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Abstract:
Introduction:  The  Gini  index,  introduced  by  the  Italian  statistician  and  demographer  Corrado  Gini  in  the  first
decades of the 1900s, is commonly used as a measure of statistical dispersion to evaluate income inequality within a
nation. However, it is a powerful and effective measure to characterize any sample distribution and evaluate how far
it is from a uniform one.

Methods: In this work we used the Gini Index as an effective and reliable measurement of the specialization of cells,
using  it  to  evaluate  and  compare  the  specialization  level  of  normal  and  tumor  cells  according  to  their  gene
expressions.

Results: It turned out that, on average, tumor cells tend to lose their specialization or, in other words, their capacity
to be the cells they were intended to be due to cancer effects. This loss of specialization in tumor cells corresponds, in
our analysis, to a lower Gini Index with respect to normal cells. This behavior was observed both at a single patient
level  comparing  Gini  Indexes  of  coupled  samples  (from  the  same  patient)  and  at  a  global  level  comparing
distributions  of  Gini  Indexes  in  normal  and  tumor  datasets.

Discussion:  This  work  demonstrates  that  the  Gini  Index  (GI)  effectively  captures  the  loss  of  transcriptional
specialization  in  tumor  cells  compared  to  normal  tissues,  with  statistically  significant  differences  observed  both
within patients and across cancer types, despite some exceptions, such as KICH and THCA.

Conclusion: In conclusion we are confident that GI could be a valuable and effective parameter to evaluate cell
specialization and could provide significant insights in the context of cancer studies.

Keywords: Gini index, Gene expression, Tumor biology, Computational biology, Statistical hypothesis tests, Case
study.
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1. INTRODUCTION
The  Gini  index  (GI)  was  introduced  by  the  Italian

statistician  and  demographer  Corrado  Gini  in  the  first
decades of the 1900s [1-3]. It is commonly used as a measure

of statistical dispersion to evaluate income inequality within
a nation. The general principle is based on the comparison
between the portion of economic resources and the portion of
the  population  that  possesses  those  resources.  In  other

Published: May 29, 2025

https://openbioinformaticsjournal.com/
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:daniele.santoni@iasi.cnr.it
http://dx.doi.org/10.2174/0118750362364938250520114456
http://crossmark.crossref.org/dialog/?doi=10.2174/0118750362364938250520114456&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openbioinformaticsjournal.com/


2   The Open Bioinformatics Journal, 2025, Vol. 18 Cumbo and Santoni

words, the GI measures how the distribution of any source of
data deviates from being uniform, collapsing this information
into  a  number  ranging  from  0  to  1.  In  a  country  where  a
small number of individuals are extremely wealthy while the
vast majority are extremely poor, the Gini Index (GI) is very
high  and  approaches  1.  Conversely,  the  Gini  Index  (GI)  is
very low—approaching 0—in a country where the majority of
people have similar or comparable incomes. Although the GI
was introduced and commonly used in this context, it can be
applied to any distribution to investigate how far it  is from
being  a  uniform  distribution.  The  GI  provides  information
that  is  associated  with  but  also  complementary  to  other
measures, such as the standard deviation or entropy, but it
has several advantages, such as the direct comparability of
any  set  of  data  since  it  is  a  number  in  the  range  [0,1].
Moreover, it does not need any kind of assumption as in the
case of entropy, where, in most cases, a binning supervised
pre-process  is  necessary.  Jiang  and  colleagues  in  2016
developed GiniClust,  a  tool  that  uses  the GI  in  a  biological
context  to  characterize  rare  cell  types  in  single-cell
experiments [4]. In 2018, Tsoucas and Yuan developed a new
tool,  GiniClust2,  that  improved  the  ability  to  detect  and
cluster different cell types in single-cell experiments [5]. In
2021, Nguyen and colleagues developed the Polar Gini Curve
method to characterize cluster markers by analyzing single-
cell  RNA  sequencing  data  [6].  The  GI  was  also  used  to
characterize  and  identify  gene  classes,  for  example,
housekeeping as well as Transporter genes according to their
expression variability  across  different  cells  [7,  8],  to  select
genes  for  normalizing  expression  profiling  data  or  in
combination  with  Support  Vector  Machines  to  select
informative  genes  that  improve  the  effectiveness  of
classification  [9,  10].

In  2024,  Furth  and  colleagues  evaluated  epigenetic
heterogeneity  using  GI  to  demonstrate  how  oncogenic
IDH1mut drives the loss of histone acetylation and increases
chromatin heterogeneity [11]. In immuno-informatics, GI has
been  shown  to  be  an  effective  measure  for  evaluating
diversity in single-cell T-cell and B-cell receptor sequencing
experiments  [12-14].  Additionally,  GI  has  been  applied  in
various biological contexts as an attribute selection metric in
decision trees and random forest algorithms [15-17].

To  the  best  of  our  knowledge,  this  work  is  the  first
attempt to apply the GI to gene expression in the context
of tumors, comparing the GI of normal and tumor cells and
evaluating their cell specialization.

In this work, we introduce the GI as an effective and
reliable measurement of the specialization of cells, using it
to evaluate and compare the specialization level of normal
and tumor cells according to their gene expressions. The
statistical  significance  of  the  differences  between  tumor
and  normal  GI  values  was  evaluated  through  hypothesis
tests  both  at  a  single-patient  level  comparing  GIs  of
coupled samples (from the same patient) and at a global
level comparing distributions of GIs in normal and tumor
datasets.

2. METHOD
We  focus  on  the  public  gene  expression  (FPKM  -

Fragments Per Kilobase of transcript per Million mapped

reads)  quantification  experiments  of  the  TCGA  program
available on the open-access OpenGDC repository [18, 19]
for running our analyses. Here, every kind of experimental
data  and  metadata  is  first  extracted  from  the  Genomic
Data Commons portal [20, 21], and then standardized into
the free-BED format whose structure is  described in the
OpenGDC  Format  Definition  documentation  available  at
http://geco.deib.polimi.it/opengdc/.

The gene expression quantification data contain the list
of  genes  involved  in  the  experiments  with  their  genomic
coordinates  (defined  as  chromosome,  start  posi-tion,  end
position, and strand) and their quantitative information like
the  htseq-count  (number  of  reads  mapping  to  a  specific
gene),  FPKM  (Fragments  Per  Kilobase  of  transcript  per
Million mapped reads – it normalizes the read count based on
gene  length  and  the  total  number  of  mapped  reads),  and
FPKM-UQ (same as FPKM but considering the upper quartile
only).

In  this  study,  we focus  on 17 out  of  33 different  tumor
types  (see  Abbreviations  section  for  the  complete  list  of
considered tumor types) available in the OpenGDC database,
considering  a  number  of  paired  normal-tumor  samples
ranging from a minimum of 9 (ESCA) to a maximum of 112
(BRCA).  The  number  of  samples  for  each  tumor  type  is
reported  in  Tables  1  and  2.

For  each  cancer  type  and  each  patient,  we  compare
paired  normal  and  tumor  gene  expression  GIs  to  assess
whether  they  differ  significantly.  To  this  end,  the  actual
observed  difference  between  normal  and  tumor  GIs  is
compared  with  a  distribution  of  1,000  artificial  GI
differences generated by randomizing gene expressions of
the two samples. Specifically, for a given cancer type, we
build  the  set  of  samples  P={p1,  p2,..  pn}  for  which  both
normal and tumor gene expressions are available. The GIs
of gene expression associated with each pi  are indicated
with  GIi

T  and  GIi
H  for  normal  and  tumor  samples,

respectively.  We  define  it  as  GID(pi)  =  GIi
H-GIi

T  :  the
difference  between  normal  and  tumor  GIs.  We  then
determine whether GID (pi) value is statistically significant
or, in other words, whether the observed value can attest
that the two conditions show significantly different gene
expression  distributions  when evaluated through the  GI.
The GID(pi) is a pure number that, in general, depends on
the  two  distributions,  so  we  have  to  compare  it  with  an
expected  value  obtained  by  taking  the  two  distributions
into consideration. We generate artificial pairs of random
gene  expression  vectors  by  shuffling  the  two  gene
expression vectors. For each gene, we randomly associate
to  the  first  vector  one  out  of  the  two  gene  expression
values and we assign the other value to the other vector.
Once  the  two  randomized  vectors  are  obtained,  we
compute the correspondent GIs, namely GIi

HR and = GIi
TR

and finally GIDR(pi) = GIi
HR-GIi

HT We iterate this procedure
1,000 times, obtaining a collection of 1,000 GIDR(pi) and
we then compute the z-score as:

 

𝑍𝑖  =  
𝐺𝐼𝐷(𝑝𝑖) −𝐴𝑣𝑒𝑟𝑎𝑔𝑒( 𝐺𝐼𝐷𝑅(𝑝𝑖))

𝑆𝑡𝑑𝑣 (𝐺𝐼𝐷𝑅(𝑝𝑖))

http://geco.deib.polimi.it/opengdc/
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where  Average  (GIDR(pi))  and  Stdv  (GIDR(pi))  are  the
average and the standard deviation of the 1,000 obtained
GIDR(pi).  According  to  the  Shapiro-Wilk  normality  test,
performed  on  sample  cases  (data  not  shown),  the
distribution of GIDR(pi) can be considered to be extracted
from a normal distribution, allowing us to compute the P-
value  from  a  given  z-score.  We  compute  P-values
considering  separately  the  two  tails  of  the  normal
distribution, evaluating the p-value for both tails when the
normal  GI  is  greater  than  the  tumor  one  and  vice  versa
when the normal GI is smaller than the tumor one. We set
a  P-value  threshold  of  0.01,  applying  the  Bonferroni
correction with respect  to  the number of  samples of  the
considered tumor type.

At the end of this procedure we obtain for each tumor
type  and  each  patient  a  P-value  indicating  whether  the
normal  and  tumor  expression  values  are  significantly
different  from a statistical  point  of  view when evaluated
through  the  Gini  indexes.  A  significant  P-value  derived
from  a  positive  z-score  is  associated  with  a  positive
difference,  indicating  that  normal  GI  is  significantly
greater than tumor GI. In this case, normal cells are more
specialized  than  tumor  cells.  On  the  other  hand,  a
significant  P-value  derived  from  a  negative  z-score  is
associated  with  a  negative  difference,  indicating  that
normal  GI  is  significantly  smaller  than  tumor  GI.

For each cancer type we also compare paired normal
and tumor gene expression GI distributions. To establish
whether  they  come  from  the  same  hypothetical
distribution,  we  perform  paired  Wilcoxon  tests.  The
Bonferroni  adjustment  is  applied  for  multiple  test
corrections.  Finally,  we  compare  normal  and  tumor  GI
distributions for all available samples, including unpaired
ones (samples for which only one condition is available).
Unpaired  Wilcoxon  tests  and  the  Bonferroni  adjustment
are applied in the same way.

The  entire  procedure  is  repeated  using  the  standard
deviation  (STDEV)  of  gene  expression  values,  instead  of
the  Gini  Index  (GI),  to  enable  comparison  at  both  the
individual  patient  level  and  the  global  level.

3. RESULTS
The  main  goal  of  this  paper  is  to  study  cell

specialization  through  the  GI  index  of  gene  expression
comparing  cancer  and  normal  cells.  First,  we  present  a
global view of GI values associated with samples coming
from  patients  with  different  cancer  types  (see
Abbreviations  section)  for  both  normal  and  tumor  cells.
We  then  analyze  and  compare  for  each  single  patient,
normal  and  tumor  GIs,  showing  through  z-score  values
that they are mostly significantly different. Then, we study
and  evaluate  for  each  tumor  type  the  statistical
differences  between  normal  and  tumor  GI  distributions
through Wilcoxon tests. We apply paired statistical tests to
compare  GI  distributions  of  normal  and  tumor-coupled
samples. Finally, we consider a broader dataset including
all available samples, even if not coupled, by applying non-
paired statistical tests.

Table  1  reports  a  global  view  of  GI  values  for  each
tumor type. The first column indicates the tumor type, the
second column indicates the number of subjects for which
both normal and tumor samples are available. The other
columns  show  other  statistical  parameters  related  to  GI
distributions.  GI  values  are  typically  distributed  around
0.9,  with  the  average  in  normal  samples  ranging  from
0.907 in BRCA to 0.969 in LICH, while in tumor samples,
from 0.906 in LUSC to 0.951 in LICH.

Fig.  (1)  shows  the  comparison  between  GI
distributions of tumor (orange) and normal (blue) cells for
four different cancer types. Panel A – on the left side of the
figure – (HNSC and LIHC) clearly shows higher GI values
for  normal  samples  compared  to  tumor  samples.  On  the
other  hand,  panel  C  –  right  side  of  the  figure  –  (THCA)
shows an opposite behavior with higher values for tumor
samples.  Panel  B  (PRAD)  shows  an  intermediate  case
where  there  is  no  clear  prevalence  between  tumor  and
normal samples. Most of the tumor types typically show GI
values  that  are  lower  in  cancer  than  in  normal  samples
(see Supplementary Material S1 – Supplementary Tables
S1.1-17 – for a complete view of GI distributions of all the
cancer types).

In order to statistically evaluate the significance of this
observed  difference  at  a  patient  level,  we  compare  the
difference  between  tumor  and  normal  GIs  with  the
difference distribution between artificial gene expression
arrays randomly generated from the actual ones obtaining
a  z-score  value  and  the  corresponding  P-value  (see
Materials  and  Methods).

In  Table  2,  the  number  and  percentage  of  patients
showing a significant positive difference between normal
and cancer cells are reported in column 3 for each tumor
type.  In  the  same  way,  columns  4  and  5  report  the
numbers  and  percentages  of  non-significant  and
significant negative GI differences, respectively. The rows
corresponding  to  a  given  tumor  type  are  highlighted  in
green  (red)  when  the  majority  of  patients  show  a
significant positive (negative) difference (P-value < 0.01).
In  the  same  Table  2,  +  and  -  symbols  indicate  the
statistical  significance  of  the  Wilcoxon  rank-sum  test
performed on all the normal and tumor samples regardless
of their pairing (see Method Section). A + symbol denotes
that normal GI values are significantly higher than tumor
GI values considering a Bonferroni adjusted p-value<0.01,
while  a  -  symbol  denotes  that  normal  GI  values  are
significantly  smaller  than  tumor  GI  values.  The  two
analyses  lead  to,  as  expected,  similar  and  consistent
results, even if they provide a different view at a patient
level and a global level.

Wilcoxon  tests  are  also  performed  on  the  GIs
distributions of paired samples for each tumor, obtaining
the  same  results  except  for  LUSC  and  ESCA,  which  are
found not significant.

We always refer to the different tumor types with their
abbreviations as reported on the Genomics Data Commons
website (see Abbreviations section for the complete list of
tumor types alongside their extended description).
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Table 1. Summary table of the Gini indices of normal and tumor samples.

Tumor Type Subjects
Summary of Gini Indices

Normal
(Average ± Stdev)

Tumor
(Average ± Stdev)

Normal
(Min – Max)

Tumor
(Min – Max)

BLCA 19 0.926 ± 0.010 0.916 ± 0.014 0.905 – 0.945 0.889 – 0.934
BRCA 112 0.906 ± 0.019 0.907 ± 0.016 0.873 – 0.966 0.878 – 0.971
CHOL 9 0.953 ± 0.003 0.917 ± 0.015 0.964 – 0.964 0.902 – 0.953
COAD 41 0.926 ± 0.008 0.917 ± 0.013 0.910 – 0.944 0.892 – 0.962
ESCA 8 0.937 ± 0.016 0.912 ± 0.004 0.911 – 0.965 0.901 – 0.920
HNSC 43 0.943 ± 0.042 0.922 ± 0.014 0.907 – 0.972 0.887 – 0.960
KICH 23 0.908 ± 0.019 0.948 ± 0.015 0.880 – 0.932 0.909 – 0.974
KIRC 72 0.926 ± 0.027 0.916 ± 0.015 0.891 – 0.955 0.878 – 0.949
KIRP 31 0.924 ± 0.026 0.925 ± 0.020 0.890 – 0.946 0.888 – 0.958
LIHC 50 0.968 ± 0.065 0.951 ± 0.012 0.953 – 0.983 0.914 – 0.975
LUAD 57 0.914 ± 0.021 0.909 ± 0.013 0.893 – 0.939 0.870 – 0.939
LUSC 49 0.913 ± 0.021 0.905 ± 0.016 0.892 – 0.935 0.854 – 0.938
PRAD 52 0.913 ± 0.020 0.913 ± 0.016 0.871 – 0.956 0.879 – 0.978
READ 9 0.919 ± 0.024 0.918 ± 0.008 0.906 – 0.933 0.895 – 0.933
STAD 27 0.945 ± 0.043 0.924 ± 0.016 0.915 – 0.969 0.894 – 0.957
THCA 58 0.908 ± 0.019 0.918 ± 0.017 0.891 – 0.950 0.887 – 0.974
UCEC 23 0.911 ± 0.020 0.919 ± 0.02 0.893 – 0.924 0.881 – 0.965

Note: for each of the 17 tumor types from the TCGA program (1st column), reporting the number of subject for which both normal and tumor samples are
available (paired – 2nd column), the average Gini index with its standard deviation (3rd and 4th columns), followed by the minimum and maximum Gini indices
(5th and 6th columns).

Table 2. Summary table of the statistical analysis performed on the number of normal-tumor samples.

Tumor Type Samples
Normal – Tumor (Paired)

Comparison of Gini Indices for each Patient Through z-score

Positive
(p<0.01) Not Significant Negative

(p<0.01)

BLCA 19 – 408 (19) 11 (57.9%) 6 (31.6%) 2 (10.5%)
BRCA 113 – 1090 (112) 34 (30.4%) 34 (30.4%) 44 (39.3%)

CHOL + 9 – 36 (9) 9 (100%) 0 (0%) 0 (0%)
COAD + 41 – 456 (41) 22 (53.7%) 15 (36.6%) 4 (9.8%)
ESCA + 11 – 161 (8) 6 (75.0%) 2 (25.0%) 0 (0%)
HNSC + 44 – 500 (43) 32 (74.4%) 8 (18.6%) 3 (7.0%)
KICH - 24 – 65 (23) 0 (0%) 1 (4.3%) 22 (95.7%)
KIRC + 72 – 530 (72) 35 (48.6%) 20 (27.8%) 17 (23.6%)
KIRP 32 – 288 (31) 9 (29.0%) 9 (29.0%) 13 (41.9%)

LIHC + 50 – 371 (50) 43 (86.0%) 5 (10.0%) 2 (4.0%)
LUAD 59 – 513 (57) 19 (33.3%) 30 (52.6%) 8 (14.1%)

LUSC + 49 – 501 (49) 19 (38.8%) 23 (46.9%) 7 (14.3%)
PRAD 52 – 495 (52) 9 (17.3%) 27 (51.9%) 16 (30.8%)
READ 10 – 166 (9) 1 (11.1%) 8 (88.9%) 0 (0%)

STAD + 32 – 375 (27) 18 (66.7%) 9 (33.3%) 0 (0%)
THCA - 58 – 502 (58) 6 (10.3%) 20 (34.5%) 32 (55.2%)
UCEC 35 – 543 (23) 7 (30.4%) 5 (21.7%) 11 (47.8%)

Note: (second column) for each of the involved 17 tumor types (first column): (Z-scores)  columns 3–5 report the number of paired samples (and their
percentage) for which the p-value, computed considering the z-score of the actual pair and those of the 1,000 Gini indices on the randomized gene expression
profiles, is smaller than 0.01. In particular, the column “positive” reports the number of significant p-values of positive z-scores, and vice-versa  for the
“negative” column. Instead, the “not significant” column contains the number of paired samples for which the p-value is not significant, regardless of the
positive or negative sign of their z-scores. Results are color coded according to the values reported under the 3rd, 4th and 5th columns: green if “positive”
sample pairs (3rd column) are the majority (percentage higher than 50%) and red, on the other way around, if “negative” sample pairs (5th column) are the
majority (percentage higher than 50%). (Wilcoxon) the presence/absence of the + and - symbols near the tumor type represents the statistical significance
according to the Wilcoxon rank-sum test.
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Fig. (1). Tumor and normal GI distributions for 4 different tumor types: HNSC and LIHC (panel A, green box), PRAD (panel B, black box),
and THCA (panel C, red box). The plots show for each of the 4 considered tumor types how many samples (y-axis), tumors in pink and
normal in cyan, have a GI falling in the corresponding bin (x-axis).

Note  that  we  also  performed  the  same  statistical
analysis of z-scores and Wilcoxon rank-sum test based on
the  STDEVs  instead  of  GIs,  with  the  aim  of  proving  the
effectiveness  of  GIs  over  a  more  classical  statistical
approach.  A  summary  table  of  the  statistical  analysis
based on the STDEVs is reported in Supplementary Table
S2.1.  Also,  note that we reported the distribution of  the
STDEVs alongside the GIs in Supplementary Material S1 –
Supplementary Tables S1.1-17. As can be observed by the
comparison  of  Table  2  (GI)  and  Supplementary  Table
S1.1-17 (STDEV), similar results are obtained at a global
level through Wilcoxon tests (the only differences regard
BRCA that  is  positive  and THCA that  is  not  negative  for
Stdev). On the contrary, the scenario is very different at a
patient level; while 7 positives and 2 negatives are found
by GI, only 1 positive and 1 negative are found by Stdev.
Those  results  suggest  that  GI  is  able  to  capture  the
differences  in  specialization  between  normal  and  tumor
cells  in  particular  at  a  single  patient  level,  where  Stdev
mostly fails.

4. DISCUSSION
As  reported  in  the  literature  the  transcriptional

specialization  of  a  tumor  is  significantly  less  than  the
corresponding  normal  tissue  [22].  Consistently,  the
observed loss of specialization in tumor cells corresponds
in our analysis to a lower GI with respect to normal cells.
This behavior was observed both at a single patient level
comparing GIs of coupled samples (from the same patient)
through z-score analysis and at a global level comparing
distributions of GIs in normal and tumor datasets.

Interestingly,  despite  this  being  the  overall  typical
behavior,  few  patients  show  an  unexpected  increase  in
their GIs. Similarly, not all cancer types display the same
behavior.  Some  of  them,  in  particular  KICH  and  THCA,
show  an  unexpected  increase  of  specialization  in  tumor
cells  (in  95%  and  55%  of  samples,  respectively).  This
astonishing  result  could  suggest  that  there  are  peculiar
shared  patterns  between  these  two  tumor  types,  as
reported  in  a  study  [23].  One  possible  reason  to
investigate  further  could  be  a  lower  tumor  mutational
burden  in  THCA  and  KICH  compared  to  other  cancer
types,  which  may  affect  GI.

It  is  worth  noting  that  the  differences  in  GI  values
between  normal  and  cancer  cells  are  comparable  to  or
smaller than the differences among different tissues. Thus,
we  conclude  that  the  tissue  of  origin  remains  more
relevant  than  the  tumor  or  normal  condition  in
determining GI. While one might expect much smaller GI
values in tumor samples compared with normal ones, the
observed  results  and  statistical  analyses  (with  a
significance threshold of P<0.01 and often much smaller
P-values)  demonstrate  that  the  differences  between
normal  and  tumor  GIs  are  highly  significant  in  most
cancer  types  and  patients.

The impact and significance of this work may further
increase  as  more  data  becomes  available  in  TCGA,
providing  greater  statistical  robustness  and allowing for
deeper insights.

CONCLUSION
The  GI  characterizes  a  distribution  by  assessing  its

deviation  from  a  uniform  distribution.  It  provides
information related to, but also complementary to, other
statistical measures such as STDEV. In this view it seems
particularly  suitable  to  be  applied  in  the  context  of
computational biology. To the best of our knowledge, this
work is the first attempt to apply GI to gene expression in
the  context  of  tumors,  comparing  the  GI  of  normal  and
tumor cells.

We  are  confident  that  GI  could  be  a  valuable  and
effective  parameter  to  evaluate  cell  specialization  and
could provide significant insights in the context of cancer
studies.
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