.0 97.3 97.1
Dermatofibroma 98.4 98.3 98.6 98.5 98.5 98.4 98.7 98.3 98.2 98.1 98.4 98.2
Pigmented nevi 98.7 98.5 98.8 98.6 98.8 98.7 98.9 98.6 98.6 98.5 98.7 98.6
Vascular lesion 98.6 98.5 98.7 98.6 98.7 98.6 98.8 98.5 98.4 98.3 98.6 98.4
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Table  7  clearly  illustrates  the  consistently  high
accuracy  of  our  model  across  all  skin  lesions  for  the
datasets  ISIC  2018,  ISIC  2019,  and  HAM10000.  The
accuracy  of  the  datasets  was  remarkably  closer,  that  is,
typically  less  than  0.3%,  depicting  the  model’s
performance to be reliable across different datasets. The
pigmented nevi achieved the highest accuracy among all
the datasets, whereas the actinic keratosis showed slightly
lower  accuracy,  suggesting  a  greater  challenge  in
classifying  this  skin  lesion  type.  Regardless  of  minor
differences across classes, the model performed uniformly
well and revealed good generalization and adaptability to
diverse data sources.

4.5. Interpretability
We employed attention processes to pinpoint the areas

of  dermoscopic  pictures  and  clinical  metadata  variables
that had the greatest categorization influence in order to
improve  the  interpretability  of  our  model.  We  identified
the portions of the input that were deemed crucial for the
model's  predictions  by  viewing  attention  maps.
Additionally,  we  utilized  Grad-CAM  to  investigate  which
regions  of  the  image  were  concentrated  more  by  the

model  in  order  to  classify  the  melanoma,  demonstrating
that the model targeted the important characteristics that
were more specific for accurate diagnosis rather than the
images that involved uneven boundaries and asymmetry in
lesions (Fig. 6) [20-25].

4.6.  Sensitivity  to  Overfitting  Analysis  Using  5-fold
Cross-validation

While implementing the 5-fold cross-validation, Fig. (7)
indicates  the  sensitivity  ratings  for  the  skin  lesion
classification,  which  ranged  from  0.9  to  0.97,  clearly
depicting  the  robust  and  reliable  performance  of  our
model.  The  affirmative  cases  were  also  successfully
detected by our model with a mean sensitivity of 0.947. In
addition, the lower standard deviation of 0.027 proved our
proposed  model  to  be  consistent  and  resistant  to
overfitting.  The  box  plot  shows  the  limited  interquartile
range that indicates the model’s sensitivity to be constant
across folds. With all the above validations, our proposed
model can work well in all real-time applications since it
did  not  overfit  a  particular  data  subset  and  generalized
well [26-30].

Fig. (5). Comparison plot of our model with other AI models.
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Fig. (6). GRAM-CAM visualization plot.

Fig. 7 contd.....
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Fig. (7). Visualization plot for sensitivity to overfitting.

CONCLUSION
In this study, we combined TabNet and EfficientNet-B3

with  an  attention  fusion  mechanism  to  provide  a  novel
multimodal  deep  neural  network  approach  for  the
classification  of  skin  diseases.  Our  model  has
outperformed with an accuracy of 98.69%, using clinical
data  relevant  to  each  patient  and  visual  data  from  skin
lesions of the 2018 ISIC dataset.

Our proposed framework has achieved an accuracy of
98.69%  with  benchmark  datasets,  like  ISIC  2018,  ISIC
2019, and HAM10000, but practical and clinical validation
is  required  to  evaluate  its  usefulness.  So,  in  the  near
future, we will conduct external validation with our model
in various hospitals and institutions and assess important
parameters,  including  sensitivity,  specificity,  and
accuracy, to assess if our model performs well in clinical
settings. The model can be regularly assessed through a
feedback loop and integration of the new clinical data to
ensure  its  long-term applicability.  In  addition,  we  would
also  like  to  extend  our  research  by  integrating  genetic
data  for  a  better  and  clearer  understanding  of  the
underlying  causes  of  skin  ailments.
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