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Abstract:
Background: Breast cancer is a highly prevalent and lethal type of cancer that affects women worldwide.

Aims: This study aimed to explore active alkaloid-induced camptothecin (CPT) derivatives as efficacious agents for
the treatment of triple-negative breast cancer (TNBC) by molecular docking simulation.

Methods: First of all, the DFT method from Material Studio 8.0 was executed to optimize ligands and to evaluate the
quantum descriptors. The binding affinities of a series of twelve ligands with human topoisomerase IIα (5GWK) and
p53 (4OQ3) were assessed. A protein data bank (PDB) was used to obtain the 3D structure of PDB ID: 5GWK (human
topoisomerase II α in complex with DNA and etoposide) and PDB ID: 4OQ3 (Tetra-substituted imidazoles as a new
class  of  inhibitors  of  the  p53-MDM2  interaction).  SwissADME  and  admetSAR  -  2.0  were  used  to  perform  the
absorption,  distribution,  metabolism,  excretion,  and  toxicity  (ADMET).  Molecular  dynamic  simulations  were
conducted  using  the  Desmond  software  suite.

Results: Ligand L05 emerged as a standout, demonstrating the highest binding affinity for both proteins, thereby
positioning itself as a potential dual-targeting therapeutic agent. Notably, all ligands exhibited a propensity for higher
binding affinity with 5GWK over p53. Pharmacokinetic profiling further delineated the drug-like attributes of the
ligands, which included a molecular weight spectrum of 372.54 to 420.65 g/mol, rotatable bonds ranging from one to
four, hydrogen bond acceptors between four to six, and hydrogen bond donors limited to zero or one, which satisfied
the drug-likeness properties.

Conclusion:  The  comparative  analysis  of  binding  energies  obtained  from  PyRx  and  Glide  molecular  docking
simulations  of  twelve  ligands  with  human  topoisomerase  IIα  (5GWK)  and  p53  (4OQ3)  provides  insights  into  the
efficacy of these computational tools in computer-aided drug discovery for TNBC.
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1. INTRODUCTION
Breast cancer is a highly prevalent and lethal type of

cancer  that  affects  women  worldwide.  Triple-negative
breast  cancer  (TNBC),  among  its  various  subtypes,
presents  unique  challenges  due  to  its  aggressive  nature
and  lack  of  targeted  treatment  options  [1].  Despite  the
progress made in cancer therapy, TNBC is still associated
with  a  poor  prognosis  and  limited  survival  rates  [2].
Consequently,  there  is  a  pressing  need  for  innovative
therapeutic approaches to enhance patient outcomes and
decrease mortality rates [3].

TNBC  is  characterized  by  the  absence  of  estrogen
receptor  (ER),  progesterone  receptor  (PR),  and  human
epidermal  growth  factor  receptor  2  (HER2)  expression,
rendering it resistant to hormone-targeted therapies and
HER2-directed  treatments  [4].  TNBC  accounts  for
approximately  15-20%  of  all  breast  cancer  cases  and  is
linked  to  a  younger  age  at  diagnosis  [5],  higher  tumor
grade, elevated risk of metastasis, and a worse prognosis
compared  to  other  breast  cancer  subtypes  [6].  Despite
significant  advancements  in  breast  cancer  treatment,
TNBC  remains  a  clinical  challenge  due  to  its
heterogeneous nature and absence of  specific  molecular
targets [7].

TNBC  management  heavily  relies  on  conventional
chemotherapy, which may result in systemic toxicity and
restricted efficacy,  especially for patients with advanced
or  metastatic  disease  [8].  Although  conventional
chemotherapy  is  somewhat  effective,  it  often  leads  to
systemic  toxicity  and  drug  resistance,  highlighting  the
necessity  for  more  selective  and  less  toxic  therapeutic
agents  [9].

Camptothecin  (CPT),  which  is  a  natural  alkaloid
derived  from  the  Chinese  tree  Camptotheca  acuminata,
has  garnered  significant  attention  due  to  its  potent
anticancer  properties  [10].  The  cytotoxic  effects  of  CPT
are  exerted  through  the  inhibition  of  topoisomerase  I
(Topo I), a crucial enzyme involved in DNA replication and
transcription  [11].  By  inducing  DNA  damage  and
interfering with the processes of DNA strand cleavage and
resealing,  CPT  disrupts  the  proliferation  and  survival  of
cancer  cells  [12].  Despite  its  promising  activity  against
various cancer types, including TNBC, the clinical utility of

CPT  has  been  restricted  due  to  its  poor  solubility  and
considerable  toxicity,  particularly  hematological  and
gastrointestinal  adverse  effects  [13].  To  overcome  these
limitations, researchers have explored the development of
CPT derivatives with improved pharmacokinetic properties
and enhanced anticancer efficacy [14].

In  silico  methodologies,  such  as  molecular  docking,
absorption,  distribution,  metabolism,  excretion,  and
toxicity  (ADMET)  prediction,  as  well  as  molecular
dynamics  simulations,  have  emerged  as  highly  useful
instruments  in  the  realm  of  drug  discovery  and
development  [15,  16].  In  silico  approaches  have  been
employed  to  repurpose  approved  drugs  for  TNBC
treatment.  A  study  utilized  computational  methods  to
identify  existing  drugs  with  potential  efficacy  against
TNBC, focusing on their safety profiles and the feasibility
of repurposing. Additionally, the study explored the use of
gold nanoparticles to deliver these drugs, enhancing their
therapeutic potential [17]. These computational methods
enable  scientists  to  anticipate  the  binding  interactions
between  small  molecules  and  target  proteins  [15],
evaluate  pharmacokinetic  properties  [16],  and  enhance
drug  design  strategies  in  a  manner  that  is  both  cost-
effective  and  time-efficient  [17].  Moreover,  density
functional theory (DFT), a quantum mechanical approach,
offers valuable insights into the electronic structure and
properties  of  molecules,  thereby  facilitating  the
comprehension of  their  chemical  reactivity  and stability.
Through the modeling of molecular systems at the atomic
level, DFT calculations provide significant information for
comprehending  the  mechanisms  of  drug  action  and
predicting  the  activity  of  novel  compounds  [18].

This study aimed to use in silico and DFT methods to
explore the processes behind alkaloid-induced CPT and its
derivatives  in  TNBC  therapy.  In  silico  approaches  have
been  used  to  repurpose  approved  drugs  for  TNBC
treatment,  focusing  on  drug  safety  profiles  and  the
potential  of  gold  nanoparticles  for  enhanced  delivery.
Computational  studies  have  also  identified  novel  targets
and inhibitors,  such as compound 670551 for CLK2, and
explored  multitarget  therapies  like  resveratrol.
Additionally,  pathway cross-talk  inhibition analyses  have
led  to  the  discovery  of  novel  drug  target  pathways,

Published: April 10, 2025

https://creativecommons.org/licenses/by/4.0/legalcode
mailto:ajoy.chem@iubat.edu
mailto:mortezasaki1981@gmail.com
http://dx.doi.org/10.2174/0118750362369549250327052654
http://crossmark.crossref.org/dialog/?doi=10.2174/0118750362369549250327052654&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net


Effect of Camptothecin Derivatives on Cancer 3

offering new therapeutic strategies for TNBC [19]. More
specifically,  the  main  goals  were  to  carry  out  molecular
docking  experiments  in  order  to  clarify  the  binding
relationships  between  CPT  derivatives  modified  by
alkaloids and their molecular targets, such as Topo I and
other pertinent proteins involved in the pathophysiology of
TNBC,  and  to  investigate  the  electronic  structure  and
characteristics  of  the  alkaloid-modified  CPT  derivatives
using  DFT  simulations  in  order  to  shed  light  on  their
stability  and  chemical  reactivity.

2. MATERIALS AND METHODS

2.1. Ethics Statement
This  study  did  not  necessitate  ethics  clearance,  as  it

was classified as a molecular docking and in silico study.

2.2. Optimization and Ligand Preparation
Using  sophisticated  drawing  tools  or  reliable

databases,  the  precise  3D  model  of  the  ligand  was
meticulously  crafted,  taking  into  account  atom  types,
charges,  and  bond  orders  by  ChemDraw  software.
Subsequently,  the  ligands  were  optimized  for  molecular
geometry carried out using a force field like UFF to ensure
a  valid  starting  point,  meticulously  checking  for  steric
clashes  and  unrealistic  bond  parameters.  The  “Build
Parameters”  tool  in  Material  Studio  meticulously
generated a detailed parameter file for the ligand, defining
atom  types,  partial  charges,  and  force  field  parameters
essential  for  subsequent  DFT  calculations.  Within  the
Material  Studio  environment,  a  new  DFT  calculation
framework was established through the suitable method of
B3LYP from the DMol3 code with a basis set like 6-31+G
(d,  p)  hybrid  DFT  method  tailored  to  specific  research
requirements  [20].  The  incorporation  of  solvent  effects
and other relevant calculation parameters was executed as
needed.  Subsequently,  an  input  file  encompassing  the
optimized geometry, chosen DFT settings, and the ligand's
parameter was generated seamlessly. This comprehensive
input  file  was  then  submitted  for  DFT calculations,  with
continuous  monitoring  of  energy  and  geometry
optimization progress.  Upon convergence,  the  optimized
geometry  alongside  the  total  energy  was  meticulously
extracted,  forming  the  foundation  for  robust
computational  analysis.  A  thorough examination  of  bond

lengths,  angles,  and  vibrational  frequencies  was
conducted  to  derive  profound  insights  into  the  ligand's
structural dynamics and its interactions within the system.
Utilizing  the  DFT  functional,  a  multitude  of  quantum
properties, including LUMO and HOMO energies, energy
gap  (E  gap),  ionization  potential  (I)(1),  electron  affinity
(A)(2),  electronegativity  (χ)  (3),  electrophilicity  (ω)  (4),
chemical  potential  (μ)  (5),  hardness (η)  (6),  and softness
(s)  (7),  and  were  calculated  using  established  equations
(Eq.  (1-7))  [21].  This  rigorous  computational  approach
ensures  a  comprehensive  understanding  of  the  ligand's
behavior  and  its  implications  in  various  chemical
processes  using  the  following  equations  [21]  Eq.  (1-7):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

2.3. Protein Preparation and Collection
The meticulous process of selecting and preparing the

PDB ID: 5GWK (human topoisomerase II α in complex with
DNA and etoposide) and PDB ID: 4OQ3 (Tetra-substituted
imidazoles as a new class of inhibitors of the p53-MDM2
interaction),  for  molecular  docking,  was  undertaken  to
ensure  the  reliability  of  the  subsequent  docking
simulations  [22,  23].  These  proteins  were  found  in
different  plant  disease-causing  fungi  evaluated  through
the  X-ray  diffraction  method  with  highly  stable
configurations  listed  in  Table  1.  These  proteins  were
obtained from the protein data bank (PDB) (which can be
accessed  at  https://www.rcsb.org/,  on  10th  March,  2024)
[24].

Table 1. Protein information provided in this study.

Title PDB ID: 5GWK PDB ID: 4OQ3

Organism Homo sapiens Homo sapiens
Resolution 3.15 Å 2.30 Å

R-Value Free 0.244 0.224
Ramachoron plot, % 96.10% 99.16%

References [22] [23]
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The  selection  of  these  proteins  was  based  on  their
biological relevance, specifically their potential association
with  the  study  objectives.  In  order  to  create  a  clean
protein template for docking using Discovery Studio, co-
crystallized  ligands,  water  molecules,  and  ions  were
removed.  Additionally,  the  protein  structures  underwent
energy minimization to optimize their conformations and
alleviate any steric clashes. This ensured that the selected
fungal proteins were properly prepared for accurate and
meaningful molecular docking investigations.

2.4. Molecular Docking and Visualization of Docking

2.4.1. Molecular Docking by PyRx
The molecular  docking analysis  was conducted using

PyRx software  by  employing the  AutoDockWizard option
[25]. To evaluate the binding affinity between the ligand
and  individual  macromolecules,  essential  parameters
(Table 2) were obtained and utilized. In this process, the
protein  was  loaded  as  a  macromolecule,  and  the  ligand
was  loaded  separately.  Subsequently,  the  loaded  ligand
underwent optimization for maximum energy, considering
parameters, such as grid surface area, center of the grid,
and  grid  dimensions.  The  goal  was  to  ensure  adequate
coverage of the total surface area of both the ligand and
the  protein.  The  docking  process  was  initiated  with  the
specified parameters outlined in Table 2 within the PyRx
software's AutoDock Wizard option. Following the docking
procedure,  the  resulting  ligand-protein  docking  complex
was further analyzed for non-covalent interactions using
Discovery Studio visualization [26].

2.4.2. Molecular Docking by Glide from Schrodinger
Suite

In  this  research,  glide  docking  was  utilized  as  the
molecular  docking  technique  to  examine  the  binding
interactions  between  a  variety  of  ligands  and  a  target
protein. The molecular docking was carried out using the
Glide  tool  on  the  Schrodinger  suite.  For  each  protein
structure,  a grid box with an inner box was centered on
the  corresponding  ligand  (Table  2)  [27].  There  were,
however, no boundaries, and the setting parameters were
set  to  default.  Following  that,  conformational  sampling
was put into effect for the ligands, and their anticipated
binding affinities were then utilized to evaluate them. The
Schrödinger  software  suite  includes  the  Glide  docking
tool,  which  enables  a  systematic  search  of  the
conformational  space  to  facilitate  a  comprehensive
examination of ligand-protein interactions. Considerations
like attachment modes, bonding by hydrogen patterns, and
energetics  were  thoughtfully  taken  into  account  when
analyzing  the  docking  results.  This  method  produced
insightful  information  about  the  connections  between
structure and activity as well as possible binding locations
that  are  essential  for  the  logical  design  of  novel  ligands
with enhanced pharmacological  profiles.  By defining the
binding (active) site residues that were found, the binding
site receptor grid for plant pathogenic fungal proteins was
created. The docked conformers were evaluated using the
Glide (G) score (Eq. 8) [28]. The G Score was calculated

using equation Eq. (8), [28] which is as follows:

(8)

Wherein  vdW  denotes  van  der  Waals  energy,  Coul
denotes Coulomb energy, Lipo denotes lipophilic contact,
HBond indicates hydrogen-bonding, Metal indicates metal-
binding, BuryP indicates penalty for buried polar groups,
RotB indicates penalty for freezing rotatable bonds,  Site
denotes polar interactions in the active site and a = 0.065
and  b  =  0.130  are  coefficients  of  vdW  and  Coul,
respectively  [28].

2.5. Pharmacokinetics and ADMET Studies
The  ADMET  process  is  a  critical  component  of

assessing fungicide development, ensuring that potential
candidates  meet  safety  and  efficacy  standards  before
reaching  the  market.  The  procedure  involves  a
comprehensive  series  of  assessments  to  evaluate  the
pharmacokinetic  and  toxicological  properties  of  the
compounds [29,  30].  The ADMET criterion was obtained
by  use  of  the  SwissADME  and  pkCSM  online  tools
(http://biosig.unimelb.edu.au/pkcsm/prediction_single/adm
e_1643650057.59; accessed from the October 10th, 2023)
[31].  Throughout  the  ADMET  process,  a  combination  of
experimental  techniques,  such as in  vitro  assays,  animal
studies,  and  computational  modeling,  was  employed  to
gather  comprehensive  data  on  the  compound's
pharmacokinetic and toxicological properties. The results
of  these  assessments  informed  fungicide  development,
guiding  compound  optimization,  formulation,  and
regulatory  approval  processes.

2.6. Lipinski’s Rule and Pharmacokinetics

SwissADME,  accessed  on  October  9th,  2023,  was
utilized to predict pharmacokinetics and assess fungicide-
likeness  metrics.  This  online  database,  available  at
http://www.swissadme.ch/index.php [32], is significant in
terms of its important and adaptable functions that make
information  easier  to  access.  To  clarify  the  fungicide-
likeness  characteristics  of  ligands,  a  number  of
pharmacokinetic  parameters  were  calculated,  including
molecular  weight,  bond  rotation  numbers  (NRB),
lipophilicity, hydrogen bond donors (HBD), and hydrogen
bond acceptors (HBA).

2.7. Molecular Dynamics
Simulations  were  conducted  using  the  Desmond

software  suite  (Schrödinger  Release  2024-1:  Desmond
Molecular  Dynamics  System,  D.  E.  Shaw Research,  New
York, NY, 2024) in accordance with established molecular
dynamics  (MD)  protocols  [33].  The  molecular  system,
which  consisted  of  a  biologically  relevant  complex,  was
prepared using the OPLS-AA force field,  and the solvent
environment  was  described  using  an  appropriate  water
model.  To  ensure  solvent  relaxation,  the  system
underwent  a  staged  equilibration  process  that  involved
restrained  dynamics  on  the  solute.  Following  this,  MD

 G Score = a × vdW + b × coul + Lipo + HBond 

+ Metal + BuryP + RotB + Site

http://biosig.unimelb.edu.au/pkcsm/prediction_single/adme_1643650057.59
http://biosig.unimelb.edu.au/pkcsm/prediction_single/adme_1643650057.59
http://www.swissadme.ch/index.php
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runs were carried out under NPT conditions, with a finite
time  step  (100  ns)  and  temperature  control.  Desmond
outputs trajectory files,  energy logs,  and other data that
can be further analyzed or visualized using external tools.
Trajectory  analysis,  performed  using  Maestro  and
supplemented by external tools, included measurements,
such  as  root  mean  square  deviation  (RMSD),  root  mean

square fluctuation (RMSF), radius of gyration, and energy
profiles.  Visualization  tools  were  used  to  examine
conformational  changes  and  intermolecular  interactions
throughout  the  simulation  [33].  This  comprehensive
computational  investigation  followed  established  best
practices  and  parameters,  providing  a  thorough
exploration  of  the  dynamic  behavior  of  the  molecular
system  under  investigation.

Table 2. Grid box parameters used for docking analysis in this study.

Protein Name with PDB ID
Grid Box Size (PYRX) Grid Box Size (Glide)

Center Dimension (Å) Center Dimension (Å)

Homo sapiens
(PDB 5GWK)

X = 26.38 X = 111.29 X =40 X =30
Y = -31.51 Y= 92.68 Y =-30 Y =30
Z = -44.07 Z = 106.96 Z =-50 Z =30

Homo sapiens
(PDB 4OQ3)

X = 12.01 X = 32.21 X =10 X =20
Y = -19.35 Y = 36.91 Y =-15 Y =20
Z = 15.39 Z = 36.41 Z =15 Z =30

Fig. 1 contd.....
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Fig. (1). Molecular structure of camptothecin and its derivative.

3. RESULTS AND DISCUSSION

3.1. DFT Optimization and Analysis

3.1.1. Chemistry and Optimized Chemical Structures
Camptothecin derivatives stem from the Chinese tree

Camptotheca acuminata,  referred to as the “happy tree”
or “cancer tree.” Camptothecin, a natural alkaloid found in
the  tree's  bark  and  stem,  has  captivated  medicinal
chemistry  with  its  potent  anticancer  potential.  Parti-
cularly, it disrupts the enzyme topoisomerase I, which is
pivotal  in  DNA  replication  and  transcription.
Camptothecin  derivatives  have  undergone  extensive
scrutiny and refinement to heighten their pharmacological
attributes,  encompassing  solubility,  stability,  and
specificity, along with increased anticancer efficacy. At a
molecular  level,  camptothecin  derivatives  possess  a
pentacyclic quinoline or indole structure, integral for their
interaction with topoisomerase I. Strategic modifications
are made at various sites along the camptothecin scaffold,
enhancing its pharmaceutical properties. Key alterations
involve  introducing  varied  substituents  at  C-7,  C-9,  and

C-10 positions alongside modifications to the lactone ring
at  C-20.  These  molecular  modifications  influence  the
compound's stability, solubility, and potency, as depicted
in its chemical structure in Fig. (1).

Camptothecin  derivatives  emerge  as  promising
contenders  in  cancer  therapy,  especially  against  solid
tumors  like  colorectal,  ovarian,  lung,  and  pancreatic
cancers. Notably, derivatives like irinotecan and topotecan
have  gained  regulatory  approval  in  several  nations  for
clinical  use.  These  analogs  exhibit  improved  pharma-
cokinetics and reduced toxicity compared to camptothecin.
Ongoing  research  in  camptothecin  derivatives  aims  to
develop  new  analogs  with  enhanced  anticancer  activity
and reduced side effects. Methodologies for optimization
span  structure-activity  relationship  exploration,  prodrug
innovation,  nanoparticle  formulations,  and  synergistic
coupling with other anticancer agents. Collectively, camp-
tothecin derivatives stand as a vanguard in the anticancer
arsenal,  with  continuous  exploration  aimed  at  elevating
their efficacy and clinical applicability.
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3.1.2. Optimized Structure of Tested Compounds
In  the  quest  to  harness  computational  techniques  for

quantum calculations of chemical entities, optimizing mole-
cular  arrangement  becomes  paramount  to  achieving  accu-
rate structural geometry [34]. This investigation prioritized

identifying the most  stable  configuration of  each chemical
structure  to  refine  computational  parameters  efficiently.
Employing  DFT,  all  compounds  underwent  computational
refinement,  resulting  in  the  observation  of  their  principal
and  most  stable  configurations  with  minimal  energy
expenditure.  The  ligands  are  illustrated  in  Fig.  (2).

Fig. (2). Optimized chemical structure of ligands.
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3.2.  HOMO,  LUMO,  and  Chemical  Reactivity
Descriptors

The  calculations  of  the  molecular  parameters,
including LUMO, HOMO, energy gap (ΔE gap), chemical
potential (µ), electronegativity (χ), hardness (η), softness
(σ),  and  electrophilicity  (ω),  were  conducted  using  the
DFT, and the results are presented in Table 3. The HOMO-
LUMO  energy  gap  serves  as  a  crucial  indicator  of
chemical  reactivity  and  stability  in  molecules.  In  this
context,  a  wider  gap  suggests  higher  chemical  stability,
while  a  narrower  gap  implies  increased  reactivity.  The
findings  reveal  that  the  HOMO–LUMO  gaps  range  from
2.474 eV to 10.040 eV across all studied ligands. Notably,
ligands  L16  exhibit  minor  energy  gaps  and  minimal
softness values, indicating their potential for reactivity and

reduced  stability.  In  contrast,  L05  stands  out  with  the
greatest  hardness  and  the  largest  energy  gap,
emphasizing  its  stability.  It  has  been  observed  that  the
order  of  the  energy  gap  is  L05<L06<  L04<L03<
L01<L09<  L10<L11<L12<  L02<L08<L07.  Table  3
further  illustrates  that  the  softness  values  are
approximately  0.119 or  less  than 0.30,  underscoring the
potential  for  faster  degradation  and  disintegration  for
elements with higher softness values [35-38]. Conversely,
hardness,  a crucial  stability  indicator,  is  reflected in the
compounds'  resistance  to  changes  in  electron
configuration  [39-41].  Higher  hardness  values  signify
increased  stability  and  resistance  to  changes,  providing
valuable  insights  into  the  chemical  behavior  of  these
compounds.

Table 3. Data of chemical descriptors.

Ligands LUMO HOMO A = -
LUMO

I = -
HOMO

Energy
gap = I-A

Chemical
Potential

(µ)= -I+A/2
Hardness
(η)= I-A/2

Electronegativity
(x)=I+A/2

Softness
(σ)=1/n

Electrophilicity
(ω)=µ2/2η

L01 -9.02 -1.85 9.02 1.85 -7.170 -5.443 -3.585 5.443 -0.278 -4.131
L02 -9.15 -2.03 9.15 2.03 -7.110 -5.594 -3.557 5.594 -0.281 -4.398
L03 -8.04 -1.10 8.04 1.10 -6.936 -4.576 -3.468 4.576 -0.288 -3.018
L04 -8.19 -1.34 8.19 1.34 -6.855 -4.767 -3.427 4.767 -0.291 -3.315
L05 -8.61 -1.69 -0.04 8.94 8.986 -4.450 4.493 4.450 0.222 2.203
L06 -9.09 -2.51 9.09 2.51 -6.581 -5.805 -3.290 5.805 -0.303 -5.121
L07 -8.19 -1.85 8.19 1.85 -6.338 -5.025 -3.169 5.025 -0.315 -3.984
L08 -8.81 -1.99 8.81 1.99 -6.819 -5.404 -3.409 5.404 -0.293 -4.283
L09 -9.03 -1.87 9.03 1.87 -7.156 -5.454 -3.578 5.454 -0.279 -4.156
L10 -9.12 -1.96 9.12 1.96 -7.166 -5.543 -3.583 5.543 -0.279 -4.287
L11 -9.02 -1.90 9.02 1.90 -7.124 -5.462 -3.562 5.462 -0.280 -4.187
L12 -9.02 -1.90 9.02 1.90 -7.124 -5.462 -3.562 5.462 -0.280 -4.187

HOMO
HOMO

L01

L02

L03

L04

L05

L06

LUMO
LUMO

Fig. 3 contd.....
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Fig. (3). Frontier molecular orbitals diagram for HOMO and LUMO.

Table  3  presents  a  comprehensive  analysis  of  the
electronic properties of twelve ligands (L01-L12), offering
insights  into  their  potential  reactivity.  Ligands  L05  and
L06  stand  out  with  high  LUMO  energies,  indicating  a
propensity  for  electron  acceptance,  while  L02  and  L06
display  lower  HOMO  energies,  suggesting  resistance  to
electron  donation.  Smaller  energy  gaps  for  ligands  L03
and L04 imply higher reactivity. Chemical potential varies
notably  among  ligands,  with  L05  exhibiting  a  high
tendency to gain electrons and L02 favoring electron loss.
Ligands  L05  and  L06  also  demonstrate  lower  hardness
and  higher  softness,  indicating  susceptibility  to  electron
cloud distortion and ease of electron donation. Despite a
high  chemical  potential,  ligand  L06  shows  higher
electrophilicity  due  to  its  significantly  lower  hardness.
However, the evidence suggests that ligands with smaller
energy gaps and lower hardness, such as L03, L04, L09,
and  L07,  will  be  more  reactive  in  electron  transfer
activities. While ligand L05 differs in certain ways (such as
having a higher energy gap and being softer), it appears to
be a highly reactive ligand with potential uses in catalysis
and drug creation. The overall trend in this data indicates
that the electrical characteristics of these ligands could be
fine-tuned for certain applications in chemical processes,
depending on whether they require electron donation or
acceptance.

3.3.  Frontier  Molecular  Orbital  (FMO):  HOMO  and
LUMO

Through FMO analysis, we delved into the dynamics,
uncovering the precise locales primed for protein folding,
thereby  highlighting  the  active  pharmacophores  or
functional groups. The highest value of HOMO, a linchpin
in  myriad  chemical  reactions,  especially  electron  trans-
fers, stands as a crucial player [42-46]. Not only does the
HOMO serve as an electron donor, but it also assumes a
pivotal  role  in  nucleophilic  attacks  by  relinquishing  its

electron density. Conversely, the LUMO, characterized by
its  electron-free  state,  interacts  with  electrons  from  the
HOMO of another molecule during reactions. In scenarios
demanding  electrophilic  attacks,  where  it  beckons
electrons,  the  LUMO  steps  in  as  the  electron  acceptor.
Both the LUMO and HOMO orbitals are delineated with a
dark blue hue for their positive terminal and a pink hue for
their negative node. A narrower energy gap paves the way
for fungicides to seamlessly integrate with proteins. Fig.
(3)  unravels  an  array  of  molecular  territories
corresponding to HOMO and LUMO, providing invaluable
insights into their reactivity and potential pharmacological
activity.

3.4. Electrostatic Potential Map for FMO
The significance of comprehending the reactivity and

stability  of  molecules  in  chemical  reactions  lies  in  the
electrostatic  potential  map  for  FMO.  The  role  of  the
HOMO  and  the  LUMO,  known  as  the  FMOs,  in  deter-
mining a molecule's reactivity is crucial, as suggested by
FMO theory. Analyzing the HOMO electrostatic potential
map  provides  valuable  insights  into  areas  of  electron
density that are most susceptible to nucleophilic attacks.
Similarly,  the  LUMO  map  identifies  regions  of  electron
deficiency, indicating sites that are prone to electrophilic
attacks.  By  studying  these  maps,  chemists  are  able  to
predict  the  mechanisms  and  outcomes  of  chemical
reactions.

Furthermore,  comparing  the  electrostatic  potential
maps  of  different  molecules  allows  for  the  evaluation  of
their relative reactivity and selectivity in various reactions.
Understanding the distribution of electrostatic potential in
FMOs is, therefore, a fundamental aspect in rationalizing
and  predicting  chemical  reactivity,  as  well  as  designing
new molecules with specific properties. As shown in Fig.
(4),  it  can be observed that the values of  negative (from
-8.22 to -3.490) and positive ends (from about 4.50 to 2.00)

HOMO HOMOLUMO LUMO
L07

L08

L09

L10

L11

L12
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differ.  The  reactivity  and  selectivity  of  the  optimized
molecules  are  not  constant,  and  there  is  no  specific
binding mechanism that explains the binding affinities for

proteins. Additionally, it is noted that the positive charge
of the molecules is lower than their negative charge.

Fig. (4). Electrostatic potential map for frontier molecular orbital of L01-L04.

Fig. (5). A comparative study of molecular docking using AutoDock in PyRx and glide in the schrödinger suite.
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3.5. Molecular Docking Analysis

3.5.1. Result of Auto Docking by PyRx
Molecular  docking  simulations  were  conducted  to

authenticate  the  pharmacological  findings.  The  binding
affinities  of  twelve  ligands  with  two  distinct  targets,
human  topoisomerase  IIα  (5GWK)  and  the  p53  (4OQ3),
were investigated using Auto docking by PyRx simulations
(Fig.  5).  The  interaction  between  protein  and  ligand  is
crucial  for  the  development  of  structurally  oriented
fungicides.  It  is  widely  accepted  that  docking  scores
higher  than -6.00 kcal/mol  indicate  a  standard fungicide
[47,  48].  Additionally,  molecular  docking  is  a  reliable
approach  for  understanding  the  engagement  of  two
molecules  and  identifying  the  optimal  configuration  for
ligand  binding.  Through  in-silico  experiments,  it  was
revealed that the fungicide compounds in Table 4 exhibit
excellent binding affinity to the target proteins.

The  binding  affinities,  hydrogen  bond  (H-bond)
interactions, and hydrophobic interactions of the ligands
with  5GWK  and  4OQ3  provide  key  insights  into  their
molecular  behavior.  L05  exhibits  the  strongest  binding
affinity (-9.2 kcal/mol for 5GWK), indicating its potential as
a  potent  binder  (Fig.  5).  Hydrogen  bonding  is  generally
low,  with  L01,  L03,  and  L08  having  3-4  H-bonds,
suggesting  moderate  electrostatic  interactions.
Hydrophobic interactions are prominent, especially in L02,
L05,  and  L07,  with  up  to  10  hydrophobic  bonds,
highlighting their non-polar binding nature. These results
indicate  that  hydrophobic  interactions  are  crucial  for
stabilizing  ligand-target  binding,  guiding  further
optimization for specific applications. However, ligand L05
showed the highest affinity for both targets, highlighting
its  potential  as  a  dual-target  agent.  L06,  however,  had
weaker  binding,  emphasizing  the  role  of  molecular
structure  in  ligand-protein  interactions.  Variations  in
binding profiles between the two targets revealed distinct
molecular  mechanisms,  offering  insights  into  designing
effective  anticancer  agents  for  triple-negative  breast
cancer.

3.5.2.  Result  of  Molecular  Docking  by  Glide  from
Schrodinger Suite

The binding affinities of twelve ligands with two triple-
negative breast cancer proteins, human topoisomerase IIα
(5GWK)  and  p53  (4OQ3),  were  investigated  via  glide
docking  simulations.  The  ligand  preparation  product,
Ligprep, from the Schrodinger suite, was utilized for the
purpose  of  generating  high-quality  2D  structures  at  the
atomic  level.  The  process  of  ligand preparation  involved
various  steps,  such  as  2D-3D  conversions,  generation  of
structural  variations,  correction,  verification,  and
optimization.  In order to generate the receptor grid,  the
receptor grid generation module of the Glide applications
[49-51]  within  Maestro  (Schrödinger  Release  2024-1:
Glide,  Schrödinger,  LLC,  New  York,  NY,  2024.)  was
employed.  Conducting  in  silico  experiments,  it  was
discovered  that  the  fungicides  listed  in  Table  5  possess
remarkable  binding  affinity  towards  the  target  proteins
5GWK  and  4OQ3,  highlighting  significant  variations  in
ligand-protein  interactions,  with  values  ranging  from
-6.166  to  -9.017  kcal/mol  (Fig.  5).  Overall,  the  ligands
demonstrated strong binding affinities, with L12 showing
the highest affinity for 5GWK (-9.017 kcal/mol), indicating
its potential as a potent binder. In contrast, L05 exhibited
the  weakest  binding  affinity  for  5GWK  (-7.866  kcal/mol)
(Fig.  5),  underlining  the  role  of  ligand  structure  in
modulating  binding  strength.  Across  both  targets,
hydrophobic interactions were found to be predominant,
with  ligands  like  L05,  L08,  and  L12  exhibiting  a  higher
number of hydrophobic bonds (up to 12), suggesting their
strong non-polar interaction tendencies. Ligands, such as
L03 and L06, showed relatively more hydrogen bonding,
reflecting the diversity of electrostatic interactions within
the binding sites. Interestingly, binding affinities for both
targets  varied,  with  the  4OQ3  target  generally  showing
slightly weaker binding compared to 5GWK, emphasizing
the target-specific nature of ligand binding. These findings
highlight the complexity of ligand-target interactions and
offer  valuable  insights  into  optimizing  ligand  design,
particularly  for  applications  targeting  cancer  therapies.

Table  4.  Data  of  binding  energy  (kcal/mol)  and  names  of  interacting  ligands  against  triple-negative  breast
cancer calculated using AutoDock in PyRx

Studied Ligands

5GWK 4OQ3

Binding Affinity
(kcal/mol)

No. of H
Bond

No. Hydrophobic
Bond

Binding affinity
(kcal/mol)

No. of H
Bond

No. Hydrophobic
Bond

L01 -8.6 03 02 -8.3 02 05
L02 -8.6 01 06 -7.8 00 09
L03 -8.7 03 08 -7.9 02 04
L04 -8.7 01 06 -7.9 00 08
L05 -9.2 01 09 -8.1 00 06
L06 -8.5 02 06 -7.5 00 04
L07 -8.8 01 09 -7.6 00 05
L08 -8.8 04 06 -7.8 00 04
L09 -8.3 02 06 -7.7 01 10
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Studied Ligands

5GWK 4OQ3

Binding Affinity
(kcal/mol)

No. of H
Bond

No. Hydrophobic
Bond

Binding affinity
(kcal/mol)

No. of H
Bond

No. Hydrophobic
Bond

L10 -8.9 01 07 -7.5 01 10
L11 -8.5 00 07 -7.5 00 09
L12 -8.5 00 06 -8.2 00 03

Table 5. Data of binding energy (kcal/mol) and name of interacted ligands against triple-negative breast cancer
calculated using Glide docking.

Studied Ligands
5GWK 4OQ3

Binding Affinity
(kcal/mol)

No. of H
Bond

No. Hydrophobic
Bond

Binding Affinity
(kcal/mol)

No. of H
Bond

No.
Hydrophobic Bond

L01 -8.342 02 07 -6.542 02 10
L02 -8.721 01 07 -6.461 01 10
L03 -8.024 04 03 -6.423 01 10
L04 -8.744 01 09 -6.587 03 09
L05 -7.866 01 07 -6.421 01 12
L06 -8.498 03 05 -6.947 02 10
L07 -8.209 03 09 -6.692 02 09
L08 -7.822 02 07 -6.166 01 12
L09 -8.003 02 08 -6.526 02 11
L10 -7.776 01 07 -6.581 02 09
L11 -8.583 02 07 -6.496 01 12
L12 -9.017 03 05 -6.397 01 10

3.6. A Comparative Study for Docking Results
The comparative analysis of binding energies obtained

from  PyRx  and  Glide  molecular  docking  simulations  of
twelve ligands with human topoisomerase IIα (5GWK) and
p53  (4OQ3)  provides  insights  into  the  efficacy  of  these
computational tools in computer-aided drug discovery for
triple-negative  breast  cancer.  Overall,  both  methods
demonstrated  similar  trends  in  ligand  affinities  for  both
protein targets, with notable variations in absolute values.
Ligands  consistently  exhibited  higher  binding  affinities
with  5GWK  compared  to  p53  across  both  docking
platforms. However, there were discrepancies in binding
energies  between  PyRx  and  Glide  docking  for  some
ligands, suggesting differences in their scoring functions
and  algorithms.  The  reasonable  analysis  of  binding
affinities from Glide docking (Table 5) and AutoDock from
PyRx  (Table  4)  revealed  consistent  trends  in  ligand
binding  against  5GWK  and  4OQ3  proteins  for  triple-
negative  breast  cancer,  with  some  notable  differences
between the two methods. Glide docking identified L12 as
the strongest binder for 5GWK (-9.017 kcal/mol) and L01
for  4OQ3  (-6.542  kcal/mol),  while  AutoDock  highlighted
L05 as the best binder for 5GWK (-9.2 kcal/mol) and L01
for  4OQ3  (-8.6  kcal/mol).  Despite  the  slight  variation  in
binding  scores,  both  methods  identify  L05  as  a  strong
binder  for  5GWK,  with  differences  in  rankings  for  other
ligands,  particularly  for  4OQ3.  Hydrogen  bond
interactions were found to be similar across both methods,
ranging from 0 to 4, with L03 and L06 showing the highest
number of H-bonds in Glide and L01 and L03 in AutoDock.

Hydrophobic interactions are consistently significant, with
L05 showing the highest number of hydrophobic bonds in
both  methods  (12  for  4OQ3),  underlining  its  strong
hydrophobic characteristics.  Both methods also revealed
target-specific  binding  trends,  with  Glide  suggesting
stronger binding to 5GWK for most ligands and AutoDock
showing  similar  patterns,  further  emphasizing  the
importance of considering these variations in the rational
design of dual-target anticancer agents.

3.7.  Protein-ligand  Interaction  for  PyRx  in  View  of
Superpose/position

Aligning  ligands  post-docking  is  a  crucial  step  in
molecular  docking  studies,  offering  deep  insights  into
ligand-protein  interactions,  as  depicted  in  Fig.  (6).  This
process involves comparing multiple ligand structures to
evaluate their spatial alignment and binding orientations
relative  to  a  reference  ligand  or  protein  active  site.  By
analyzing  consistency  in  binding  poses  across  various
ligands,  researchers  can  pinpoint  common  binding
mechanisms and potential hotspots on the protein surface.
Additionally,  this  analysis  highlights  unique  interactions
and  conformational  variations  among  ligands,  providing
valuable  insights  into  the  molecular  determinants  of
binding affinity and specificity. Understanding induced fit
and structural changes in the protein upon ligand binding
facilitates the design of ligands with enhanced properties.
Overall,  ligand  superposition  after  docking  offers  a
comprehensive assessment of ligand-protein interactions,
effectively guiding drug discovery efforts.

(Table 4) contd.....



Effect of Camptothecin Derivatives on Cancer 13

Fig. (6). Molecular docking poses of (a): 5GWK and (b): 4OQ3.

Fig. (7). Molecular docking poses of triple-negative breast cancer PDB (5GWK)- L05.

The interactions of ligands with amino acid residues in
the  5GWK  protein  provide  essential  insights  into  their
binding  mechanisms.  Hydrogen  bonds,  with  distances
ranging from 1.54 to 2.72 Å, indicate strong electrostatic
interactions,  contributing  to  the  stability  of  the  ligand-
protein complex. For instance, ligand L01 forms hydrogen
bonds with GLY B:617 and SER B:621, while L05 interacts
with  GLU  B:712  and  PHE  B:1003.  Hydrophobic
interactions,  with  distances  from 3.14 to  5.47 Å,  further
stabilize these complexes. Ligands, such as L07 and L12,
exhibit significant hydrophobic interactions, contributing
to overall binding affinity and specificity.

Van  der  Waals  interactions,  though  not  explicitly
detailed, also play a crucial role in stabilizing the binding,
with  distances  ranging  from  3.14  to  5.47  Å,  suggesting
favorable binding modes. Ligands like L04 and L06 show
close interactions with residues, such as PHE A:807 and
GLU  B:712,  enhancing  binding  stability.  Additionally,
ligands, such as L02 and L12, with fewer hydrogen bonds,
rely  on  strong  hydrophobic  interactions  for  binding
stability.

In  summary,  the  combination  of  hydrogen  bonding,
hydrophobic  interactions,  and  Van  der  Waals  forces
contributes to the strong binding of ligands to the 5GWK
protein.  Ligands  like  L12,  L05,  and  L07,  which  exhibit
consistent  and  strong  interactions,  show  promise  for
further  development  as  therapeutic  agents  for  triple-
negative  breast  cancer,  providing  valuable  insights  into
drug design targeting the 5GWK protein.

3.8.  Different  Poses  of  Docking  for  Protein-ligand
Interaction

3.8.1. View of PyRx Docking Poses
The  identification  of  the  ligand  binding  site  with  the

receptor  was carried out  using Discovery Studio  version
2020,  as  represented  in  Figs.  7-10.  Moreover,  their
interaction  is  explained  in  Tables  6  and  Table  7.  Auto-
docking  was  performed  to  identify  the  active  site  and
determine  amino  acid  residues,  with  hydrogen  and
hydrophobic bonds playing pivotal roles in docking score
variation. Post-docking analyses were conducted to assess
drug-protein pocket interactions, often comparing results
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with experimental data or crystallographic structures for
validation. Scoring function assessment ensured accurate
prediction of binding affinities, with room for improvement
to  enhance  future  projections'  accuracy.  Overall,  the
docking  procedure,  coupled  with  post-docking  analyses,
provides  valid  insights  into  protein-drug  interactions.
According to the results of PyRx docking, the ligand L05

had the most binding sides, with an H-bond count of one
and five hydrophobic bonds,  and L10 showed an H-bond
count  of  two  and  seven  hydrophobic  bonds  against  the
5GWK.  In  the  case  of  4OQ3,  ligand  L01  had  the  most
binding  sides,  with  an  H-bond  count  of  two  and  five
hydrophobic bonds, and L10 showed an H-bond count of
zero and four hydrophobic bonds against the 4OQ3.

Fig. (8). Molecular docking poses of triple-negative breast cancer PDB (5GWK) -L10.

Fig. (9). Molecular docking poses of triple-negative breast cancer PDB (4OQ3)-L01.
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Fig. (10). Molecular docking poses of triple-negative breast cancer PDB (4OQ3)- L12.

Table 6. Ligands interaction with amino acid residues and their bond distance (PDB ID: 5GWK) measured using
PyRx docking.

Ligands Interaction with Amino acid Residues and their Bond Distance (PDB ID 5GWK)

Active Sites

Ligand No.
Hydrogen Bond Hydrophobic Bond

Van Der Waals BondThe Interacting Residue of Amino
Acid Distance, Ao The Interacting Residue of Amino

Acid Distance, Ao

L01
GLY B:617
GLY B:617
SER B:621

2.32
2.28
2.25

PHE A:807
PHE A:807

4.81
5.27 Absent

L02 GLU A:71 2.30

GLU A:837
PRO A:724
PRO A:724
PRO A:724

PHE A:1003
GLY A:1007

3.72
4.53
4.22
4.75
3.69
4.76

Absent

L03
HIS A:759
LYS A:728
SER A:709

2.24
2.98
1.99

PRO A:724
PRO A:724
PRO A:724
PRO A:724

PHE A:1003
GLU A:837
ARG A:713
HIS A:759

4.15
4.28
4.34
4.42
4.98
3.69
4.29
5.26

Absent

L04 LYS A:611 2.52

LYS A:611
TYR B:805
TYR B:805
ALA B:801
LYS A:614
LYS A:614

1.78
4.63
4.99
4.82
3.60
4.93

Absent

L05 GLU B:712 2.37

PHE B:1003
PHE B:1003
GLY B:1007
GLU B:839
GLU B:839
PRO B:724
PRO B:724
PRO B:724
GLU B:837

3.43
4.39
3.41
3.14
3.70
4.53
4.13
4.65
3.75

Absent
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Ligands Interaction with Amino acid Residues and their Bond Distance (PDB ID 5GWK)

Active Sites

Ligand No.
Hydrogen Bond Hydrophobic Bond

Van Der Waals BondThe Interacting Residue of Amino
Acid Distance, Ao The Interacting Residue of Amino

Acid Distance, Ao

L06 LYS B:611
THR B:618N

2.72
2.69

LYS B:611
ALA A:801
TYR A:805
PHE A:807
PHE A:807
ILE A:787

1.54
4.85
3.86
5.26
4.31
5.26

Absent

L07 GLU B:839 3.07

GLY B:1007
PHE B:1003
ILE B:715
LEU B:722
ARG B:713
GLU B:712
PRO B:724
PRO B:724
PRO B:724

3.79
4.70
3.52
3.57
5.24
3.89
4.94
5.31
5.41

Absent

L08
GLU B:712
GLU B:712
HIS B:759
LYS B:728

2.99
2.11
2.14
2.89

HIS B:759
ARG B:713
PRO B:724
PRO B:724
PRO B:724

PHE B:1003

4.61
4.35
4.74
4.59
4.47
4.99

Absent

L09 LYS B:728
GLU B:712

2.85
2.83

ARG B:713
HIS B:759
PRO B:724
PRO B:724
GLU B:837
PHE B:1003

3.96
4.77
4.83
4.35
3.55
4.98

Absent

L10 ARG A:727 1.82

SER A:717
PHE A:1003
PRO A:724
PRO A:724
PRO A:724
GLU A:712
ARG A:713

3.72
3.84
5.24
5.35
4.85
4.14
5.47

Absent

L11

TYR B:805
TYR B:805
ALA B:801
LYS A:614
PHE B:807
PHE B:807
ILE B:787

4.51
5.51
5.47
5.08
5.15
4.20
5.06

Absent

L12

LYS A:614
LYS A:614
TYR B:805
TYR B:805
PHE B:807
GLY B:788

5.34
3.43
3.74
4.72
5.32
3.65

3.9. Protein-ligand Interaction from glide docking
Glide,  developed  by  Schrödinger,  is  a  widely  used

molecular  docking  program  for  predicting  how  small
molecules  (ligands)  bind  to  target  proteins.  To  analyze
protein-ligand interactions from Glide docking, one must
examine  docking  results  and  visualize  binding  modes.
Glide  provides  docking  scores,  which  estimate  binding
affinity;  lower  scores  suggest  stronger  binding.  Post-
docking steps and analyses are crucial for comprehending
and  evaluating  results.  The  software  generates  multiple
binding poses (hypothetical configurations) for the ligand
within  the  protein  pocket;  each  assigned  a  score
representing  expected  binding  energy.  Typically,  lower

scores indicate more favorable binding. Evaluation of the
scoring  function  ensures  accurate  prediction  of  known
binding affinities, with potential for future improvements
to enhance accuracy. As mentioned in Table 5, according
to the results of Glide docking, where the ligand L05 had
the most binding sides, with an H-bond count of one and
five hydrophobic bonds, and L10 showed an H-bond count
of two and seven hydrophobic bonds against the 5GWK. In
the case of 4OQ3, ligand L01 had the most binding sides,
with an H-bond count of two and five hydrophobic bonds,
and  L10  showed  an  H-bond  count  of  zero  and  four
hydrophobic  bonds  against  the  4OQ3,  as  shown  in  Fig.
(11).

(Table 6) contd.....
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Table 7. Ligands interaction with amino acid residues and their bond distance (PDB ID: 4OQ3) measured using
PyRx docking.

Ligands Interaction with Amino Acid Residues and their Bond Distance (PDB ID: 4OQ3)

Active Sites

Ligand No.
Hydrogen Bond Hydrophobic Bond

Van Der Waals BondThe Interacting Residue of
Amino Acid Distance, Ao The Interacting Residue of Amino Acid Distance, Ao

L01 LYS A:51
LEU A:54

2.54
2.23

LEU A:54
LEU A:54
ILE A:99
ILE A:99
LEU A:57

5.01
3.97
3.98
5.44
5.11

Absent

L02

PHE A:55
LEU A:54
LEU A:54
HIS A:96
HIS A:96
ILE A:99
ILE A:99
VAL A:93
GLY A:58

5.14
3.44
4.16
5.07
4.89
5.07
5.19
4.87
3.42

Absent

L03 LEU A:54
LYS A:51

5.54
1.94

PHE A:55
ILE A:99
LEU A:54
LEU A:57

5.08
3.95
5.39
4.99

Absent

L04

HIS A:96
HIS A:96
LEU A:54
LEU A:54
ILE A:99
ILE A:99
VAL A:93
GLY A:58

4.16
4.85
4.88
3.96
5.28
5.15
4.85
3.41

Absent

L05

ILE A:99
ILE A:99
HIS A:96
LEU A:54
LEU A:54
LEU A:54

4.34
4.50
3.99
4.46
5.25
4.04

Present

L06
HIS A:96
ILE A:99
LEU A:54
LEU A:54

4.06
4.44
4.08
5.37

Present

L07

VAL A:93
GLN A:59
LEU A:54
LEU A:54
LYS A:51

3.81
3.75
4.25
4.67
5.31

Present

L08
ILE A:99
HIS A:96
LEU A:54
LEU A:54

4.43
4.07
5.33
4.20

Present

L09 GLN A:24 2.37

LYS A:51
LEU A:54
HIS A:96
HIS A:96
HIS A:96
VAL A:93
VAL A:93
VAL A:93
ILE A:99
ILE A:99

4.49
4.63
2.04
4.08
4.67
5.39
4.99
5.38
5.15
4.21

Absent
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Ligands Interaction with Amino Acid Residues and their Bond Distance (PDB ID: 4OQ3)

Active Sites

Ligand No.
Hydrogen Bond Hydrophobic Bond

Van Der Waals BondThe Interacting Residue of
Amino Acid Distance, Ao The Interacting Residue of Amino Acid Distance, Ao

L10 GLN A:24 2.58

LEU A:54
LEU A:54
LEU A:54
HIS A:96
HIS A:96
ILE A:99
ILE A:99
LEU A:57
VAL A:93
VAL A:93

4.43
4.57
5.38
4.64
4.86
3.77
4.76
5.35
5.11
5.29

Absent

L11

LEU A:54
LEU A:54
HIS A:96
HIS A:96
ILE A:99
ILE A:96
VAL A:93
GLY A:58
PHE A:55

3.45
4.82
4.16
4.86
5.14
5.14
4.76
3.48
5.43

Absent

L12
ILE A:99
HIS A:96
LEU A:54

5.24
4.12
4.17

Present

Fig. (11). 2D stick diagrams of (a) PDB: 5GWK-L04 and (b) PDB: 4OQ3-L12, illustrating hydrogen bonds and pi-pi stacking formed with
the amino-acid residues at the binding pocket of triple-negative breast cancer.

(Table 7) contd.....
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Table 8. Data on lipinski’s rule, pharmacokinetics, and fungicide-likeness.

Ligand No. Molecular
Weight, g/mol

Number of
Rotatable

Bonds

Hydrogen
bond

acceptor
Hydrogen

Bond Donor
Topological Polar
Surface Area (Å2)

Lipinski’s Rule Bioavailability
ScoreResult Violation

L01 372.54 1 5 1 88.32 Yes 0 0.55
L02 385.56 2 5 0 85.16 Yes 0 0.55
L03 400.55 2 6 1 105.39 Yes 0 0.56
L04 373.57 1 5 1 94.11 Yes 0 0.55
L05 373.59 1 4 0 68.09 Yes 0 0.55
L06 389.62 2 5 1 94.11 Yes 0 0.55
L07 N/A N/A N/A N/A N/A N/A N/A N/A
L08 420.65 3 6 1 91.56 Yes 0 0.55
L09 420.63 4 6 1 105.39 Yes 0 0.55
L10 404.58 3 6 1 105.39 Yes 0 0.55
L11 405.64 3 5 0 77.32 Yes 0 0.55
L12 417.65 3 5 0 85.16 Yes 0 0.55

Table 9. Summary of the aquatic and non-aquatic toxicity properties of the studied ligands.

Ligand
Absorption

Human
Intestinal

Caco-2
Permeability

Blood-Brain
Barrier
(BBB)

P- I
Glycoprotein

Inhibitor

Cation
Transporter

Renal
Organic

P- II
Glycoprotein

Substrate
Sub-cellular
Localization

Substrate
CYP450

2C9

Inhibitor
CYP450

1A2

L01 0.7239 0.611 0.537 0.6175 0.562 0.8164 0.7225 0.8825 0.7848
L02 0.9075 0.5354 0.7668 0.6114 0.5285 0.7211 0.7290 0.8840 0.6375
L03 0.7019 0.5973 0.5344 0.9359 0.5000 0.7728 0.7673 0.8590 0.7245
L04 0.9741 0.6125 0.5373 0.9118 0.6473 0.7913 0.4522 0.8890 0.6712
L05 0.9790 0.5218 0.8720 0.7456 0.5000 0.7741 0.6092 0.8971 0.5491
L06 0.9870 0.5983 0.8365 0.9643 0.5324 0.7949 0.4458 0.8986 0.5956
L07 0.9878 0.5972 0.8475 0.6379 0.5969 0.8630 0.4340 0.9349 0.6489
L08 0.8136 0.6144 0.5551 0.6313 0.6908 0.8643 0.4104 0.8941 0.7354
L09 0.5487 0.6228 0.5949 0.6836 0.6176 0.8097 0.5974 0.8904 0.7455
L10 0.7131 0.6216 0.6669 0.6864 0.5745 0.8252 0.5740 0.8581 0.7426
L11 0.9102 0.5259 0.7580 0.8718 0.5254 0.8627 0.5518 0.9064 0.7167
L12 0.9378 0.5309 0.7621 0.7862 0.5063 0.7819 0.6319 0.9109 0.7150

3.10. In Silico Analysis

3.10.1. Pharmacokinetics and Drug-likeness Study
The pharmacokinetics  and drug-likeness  study of  the

twelve  ligands  revealed  important  molecular  charac-
teristics  relevant  to  their  potential  as  drug  candidates.
Molecular  weight  ranged  from  372.54  to  420.65  g/mol,
within  the  typical  range  for  small  molecule  drugs.  The
number of rotatable bonds ranged from 1 to 4, indicating
moderate  structural  flexibility.  Hydrogen  bond  acceptor
and  donor  counts  varied  from  4  to  6  and  0  to  1,
respectively,  influencing  the  ligands'  potential  for
interacting  with  target  proteins.  The  topological  polar
surface  area  (TPSA)  ranged  from  68.09  to  105.39  Å2,
influencing  ligand  solubility  and  permeability.  Notably,
Lipinski’s  rule  compliance  was  observed  for  all  ligands,
suggesting  favorable  drug-like  properties.  Furthermore,
the  bioavailability  score  indicated  high  bioavailability
potential  for  all  ligands,  reinforcing  their  suitability  as
drug candidates,  as  mentioned in Table 8.  Moreover,  all
ligands  demonstrated  a  bioavailability  score  of  0.55,

suggesting  moderate  bioavailability,  and  none  violated
Lipinski’s  rule,  further  indicating  their  pharmacokinetic
suitability  for  drug  development.  However,  ligand  L07
lacked complete data, limiting a full assessment. Overall,
these  findings  suggest  that  the  ligands  exhibited
promising  physicochemical  properties,  making  them
suitable  for  therapeutic  applications  with  effective  oral
bioavailability and pharmacokinetics.

3.10.2. Prediction of Toxicity Study
Table 9 presents a range of parameters related to drug

toxicity, encompassing ligand absorption, human intestinal
Caco-2  permeability,  blood-brain  barrier  (BBB)
permeability,  P-glycoprotein  inhibitor  properties,  cation
transporter  renal  organic  function,  P-glycoprotein
substrate  specificity,  sub-cellular  localization,  substrate
activity  towards  CYP450  2C9,  and  inhibitor  effects  on
CYP450  1A2.  Ligand  absorption  data  sheds  light  on  the
drug's  assimilation  within  the  body,  with  L04,  L05,  L06,
L07,  and  L12  demonstrating  elevated  absorption  rates.
Human  intestinal  Caco-2  permeability  values  exhibit
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variance among the drugs, notably with L04, L08, and L09
displaying  relatively  higher  permeability.  Blood-brain
barrier (BBB) permeability is particularly critical for drugs
targeting the central nervous system, where L05, L06, and
L07  exhibit  heightened  permeability.  P-glycoprotein
inhibitors play a crucial role in combating drug resistance,
with  L04  and  L11  showcasing  significant  inhibitory
potential.  Cation  transporter  renal  organic  values  are
pivotal for drug excretion mechanisms, with L08, L09, and
L10  demonstrating  elevated  values.  Substrate  CYP450
2C9  data  holds  importance  in  understanding  drug
metabolism  pathways,  with  L08,  L09,  L10,  and  L12
emerging as noteworthy substrates. Inhibitor CYP450 1A2
values are crucial indicators of potential drug interactions,
with L09, L10, and L12 displaying inhibitory effects.

In  summary,  L04,  L05,  L06,  L07,  and  L12  showcase
promising attributes across multiple toxicity parameters,
rendering  them  potentially  intriguing  candidates  for
further  exploration  or  drug  development  endeavors.
However,  a  holistic  examination  considering  all
parameters  collectively  is  indispensable  to  accurately
assess  their  overall  toxicity  profiles.

3.11. Molecular Dynamics

3.11.1. Root Mean Square Deviation (RMSD)
To delve into the structural dynamics and validate the

docking precision of the leading ligand-protein complexes
involving PDB: 5GWK-L04 and PDB: 4OQ3-L1, we carried
out  100  ns  molecular  dynamics.  Through  meticulous
analysis  of  the  C-α  atom's  RMSD,  we  assessed  the
resilience  of  these  intricate  complexes.  The  temporal
evolution,  spanning  from  0  to  34  ns,  was  meticulously
scrutinized  along  the  x-axis,  aptly  labeled  “Time
(nanosecond),”  while  the  y-axis,  denoted  as  “Protein
RMSD (Å),” indicating the root mean square displacement
of  the  protein  in  angstroms (Å).  It  was  found the  RMSD
values  consistently  lingered  below  the  2-3  Å  threshold,
indicative  of  an  enduringly  stable  protein  structure
throughout  the  simulation  period.  This  depiction
underscores  the  robustness  and reliability  of  the  ligand-
protein  complexes  under  scrutiny,  suggesting  promising
prospects for their pharmaceutical applications. As shown
in Fig. 12(a), the RMSD starts at 0 and increases slightly
over time, with a final value around 2.5 angstroms (Å) at
20 nanoseconds. This suggests that the protein structure
undergoes small changes during the simulation. As shown
in Fig.  12(b),  the RMSD starts at  around 2.2 angstroms
(Å)  and  fluctuates  slightly,  staying  around  2.2-2.7  Å
throughout  the  100ns  simulation.  This  suggests  that  the
protein-ligand  complex  undergoes  small  changes  during
the simulation but maintains a relatively stable structure
overall.

Fig. (12). Root mean square deviation (RMSD): (a) PDB: 5GWK-L04 and (b) PDB: 4OQ3-L01.
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3.11.2. Root Mean Square Fluctuation with Respect
to Residues

Root  Mean  Square  Fluctuation  (RMSF)  is  a  widely
utilized  metric  in  the  analysis  of  MD  simulations  or
experimental  data  pertaining  to  proteins  or  other
biomolecules  [52].  It  offers  valuable  insights  into  the
flexibility  and  mobility  of  individual  amino  acid  residues
within  a  protein  structure.  Mathematically,  RMSF  is
computed as the square root of the average of the squared
displacements  (or  fluctuations)  of  each  residue  from  its
mean position throughout a simulation or experiment. For
a protein with N residues, the RMSF of residue i (RMSFi)
can be expressed as the square root of the average of the
squared deviations of each residue from its mean position
[52] (Eq. 9).

(9)

Where n is the number of frames or snapshots in the
simulation  or  experimental  data,  xij  is  the  position  of
residue, i is in the frame j, and x̄i is the average position of
residue i over all frames [52]. In addition, the high RMSF
values for certain residues indicate that those residues are
more flexible or  dynamic.  The low RMSF value suggests
that those residues are more rigid or less dynamic. RMSF
values  can  be  correlated  with  structural  features,
functional regions, or interactions within the protein. For
example,  loops  and  flexible  regions  tend  to  have  higher
RMSF  values  compared  to  core  secondary  structure

elements, such as α helices and beta strands. As shown in
Fig.  (13),  the  RMSF  values  are  significantly  lower,
indicating  that  they  do  not  exceed  approximately  2.5  Å
throughout  the  100  ns  simulation.  An  RMSD  value  of
around  2.5  Å  indicates  that  the  docking  predictions  are
fairly accurate, with only minor discrepancies between the
predicted  and  actual  ligand-protein  interactions.  This
degree  of  variation  is  typically  considered  acceptable  in
virtual screening and early-stage drug design, where the
primary goal is to identify potential ligand candidates for
further refinement and optimization in subsequent studies.
However, it is a valid procedure.

3.11.3. Beta Factor
In  MD  simulations,  the  term  “beta  factor”  usually

refers to the atomic or residue B-factor, also known as the
atomic  temperature  factor.  The  B-factor  is  a  measure  of
the  mobility  or  flexibility  of  atoms  or  residues  within  a
bimolecular  system.  It  is  particularly  useful  in
understanding the dynamic behavior of proteins and other
macromolecules.  In  MD  simulations,  B-factors  can  be
calculated  directly  from  the  positional  fluctuations  of
atoms or residues. The B-factor for an atom or residue is
typically  computed  as  the  average  over  time  of  the
squared  displacement  of  that  atom  or  residue  from  its
mean position. High B-factors indicate greater mobility or
flexibility  of  atoms  or  residues.  Low  B-factors  suggest
rigidity or restricted motion. B-factors can provide insights
into  regions  of  proteins  that  are  structurally  flexible  or
undergo conformational changes. A lower B factor can be
seen in Fig. (14), which indicates the high stability.

Fig. (13). Root mean square fluctuation with respect to residues (a) PDB: 5GWK-L04 and (b) PDB: 4OQ3-L01.
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Fig. (14). Beta factor: (a) PDB: 5GWK-L04 and (b) PDB: 4OQ3-L01.

The Beta factor, or B-factor, serves as a metric to gauge
the  flexibility  and  mobility  of  residues  within  protein
structures during MD simulations. It measures the extent to
which  a  specific  residue  oscillates  or  moves  around  its
central position. Elevated B-factor values signify heightened
flexibility, while lower values indicate rigidity. The binding of
heavy  metals,  such  as  zinc,  iron,  or  copper,  to  specific
residues within proteins can induce significant alterations in
their  behavior,  such  as  stabilization  and  destabilization.
Certain  heavy  metals  function  as  structural  stabilizers  by
establishing coordination bonds with amino acid side chains.
This interaction tends to decrease the flexibility of adjacent
residues,  thereby  influencing  the  overall  dynamics  of  the
protein.  Conversely,  heavy  metals  may  disrupt  native
interactions  within  the  protein,  leading  to  conformational

changes. These modifications can propagate throughout the
protein structure, affecting its functionality and stability. In
essence,  heavy  metals  exhibit  a  dual  role  in  modulating
protein  dynamics,  either  enhancing  or  perturbing  them
depending  on  their  binding  sites  and  coordination.  A
comprehensive understanding of these effects is paramount
for  predicting  protein  behavior  across  diverse  biological
contexts.  Additionally,  both  graph  illustrates  that  the  beta
factor  experiences  minimal  fluctuations,  typically  ranging
between  -0.2  and  0.2  for  the  majority  of  residues.  This
indicates  that  individual  amino  acids  within  this  protein
sequence  have  relatively  little  influence  on  the  protein's
stability  in  isolation.



Effect of Camptothecin Derivatives on Cancer 23

3.11.4. Protein-ligand Interaction by Bond
Fig.  (15)  depicts  two  distinct  graphical

representations,  each  offering  insights  into  different
aspects of the data being analyzed. In the upper graph, a
bar  chart  structure  in  Fig.  (15  a,b)  is  employed,
showcasing diverse categories or groups distinguished by
contrasting  colors,  as  outlined  in  the  legend.  Along  the
horizontal  axis,  various  categorical  labels  or  time points
are  delineated,  while  the  vertical  axis  likely  denotes  a
numerical measure, such as counts or quantitative values.
The  varying  heights  of  the  bars  indicate  fluctuations  or
disparities  within  the  dataset  across  the  specified
categories.

In contrast, the lower graph presents a more intricate
visualization  comprising  three  distinct  segments.  At  the
top, a waveform pattern is discernible, suggesting a time-
dependent  measurement  or  trend.  The  middle  section
features  a  raster  plot  characterized  by  color-coded
markings commonly utilized to illustrate spiking activity or
categorical  occurrences  over  a  temporal  continuum.
Lastly,  the  bottom section incorporates  a  series  of  short
vertical lines or markers, potentially indicative of specific
events or temporal markers within the dataset.

Overall,  these  graphical  representations  offer  a
comprehensive depiction of the data, allowing for nuanced
interpretation  and analysis  of  the  underlying  trends  and
patterns present within the dataset.

3.11.5.  Radius  of  Gyration  (Rg)  of  WT,  Mutations,
and Solvent-Accessible Surface Area (SASA)

The radius of gyration for a particular system or object
is  equal  to  the  square  root  of  the  moment  of  inertia
divided  by  the  total  mass.

From  the  radius  of  gyration  data,  it  was  found  that
stability  and  response  to  external  forces  under  different

loading conditions of the structure are valid and stable. In
MD  simulations,  the  SASA  is  an  essential  metric  that
offers  important  details  on  how  atoms  in  a  bimolecular
system are  exposed  to  the  surrounding  solvent.  SASA is
frequently  used  to  investigate  how  ligands  and  proteins
interact.  Variations  in  solvent  accessibility  can  reveal
areas  that  are  revealed  during  unbinding  or  concealed
during  ligand  binding.  Finding  binding  locations  and
comprehending  the  energetics  of  protein-ligand  interac-
tions benefit from this. Data from MD simulations, along
with  the  SASA  analysis,  helps  to  show  that  the  working
procedure  of  docking  is  valid  by  experimental  data  by
providing insights into the dynamic behavior of molecules,
revealing solvent exposure and flexibility that may not be
evident in static structures, as shown in Fig. (16 a,b).

Fig. (16 a,b) displays two sets of charts. Protein-ligand
complexes  (a)  PDB:  5GWK-L04  and  (b)  PDB:  4Q03-L01,
each featuring three vertically arranged line graphs, likely
represent  time-series  data.  These  charts  correspond  to
distinct protein-ligand complexes identified by PDB codes
5GWK-L04  and  4Q03-L01,  potentially  referencing  the
Protein  Data  Bank.  The  top  graphs  indicate  fluctuations
around  mean  values,  possibly  reflecting  biological  or
physicochemical  parameters  within  the  complexes.  The
middle  graphs  demonstrate  erratic  fluctuations,
suggesting intermittent  events or interactions,  while the
bottom  graphs  exhibit  periodic  variations,  hinting  at
recurring structural changes or events. Color-coded bars
at  the  bottom  may  denote  experimental  conditions,
including  indications  like  “No  intermolecular  HBs
Detected,”  implying  the  absence  of  intermolecular
hydrogen  bonds.  While  the  observed  patterns  provide
insights  into  the  dynamics  and  stability  profiles  of  the
complexes,  a  detailed  analysis  would  require  higher-
resolution images or supplementary data to elucidate the
parameters measured and their significance.

Fig. 15 contd.....
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Fig. (15). Protein-ligand interaction bond for (a) PDB: 5GWK-L04 and (b) PDB: 4OQ3-L01.

Fig. 16 contd.....
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Fig. (16). The radius of gyration (Rg) of WT, mutations, and solvent-accessible surface area (SASA) for (a) PDB: 5GWK-L04 and (b) PDB:
4OQ3-L01.

Fig. 17 contd.....
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Fig. (17). Ramachandran plot for docked protein complex. (a) PDB: 5GWK-L04 and (b) PDB:4OQ3-L01.

3.11.6.  Ramachandran  Plot  for  Docked  Protein
Complex

Embedded  within  the  image,  the  Ramachandran  plot
emerges as a cornerstone in structural biology, presenting
a  graphical  depiction  of  torsion  angles,  notably  dihedral
angles,  within  the  protein's  architecture.  This  grid,
delineated by Phi (Φ) and Psi (Ψ) degrees along the x and
y axes, respectively, spans the -180 to 180-degree range,
as  showcased  in  Fig.  (17).  Each  dot  adorning  the  plot
corresponds to an amino acid residue within the protein,
facilitating  a  thorough  examination  of  its  structural
nuances.  Marked  areas  discern  α-helices  and  β-sheets,
providing insights into the protein's folding patterns and
conformation based on these torsional angles.

A  close  analysis  of  the  plot  reveals  four  distinct
clusters  of  black  dots,  denoting  data  points  for  dihedral
angles within the protein structure. Yellow zones highlight
preferred  combinations  of  Ψ  and  Φ  angles  typical  for
amino  acid  residues,  with  red  sectors  indicating  highly
favored combinations within these zones. Functioning as a
compass  for  torsion  angles,  the  Ramachandran  plot  is
instrumental in unraveling the distribution of these angles
and  appraising  the  protein's  three-dimensional
arrangement. While theoretical forecasts offer average Φ
and  Ψ  values  for  α-helices  and  β-sheets,  experimental
structures often veer off course due to diverse influences.
These deviations shape the clustering patterns of dots on

the  plot,  serving  as  indicators  of  the  protein  structure's
fidelity.  In  essence,  the  Ramachandran  plot  furnishes
invaluable  insights  into  the  protein's  conformation,
delineating permissible and prohibited regions of torsion
angle  values,  thus  playing  an  indispensable  role  in
scrutinizing  protein  structural  integrity.

CONCLUSION
First of all, DFT calculations demonstrated that ligands

with narrower HOMO-LUMO gaps, like L03 and L04, were
more reactive, while those with wider gaps, like L05, were
more  stable  and  electron-accepting.  In  addition,  the
analysis  of  electrostatic  potential  maps  revealed  that
varying  charge  distributions  in  molecules  influenced
reactivity  and  selectivity,  highlighting  the  complexity  of
predicting binding mechanisms and designing molecules
with  specific  properties.  Next,  in  this  extensive
investigation, the comparative analysis of binding energies
obtained  from  PyRx  and  Glide  molecular  docking
simulations of  twelve ligands with human topoisomerase
IIα  (5GWK)  and  p53  (4OQ3)  provided  insights  into  the
efficacy  and  ability  of  drug  potential  by  computational
tools  for  TNBC  as  well  as  in  silico  study.  Both  methods
demonstrated  similar  trends  in  ligand  affinities  for  both
protein targets, with notable variations in absolute values.
Ligands  consistently  exhibited  higher  binding  affinities
with  5GWK  compared  to  p53  across  both  docking
platforms. However, there were discrepancies in binding
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energies  between  PyRx  and  Glide  docking  for  some
ligands, suggesting differences in their scoring functions
and  algorithms.  Ligands  L01,  L02,  and  L09  showed
relatively  higher  binding  energies  with  5GWK  in  PyRx
compared  to  Glide  docking,  while  ligands  L07  and  L08
displayed  the  opposite  trend.  Both  Glide  docking  and
AutoDock  demonstrated  consistent  binding  trends  for
ligands against 5GWK and 4OQ3 proteins, with L05 as a
strong  binder  for  5GWK.  Hydrogen  and  hydrophobic
interactions  are  crucial,  emphasizing  the  value  of  these
methods  in  designing  dual-target  anticancer  agents.  In
silico studies identified promising toxicity profiles (drugs
L04,  L05,  L06,  L07,  and  L12),  making  them  strong
candidates  for  further  exploration,  but  a  comprehensive
evaluation  of  all  parameters  is  essential  for  accurate
toxicity  assessment.  These  variations  underscore  the
importance  of  considering  multiple  docking  methods  to
obtain  comprehensive  insights  into  ligand-protein
interactions.  The  final  findings  highlighted  that  ligands
with  narrower  HOMO-LUMO  gaps  showed  higher
reactivity, while those with wider gaps, like L05, offered
greater  stability,  with  computational  tools  providing
valuable insights into binding affinities, toxicity, and dual-
target anticancer drug design,  offering valuable insights
for the rational design of more effective anticancer agents
targeting TNBC.
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