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Abstract:
Introduction: Medical image fusion combines the data obtained from different imaging modalities such as Computed
Tomography  (CT),  Positron  Emission  Tomography  (PET),  and  Magnetic  Resonance  Imaging  (MRI)  into  a  single,
informative image that aids clinicians in diagnosis and treatment planning. No single imaging modality can provide
complete information on its own. This has led to the emergence of a research field focused on integrating data from
multiple modalities to maximize information in a single, unified representation.

Methods:  CNN (Convolutional  Neural  Network)  was  applied  to  achieve  robust  and  effective  multi-modal  image
fusion.  By  delving  into  the  principles  and  practical  applications  of  this  deep  learning  approach,  the  paper  also
provides a comparative analysis of CNN-based results with other conventional fusion techniques.

Results: CNN-based image fusion delivers far better results in terms of qualitative and quantitative analysis when
compared  with  other  conventional  fusion  methods.  The  paper  also  discusses  future  perspectives,  emphasizing
advancements in deep learning that could drive the evolution of CNN-based fusion and enhance its effectiveness in
medical imaging.

Discussion: CNN-based multi-modal medical image fusion proves strong advantages over traditional methods in
terms  of  feature  preservation  and  adaptability.  However,  challenges  such  as  data  dependency,  computational
complexity, and generalization across modalities persist. Emerging trends like attention mechanisms and transformer
models show promise in addressing these gaps. Future work should focus on improving interpretability and clinical
applicability,  ensuring  that  deep  learning  fusion  methods  can  be  reliably  integrated  into  real-world  diagnostic
systems.

Conclusion: Ultimately, this work underscores the potential of CNN-based fusion to improve patient outcomes and
shape the future of medical imaging by advancing the understanding of multi-modal fusion.
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1. INTRODUCTION
In  the  last  few  years,  multi-modal  image  fusion  has

become a much-favored approach in numerous application
areas,  including medical  imaging,  remote sensing,  surveil-
lance, and autonomous systems. Combining complementary
information, fusion of images from several modalities gives a
larger  perspective  of  complicated  situations.  Here,  as  an
example,  in  medical  imaging,  CT  scans  give  structural
details,  MRI  gives  soft  tissue  contrast,  and  together  offer
images  with  better  diagnostic  value.  Likewise,  in  remote
sensing, multi–spectral images sample a group of different
environmental attributes, a panchromatic image gives high
resolution  in  spatial  (spatial)  details,  and their  fusion  pro-
duces an image that retains both spectral and spatial infor-
mation.  There  is  no  single  modality  that  can  give  the
complete  diagnostic  details.  Therefore,  fusion  of  medical
images is preferred. Multi-modal image fusion is the concept
of  combining  data  from  different  imaging  sources  into  a
single informative output  image to support  better  analysis
and  interpretation,  and  decision  making  [1].  Driven  by
improvements  in  artificial  intelligence  (specifically  deep
learning),  the  landscape  of  multi-modal  image  fusion  has
changed dramatically. Fusion methods in traditional frame-
works are based on mathematical  models  and manual  fea-
ture  extraction  methods  such  as  wavelet  transform,  Prin-
cipal  Component  Analysis  (PCA)  or  other  statistical  app-
roaches.  However,  the  high  complexity  and  variability  of
data from different modalities present significant limitations
to  the  application  of  these  methods.  In  contrast,  deep
learning-based  fusion  techniques  can  automatically  learn
elaborate  features  and  patterns  and  are  well-suited  for
multi-modal  fusion  tasks.  Particularly,  CNNs,  Generative
Adversarial Networks (GANs), and transformers lend them-
selves to this task, as they are capable of extracting complex
features  and  relationships  across  different  imaging  moda-
lities [2].

Deep learning provides one of the significant advantages
for  multi-modal  image  fusion.  It  can  learn  complex  hier-
archical representations automatically. Typically, traditional
fusion methods rely on manual intervention to extract and
select features, which is a time-consuming and error-prone

effort. Whereas the process is, however, automated in deep
learning in a data-driven way, both low-level and high-level
features are learned. Although this capability could be useful
in  many  domains,  it  is  particularly  important  in  domains
such as medical imaging, where small differences between
different  modalities  can  mean  big  differences  in  terms  of
information.  As  an  example,  a  well-trained  deep  learning
model can bridge individual details of a modality in the fused
output directly and maintain them, therefore, as it generates
images  that  are  richer  in  information  and  appropriate  for
diagnostic purposes [3]. With CNNs, deep learning models
are flexible and can be trained for pixel-level, feature-level
level and decision-level fusion. On the pixel level, fusion is of
raw  pixel  information  of  each  modality,  whereas,  in  the
feature  level,  fusion  is  of  higher-level  features  extracted
from convolutional layers. In contrast, decision-level fusion
reflects  the  combination  of  decisions  or  interpretations  of
each  modality.  Because  of  this  flexibility,  deep  learning
models can be used for a variety of fusion tasks at both low
levels  as  imaging  and  at  high  levels  as  interpretation  [4].
The  last  advantage  is  that  the  deep  learning-based  fusion
methods  are  scalable.  Deep  learning  models  can  perform
multispectral image processing quickly upon being trained,
and  this  is  valuable  for  real-time  (or  near  real-time)  pro-
cessing  in  applications  such  as  autonomous  driving  and
surveillance.  In  addition,  deep  learning  models  can  also
frequently be fine-tuned for one use case and work well with
other types of data or with new imaging conditions. Adapt-
ability is extremely useful in fields such as remote sensing,
where environmental conditions change rapidly, leading to a
variety  of  input  image  quality  and  characteristics  [5].  The
example  of  multi-modal  medical  image  fusion  is  shown  in
Fig. (1).

While deep learning based multi modal image fusion has
many advantages, it also has a few distinct disadvantages.
The big challenge is that a huge amount of labeled data is
required  to  train.  The  effectiveness  of  the  deep  learning
model  based  on  CNN and  GAN,  etc,  highly  depends  on  a
sufficient amount of data for training. In the medical ima-
ging domain, for instance, collecting a multi-modal labeled
dataset may be difficult for privacy reasons, limited access
to high-quality data and labeling cost [6].

Fig. (1). Example of multi-modal medical image fusion (a) Source image 1— CT image, (b) Source image 2— MRI image, and (c) Fused
image.
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The  second  point  to  be  mentioned  is  that  deep  learning
models  are  computationally  intensive.  Training  a  deep
neural network, particularly one with many layers, is quite
computationally  expensive  (on  the  order  of  high-perfor-
mance  GPUs  or  cloud-based  computing).  However,  this
computational  demand  limits  easy  accessibility  of  deep
learning-based  fusion  for  institutions  or  researchers  with
limited resources. Additionally, most deep learning models
are  treated  as  'black  boxes',  meaning  that  the  internal
reasoning  behind  their  decisions  cannot  be  easily  inter-
preted. This lack of transparency is a problem in fields such
as medicine, where knowledge of the rationale for a fused
image  is  often  needed  for  clinical  decision  making.  How-
ever,  interpretability  is  an  active  limitation  in  deep
learning-based methods, and researchers are hard at work
on  interpretability  techniques  right  now  [7].  A  central
challenge in this field is how to design fusion architectures
capable  of  dealing  with  the  heterogeneity  of  different
modalities. The images are of different modalities with large
differences in spatial resolution, intensity distribution and
structural properties. For example, CT and MRI scans will
show you different types of tissues and will have differing
types  of  resolution.  It  is  challenging  to  develop  a  deep
learning  model  that  can  usefully  integrate  these  diverse
types  of  information  into  a  single,  coherent  output.  How-
ever,  when  misalignment  and  different  resolutions  are
present  in  inputs,  they  can  produce  artifacts  in  the  fused
output if not handled [8].

As  a  result,  developing  and  benchmarking  the  deep
learning-based  fusion  models  can  be  tricky  and  requires
task-specific metrics [9]. As another significant challenge,
model  generalization  still  needs  to  be  resolved.  However,
the robustness of these models is limited by their sensitivity
to generalizing from specific datasets or imaging conditions
[10].  For  example,  a  model  learned  from Medical  Images
taken from a particular type of MRI machine may not work
on Images acquired from a different machine or protocol.
However, the lack of generalizability in this regard restricts
the  use  of  fusion  models  for  real-world  tasks  in  which
variability of imaging conditions is common [11]. There are
some  persistent  problems  in  the  current  deep  learning-
based  image  fusion.  One  such  issue  is  that  when  some
fusion techniques tend to produce overly smooth or blurred
fused  images,  fine  details  get  lost.  For  instance,  when
models seek to introduce spatial consistency at the expense
of modality-specific information, the resulting fused image
is  poorly  sampled,  lacking  sharpness  and  possibly  contai-
ning clinically relevant information [12]. There is a problem
with  the  limited  interpretability  of  fused  images.  Deep
learning models can create high-quality fused images, but
the lack of interpretability of deep learning models makes it
hard  for  practitioners  to  trust  or  adopt  this  approach.
Medical practitioners may be reluctant to use fused images
for diagnosis if they do not know how a fusion process has
preserved or changed certain anatomical structures. There
are  a  lot  of  investigations  being  conducted  to  make  deep
learning models more interpretable, but interpretability still
stands  as  a  roadblock  for  deeper  adoption  [13].  Further-
more, multimodal datasets require models that can accom-
modate temporal and spatial inconsistencies. In a dynamic
scenario such as autonomous driving, images from different

sensors (e.g., radar, LiDAR, camera) are taken at a slightly
different time or from different viewpoints. However, due to
this  temporal  and  spatial  discrepancy,  it  will  cause  chal-
lenges  in  fusion,  the  fused  image  can  have  artifacts  or
inconsistent  areas  that  may  harm  the  downstream  tasks.
Such problems are difficult for traditional fusion methods,
and  although  deep  learning  can  provide  some  answers,
more research is needed to develop robust models that can
deal  with  this  in  real  time  [14].  Another  area  of  ongoing
research  is  the  further  development  of  fusion  models
suitable for use with the varying quality of data. In practice,
input  images  differ  in  quality  from one image to  another,
e.g., low noise and good lighting conditions, low noise and
low  light  conditions,  etc.  Automatic  selection  of  fusion
algorithms, however, is a task that has not been fully add-
ressed  before.  Designing  fusion  algorithms  that  flexibly
adjust their processing depending on the image quality of
the  input  images  is  a  challenging  objective  [15].  In  con-
clusion,  though  the  multi-modal  image  fusion  is  greatly
promoted by deep learning, there are still many problems.
They  include  data  requirements,  computational  demands,
model  interpretability,  issues  concerning  generalizability
and robustness. To solve these struggles, further research
and  innovative  work  are  needed,  because  deep  learning
presents one avenue to augment multi-modal image fusion
and  make  it  possible  in  real-world  scenarios  and  various
applications [16].

After  the  introduction,  Section  2  briefly  describes  the
theoretical  foundations  and  importance  of  CNN-based
multi-modal medical image fusion. Section 3 describes the
results of CNN-based image fusion. Section 4 describes the
step-by-step procedure of CNN-based image fusion, and this
paper is concluded in Section 5.

2. MATERIALS AND METHODS
Medical  imaging  has  soared  in  the  wake  of  the  intro-

duction  of  a  variety  of  imaging  modalities  like  CT,  MRI,
PET,  and  ultrasound  images.  All  modalities  give  unique
insight into the body, collecting different information, ana-
tomical  or  functional.  If  only  one  imaging  modality  is
available, it is powerful, but it is usually limited to the type
of  information  that  it  can  capture.  For  example,  MRI  has
great  soft  tissue  contrast  but  poor  bone  detail,  while  CT
scans give very good bone detail but are not contrasted in
soft tissues. However, to overcome these limitations, multi-
modal  medical  image  fusion  has  been  proposed  to  merge
complementary  information  from  multiple  imaging  moda-
lities  to  generate  a  single  enriched  image.  Over  recent
years,  CNNs have become central  in  multi-modal  medical
image  fusion,  providing  effective  and  sophisticated  tech-
niques  to  fuse  images  to  maintain  important  details  and
improve the diagnostic accuracy [17].

2.1. Role of CNN-Based Multi-Modal Medical Image
Fusion

CNN-based multi-modal medical image fusion plays an
important  role  in  combining  multiple  modalities  to  offer
clinicians a richer insight into a patient’s anatomy and phy-
siology. In comparison to more traditional fusion methods
that  rely  on  manually  extracting  features  and  fixed  rules,
CNNs learn the fusion task from data, deriving the relevant
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features,  as  well  as  the  fusion,  in  a  data-driven  way.  The
ability  to learn and adapt gained from CNNs makes them
particularly  well  suited  for  medical  applications  where
subtle differences in the images have a critical  impact on
the diagnosis [18].

CNN-based fusion is also used in other medical-related
fields.  For  example,  in  oncology,  where  metabolic  infor-
mation from PET is fused with anatomical detail from MRI,
to accurately localize tumors. CNNs can automatically fuse
these modalities to provide a detailed image that can assist
oncologists in their treatment planning and monitoring [19].
When using neuroimaging technologies and combining MRI
and  functional  MRI  (fMRI)  via  CNNs,  neurologists  can
request an assessment of brain activity and structure from
the  same  image,  thus  improving  diagnostics  of  diseases
such as epilepsy and Alzheimer’s disease. In addition, fusion
of  CT  and  MRI  images  in  cardiovascular  imaging  enables
examination  of  the  structure  and  function  of  the  heart,
supporting  the  comprehensive  cardiac  evaluation  [20].

2.2. Significance of CNN-Based Multi-Modal Medical
Image Fusion

Since the fusion of  high-resolution CNN-based images
can  offer  accurate  and  high-resolution  images  employing
both the anatomical and functional information with regard
to diagnostics, it has become an important issue in the field
of  medical  image fusion.  Unlike  the  traditional  flat  layers
which are used in the feedforward neural network, where it
can learn from only predefined features, or merely surface
textures,  CNNs with  deep layers  and convolutional  filters
can learn from complex patterns and textures that exist in
medical  images  and  help  with  distinguishing  important
details  from  noise.  Importantly,  this  capability  allows  to
produce fused images that both visually and diagnostically
inform  with  respect  to  medical  conditions  for  improved
interpretation by the physician [21]. One particularly inter-
esting advantage of CNNs is the capability of doing pixel-
level  and  feature-level  fusion.  In  pixel-level  fusion,  infor-
mation  from  each  pixel  in  the  source  images  is  fused,
preserving fine details, while in feature-level fusion, higher-
level  features  are  aggregated,  which  captures  more  abs-
tract  and  diagnostically  important  features.  The  dual
capability of CNN-based fusion models ensures maintaining
important diagnostic information such as tumor boundaries,
tissue  abnormalities,  and  vascular  structures.  Thereby
keeping the fused image both precise and informative [22].

Beyond  image  quality,  CNN-based  fusion  has  signi-
ficance to medical practitioners’ workflow. Using CNN, the
fusion  process  is  automated,  which  makes  the  interpre-
tation  and  combination  of  multiple  modalities  less  time-
consuming  compared  with  the  manual  process.  The  most
significant  benefit  of  this  is  in  time  savings,  which  are
especially crucial during emergency cases, where diagnosis
must  happen  as  soon  as  possible.  Furthermore,  the  dec-
rease in manual intervention also decreases variability and
subjectivity  in  diagnostics,  resulting  in  more  uniform and
dependable  diagnostic  results  across  various  healthcare
environments  [23].

2.3.  Impact  of  CNN-Based  Multi-Modal  Medical
Image Fusion on Healthcare

CNN-based multi-modal image fusion has a high impact
on  healthcare,  especially  in  diagnosing  rapidly  and  accu-
rately and personalizing the treatment. CNN‐based fusion
can create images that contain far greater anatomical and
functional  information  than  current  techniques,  allowing
earlier  and  more  accurate  diagnoses  with  better  patient
outcomes. For example, in the field of cancer diagnosis, the
combined fused images of PET and MRI can lead to early
detection of tumors and, consequently, to achieving timely
intervention. In addition, like neuroimaging, fusing MRI and
fMRI  gives  a  comprehensive  view  of  the  brain,  helpful  in
precisely  localizing  functional  defects  or  structural
abnormalities, in conditions that require surgical manage-
ment [24]. Another major impact of CNN-based fusion is on
the  contribution  of  precision  medicine.  In  the  process  of
personalized treatment planning, it is extremely important
to  consider  the  personal  anatomical  and  physiological
properties  of  the  patient.  The  detailed  and  personalized
view  seen  in  the  fused  images  allows  clinicians  to  tailor
treatments  to  the  patient  more  specifically.  In  radiation
therapy, for example, fused images are particularly useful
because  they  allow  precision  striking  of  tumors  with
radiation  while  sparing  surrounding  healthy  tissue.  As  a
result, CNN-based fusion helps make treatments less risky
and more effective, lowering the risk of complications and
improving patients’ quality of life [25].

Furthermore, CNN-based fusion models have proved to
be  a  must  in  developing  the  medical  imaging  field.  The
development and refinement of existing CNN-based fusion
techniques help provide better imaging protocols, making it
possible  to  study  disease,  track  disease  progression  and
gauge  treatment  response.  On  the  other  hand,  this
advancement results in the perpetual evolution of diagnosis
tools, and CNN-based fusion methods shape the new stan-
dards  in  medical  imaging.  The  implementation  of  these
cutting-edge  fusion  techniques  may  also  dictate  future
healthcare policy, including diagnostic procedure guidelines
and treatment planning [26].

2.4. Challenges and Limitations in CNN-Based Multi-
Modal Medical Image Fusion

2.4.1. Difficulty in Annotated Dataset Acquisition

Large,  annotated  datasets  are  required  to  train  CNN
models effectively.
Privacy issues, regulatory constraints, and a lack of multi-
modal datasets hinder data acquisition.
The expertise and time needed to annotate images make
it challenging to create high-quality datasets [27].

2.4.2. Generalization Issues

Without proper data, CNN models may fail to generalize,
leading to inconsistent and inaccurate fusion results [27].
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2.4.3. Computational Complexity

High computational power and memory are required for
training CNN models on large medical datasets.
Resource demands (e.g., GPUs or cloud-based solutions)
may not be accessible to all healthcare institutions.
Real-time applications are limited due to the high compu-
tational demand, restricting integration into clinical work-
flows in resource-limited settings [28].

2.4.4. Lack of Interpretability

CNN  architectures  are  complex  and  often  viewed  as
“black boxes.”
Clinicians  may  struggle  to  understand  the  rationale
behind fusion decisions.
Transparency  and  trust  in  fused  images  are  critical  for
accurate  diagnosis,  which  is  hindered  by  the  lack  of
interpretability  [29].

2.4.5. Non-Generalizability Across Protocols

CNN models trained on images from specific scanners or
protocols may not work well across different equipment
or imaging protocols.
Variability  in  medical  imaging  protocols  can  create
challenges in multi-center studies or deployments across
diverse healthcare facilities [30] [31].

2.4.6. Skepticism from Healthcare Providers

The lack of interpretability may lead to skepticism among
healthcare  providers,  reducing  motivation  for  adoption
[29].

2.4.7. Fusion Variability

Fusion  results  can  vary  depending  on  the  imaging
protocol  and  equipment,  complicating  standardization
[30]  [31].

2.5. CNN-Based Multi-modal Medical Image Fusion:
Step-By-Step Procedure

2.5.1.  Step  1:  Acquisition  of  Multi-Modal  Medical
Images

Once  you  have  multiple  medical  images  of  the  same
subject captured from different imaging modalities like CT,
MRI,  PET,  and  Ultrasound,  etc.  Each  modality  provides
distinct  information.

2.5.2. Step 2: Preprocessing of Input Images
Next,  the  images  are  preprocessed  to  conform  to  the

CNN model compatibility. It usually encompasses resizing
of  images,  normalizing  of  pixel  values  and  aligning  the
images by correcting some small spatial variations. To help
the model better generalize the values, normalization (for

instance, scaling the pixel values into a 0–1 range) is used,
which  puts  all  values  of  an  additional  modality  within  a
standardized range.

2.5.3. Step 3: Feature Extraction Using CNN Layers
Each preprocessed input image is passed through some

successive  CNN layers,  just  like  convolutional  layers  that
apply a filter to find edges, textures or some pattern in the
image.  Use  of  pooling  layers  to  decrease  the  number  of
spatial  dimensions  in  feature  maps,  keeping  essential
information,  and  restricting  the  computational  load.  The
CNN learns to keep both anatomical and functional features
specific  to  each  modality,  which  then  helps  it  distinguish
between anatomical and functional features.

2.5.4. Step 4: Fusion of Extracted Features
Following feature extraction, the features obtained from

each modality are integrated by means of a fusion strategy.
CNNs typically allow for three types of fusion.

2.5.4.1. Pixel-Level Fusion
Captures  detailed  spatial  information  at  the  channel

using the raw pixel values, which might increase the noise.

2.5.4.2. Feature-Level Fusion
Merges  feature  maps  from  different  modalities  while

preserving abstract information and yields more informative
and compact representations.

2.5.4.3. Decision-Level Fusion
Outcomes are  combined after  individual  processing of

each modality, a step specifically useful for high-level diag-
nostic tasks.

Depending  on  the  focus  to  be  applied  in  the  fused
image, common strategies include addition, averaging, max-
imum selection, or concatenation.

2.5.5. Step 5: Reconstruction of Fused Image
To reconstruct the fused feature map back in the image

format, a deconvolution or upsampling layer is utilized. The
goal  of  the reconstruction stage is  to synthesize a unified
image that maintains crucial features from each modality as
a high-quality image with additional diagnostic value.

2.5.6. Step 6: Post-Processing
Finally,  post-processing  steps  were  applied  to  further

refine  the  fused  image  (i.e.,  adjust  contrast,  use  noise
reduction filters, etc.) At this stage, sometimes the visibility
of anatomical structures or functional details is enhanced,
and  the  final  output  image  is  visually  clear  and  diagnos-
tically useful. The merits and demerits of CNN-based multi-
modal medical image fusion are shown in Table 1.

2.6.  Model  Optimization,  Adaptation,  Future
Research and Development

The  model  is  fine-tuned  to  improve  the  CNN-based
fusion  process  by  optimizing  parameters,  trying  various
fusion strategies and employing advanced techniques such
as transfer learning to make the model applicable for diff-
erent  datasets  or  imaging  conditions.  By  optimization,  the
model  is  effective  in  various  scenarios  and  can  be  gene-
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ralized  as  applied  to  different  patient  cases  and  imaging
equipment.

Table 1. Advantages and disadvantages of CNN-based
multi-modal medical image fusion.

Advantages Disadvantages

Automatic Feature Learning High Data Requirements
High Detail Preservation Computational Complexity
Scalability Lack of Interpretability
Flexibility in Fusion Levels Generalization Challenges
Improved Diagnostic Accuracy Risk of Over-Smoothing

Future research may include further lightening of archi-
tectures  to  lessen  computational  demands,  increasing  the
interpretation of models to increase acceptance from clini-
cians, and learning to adapt models to unseen imaging pro-
tocols.  However,  future  advancements  in  this  novel  fusion
model  may lower the complexity  of  the CNNs to  the point
where  they  could  be  more  feasibly  incorporated  into  real-
world  healthcare  settings,  expanding  the  number  of  fused
multimodal  imaging  scenarios  that  can  be  utilized  for
accurate  and  time-effective  diagnosis  and  treatment.  The
general  CNN-based  multi-modal  medical  image  fusion  is
shown  in  Fig.  (2).

2.7.  Algorithm:  CNN-Based  Multi-Modal  Medical
Image Fusion

The  step-by-step  process  of  fusing  the  source  input
images  into  a  final  fused  image  using  a  CNN.  The  CNN-
based approach is explained in the sub-section.

2.7.1. Step 1. Input
CT_image  ß  Input  medical  image  1,  for  example,  CT

image
MRI_image ß Input medical image 2, for example, MRI

image

2.7.2. Step 2. Preprocessing
CT_Image ß Normalize (Resize(CT_Image, Size), Range

= [0, 1])
MRI_Image  ß  Normalize  (Resize(MRI_Image,  Size),

Range  =  [0,  1])

2.7.3. Step 3. CNN Feature Extraction
Model  ß  Define_CNN(Input_Shape  =  (Height,  Width,

Channels))
CT_Features ß Model (CT_Image)
MRI_Features ß Model (MRI_Image)

2.7.4. Step 4. Fusion Rule Application
For each Pixel (i, j):
Weight_CT ß Compute_Weight(CT_Features(i, j))
Weight_MRI ß Compute_Weight(MRI_Features(i, j))
Fused_Feature (i, j) ß (Weight_CT * CT_Features(i, j)) +

(Weight_MRI * MRI_Features (i, j))

2.7.5. Step 5. Post-Processing
Fused_Image ß Reconstruct_Image(Fused_Feature)
Fused_Image ß Apply_Filter  (Fused_Image,  Filter_Type

= “Enhancement”)

2.7.6. Step 6. Output
Display (Fused_Image)
Save (Fused_Image, Path = “Fused_Image.png”)

2.7.7. Step 7. End

Fig. (2). General CNN-based multi-modal medical image fusion.
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3. RESULTS
Figs.  (3a,  b  and  4a,  b)  illustrate  the  datasets  of  CT,

MRI,  and  PET  images  [32,  33].  The  dataset  used  in  this
paper for experimental purposes is publicly available, as it
is an open-source database. Figs. (3c-j and 4c-j) show the
visual  quality  outcomes  of  the  comparison  of  CNN  with
other prevalent  fusion methods on two different  datasets.
Zooming into the images reveals that the results are good.
The edges and corners are effectively preserved. Uniformity
is  maintained,  and  no  information  is  lost.  The  CNN  is
effective in fusing the CT and MRI images without loss of
any information. Additionally,  the results of CNN are also
compared with various standard methods as shown in Figs.
(3c-j  and  4c-j).  The  CNN  is  compared  with  conventional
methods like Principal Component Analysis (PCA), Discrete
Wavelet  Transform  (DWT),  Stationary  Wavelet  Transform
(SWT),  Wavelet  Packet  Decomposition  (WPD),  Multi-
Singular  Valued  Dependency  (MSVD),  Non-Subsampled
Contourlet Transform (NSCT), and Non-Subsampled Shear-
let  Transform  (NSST),  and  the  results  are  comparatively
better  than  traditional  methods  in  terms  of  visual  and
qualitative  analysis.  Upon  thorough  examination  of  the
visual  outcomes  (Figs.  3c-j  and  4c-j)  and  the  parametric
data  (Tables  2  and  3),  it  can  be  concluded  that  the  CNN

demonstrates  superior  performance  relative  to  the  other
standard methods evaluated. The NSCT and NSST method
also  shows  better  results  that  look  competitive  in  compa-
rison to CNN-based results. The comparative performance
of  CNN  is  better  than  all  the  conventional  methods  as
shown  in  Figs.  (3c-j,  4c-j)  and  Tables  2  and  3.  It  can  be
concluded that the CNN-based multi-modal medical image
fusion  shows  comparatively  better  fusion  results  than
traditional  methods.

The  CNN-based  method  excels  in  spatial  detail  ret-
ention,  feature  preservation,  and  overall  visual  quality.
Although there is a slight trade-off in structural similarity, it
still produces visually appealing images with high contrast
and  detail.  The  NSCT  and  NSST  methods  show  balanced
performance across metrics, providing good structural simi-
larity  and  quality.  These  methods  are  ideal  for  tasks  re-
quiring  both  feature  retention  and  coherence.  The  PCA
makes it suitable for applications focusing on feature-rich
fusion,  though  it  sacrifices  some  spatial  correlation.  The
WPD and DWT methods are weaker in retaining structural
and  feature-related  information,  leading  to  fused  images
that may appear less detailed or visually coherent. The SWT
method indicates potential  issues with contrast  and infor-
mation richness in the resulting images.

Fig. (3). (a) CT image, (b) MRI image, (c) MSVD, (d) PCA, (e) DWT, (f) SWT, (g) WPD, (h) NSCT, (i) NSST, (j) CNN.
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Fig. (4). (a) MRI image, (b) PET image, (c) MSVD, (d) PCA, (e) DWT, (f) SWT, (g) WPD, (h) NSCT, (i) NSST, (j) CNN.

Table  2.  Average  quantitative  analysis  as  per  SCD,
FS, FMI, and FF.

Method SCD FS FMI FF

MSVD 1.38 0.98 0.70 1.22
WPD 1.28 0.92 0.71 1.45
PCA 1.32 0.93 1.11 1.51
DWT 1.65 0.98 0.90 0.98
SWT 1.39 0.98 0.91 1.35
NSCT 1.45 0.99 0.98 1.71
NSST 1.43 0.91 0.95 1.74
CNN 1.70 0.86 1.21 1.79

The CNN-based method excels in all metrics, producing
visually rich, high-contrast, and well-balanced fused images.
It is the best choice when visually superior fused images are
required,  such  as  medical  imaging  or  surveillance.  The
NSCT  and  NSST  methods  provide  balanced  performance
across  all  metrics,  making  them  suitable  for  applications
requiring  good  visual  quality  with  slightly  lower  compu-
tational  demands  compared  to  CNN.  The  WPD  method
performs  moderately  well  in  entropy  and  fusion  index,
making it a viable choice for scenarios where high entropy

is prioritized over contrast. The PCA method shows reason-
able  performance  but  falls  short  in  contrast  and  detail
retention. The MSVD and DWT method shows poor perfor-
mance,  leading  to  visually  dull  images  with  low  contrast,
brightness, and information content.
Table 3. Average quantitative analysis as per SD, M,
E, and FI.

Method SD M E FI

MSVD 40.11 19.52 0.90 20.17
WPD 60.70 30.65 3.34 31.56
PCA 56.55 26.57 0.98 28.03
DWT 38.60 27.50 1.31 22.47
SWT 40.90 19.52 1.38 20.60
NSCT 63.32 29.11 3.01 31.81
NSST 63.76 29.13 2.77 31.88
CNN 64.91 31.89 3.51 32.31

4. DISCUSSION
There is no reference image for the comparison. There-

fore,  objective  method  performance  assessment  metrics
without  a  reference  image  are  used  for  the  overall  com-
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parison of M3IF-NSST-MI with other methods. The metrics
used  are  Functional  Mutual  Information  (FMI),  Fusion
Symmetry  (FS),  Mean  (M),  Fusion  Factor  (FF),  Standard
Deviation (SD), Entropy (E), Fused Index (FI), and Sum of
Correlation Difference (SCD). Except for FS, all the metrics
should have higher values for better results. Only FS should
have  a  lower  value  for  better  results.  Table  2  shows  the
quantitative  analysis  of  different  methods  (MSVD,  WPD,
PCA,  DWT,  SWT,  NSCT,  NSST,  and  CNN)  based  on  four
metrics,  SCD,  FS,  FMI,  and  FF.  The  key  observations
include the high scores of SCD and CNN. Whereas, NSCT
scores the highest in terms of FS score, suggesting better
feature  similarity,  while  CNN  has  the  lowest.  CNN  out-
performs  other  methods  with  the  highest  FMI  value,  ref-
lecting  improved  fusion  metric  performance.  CNN  also
achieves the highest FF score, showcasing its strong fusion
capabilities. Based on this data, CNN-based fusion methods
shine  in  overall  performance  metrics,  particularly  SCD,
FMI,  and  FF.

Table 3 evaluates different methods (MSVD, WPD, PCA,
DWT, SWT, NSCT, NSST, and CNN) based on four metrics,
SD, M, E, and FI. The key insights from these evaluations
demonstrate  that  CNN  achieves  the  highest  SD  score,
which indicates the best variability in the fused image. CNN
outperforms  other  methods  with  the  highest  mean  value,
suggesting better brightness retention in the fused image.
CNN also achieves the highest E value, reflecting the most
information-rich fused image. CNN secures the highest FI
score, demonstrating the most efficient and balanced fusion

performance. CNN leads in all metrics (SD, M, E, and FI),
indicating  superior  performance  in  fusion  compared  to
other  methods.

The  graphical  representation  of  the  data  presented  in
Tables 2 and 3 is illustrated in Figs. (5 and 6), respectively,
using a spider chart. The findings presented in Tables 2 and
3, as well as in Figs. (5 and 6), represent average outcomes
derived from experiments conducted on over 100 datasets.
In Fig. (5), the CNN method covers the largest area on the
chart,  highlighting its  superior performance in SCD (1.7),
FMI (1.21), and FF (1.79). It shows a trade-off in FS (0.86),
which  is  lower  compared  to  other  methods,  but  is
compensated by its high scores in other metrics. The NSCT
and  NSST  methods  show  balanced  performance  with
slightly lower scores than CNN in FF and SCD, but higher
scores in FS (0.99 for NSCT and 0.91 for NSST). The PCA
method  performs  moderately  well  in  FMI  (1.11)  and  FF
(1.51) but lags in SCD and FS. The WPD and SWT methods
have a smaller area compared to CNN, indicating weaker
overall  performance.  For  example,  WPD  has  a  low  FMI
(0.71),  while  SWT  struggles  in  FF  (1.35).  The  MSVD  and
DWT methods show subpar performance in metrics like FMI
and FF, with a relatively smaller contribution to the overall
chart area.

In Fig. (6), the CNN method covers the largest area in
the chart,  clearly  outperforming all  other  methods.  It  has
the  highest  SD  score,  indicating  superior  contrast  and
detail  retention.

Fig. (5). Spider chart analysis of various metrics (SCD, FS, FMI, and FF).
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Fig. (6). Spider chart analysis of various metrics (SD, M, E and FI).

As well as the highest M score, reflecting better brightness
preservation.  Additionally,  it  obtains  the  highest  E  score,
showcasing superior information retention, and overall has
the best FI value, solidifying its dominance. The NSCT and
NSST  methods  perform well  and  are  closely  aligned  with
CNN  in  most  metrics,  with  their  SD  scores  of  63.32  and
63.76, respectively, nearly as high as CNN. Their FI values
are 31.81 and 31.88,  respectively,  competitive  with  CNN,
demonstrating  effective  overall  fusion  perfor-mance.
Whereas,  their  E  scores  are  slightly  lower  than  CNN  but
still above most other methods. The PCA method per-forms
moderately, with good scores in M (26.57) and FI (28.03),

but lags in E (0.98) and SD (56.55). The WPD method is the
second-best  in  FI  (31.56)  and  performs  decently  in  M
(30.65)  but  falls  behind  in  SD  (60.7)  and  E  (3.34).  The
MSVD and DWT methods underperform across all metrics,
with particularly low FI and E, indicating limited utility for
high-quality fusion tasks.

Since the fusion results difference are not visible in the
Figs. (3 and 4) with the naked eye. Fig. (7) is introduced in
this paper, which shows a zoomed-in view of Fig. (3), high-
lighting  the  superior  performance  of  CNN-based  fusion
methods.

Fig. (7). Zooming fusion results (a) MSVD, (b) PCA, (c) DWT, (d) SWT, (e) WPD, (f) NSCT, (g) NSST, (h) CNN.



Deep Learning-based Multi-modal Medical Image Fusion 11

The image is visibly smooth and maintained in CNN-based
fusion  results  in  comparison  to  other  methods.  Although
NSCT  and  NSST-based  fusion  results  also  show  decent
results in terms of tissue and other fine details preservation
but overall clarity can be seen in the CNN-based method.

CONCLUSION
This  paper  examines  the  significance  of  CNN-based

multimodal  medical  image  fusion,  combining  data  from
modalities like CT, PET, and MRI into a single, informative
image for enhanced diagnosis and treatment planning. CNN-
based fusion integrates complementary anatomical and fun-
ctional  details,  enabling  automated  feature  extraction,  re-
duced manual input, and greater diagnostic precision. Key
benefits  include  lower  healthcare  costs  and  improved
efficiency, particularly valuable in oncology, neurology, and
cardiovascular  imaging.  Challenges  include high computa-
tional  demands,  data  requirements,  and  limited  interpret-
ability. Solutions such as lightweight architectures, transfer
learning,  and  explainable  AI  are  discussed,  highlighting
CNN-based fusion’s potential  to improve patient outcomes
and advance medical imaging. In the coming years, advance-
ments in CNN-based multimodal image fusion are poised to
transform  medical  imaging  by  integrating  deep  learning
innovations with efficient network architectures and enhan-
ced interpretability. Reducing the computational demands of
CNN  models  holds  promise  for  making  CNN-based  fusion
feasible  in  clinical  settings.  Data  scarcity,  a  significant
challenge, can be addressed through transfer learning and
domain  adaptation,  enabling  models  trained  on  specific
datasets  to  generalize  effectively  across  different  imaging
conditions. Furthermore, incorporating Explainable AI (XAI)
into CNN-based fusion frameworks could significantly imp-
rove  model  interpretability,  helping  clinicians  understand
both the fusion processes and the resulting outputs. In diag-
nostic applications, where accuracy is paramount, transpa-
rency  becomes  especially  critical.  CNN-driven  multimodal
image  fusion  offers  tremendous  potential  for  enhancing
healthcare by combining diverse imaging modalities to im-
prove diagnosis, treatment planning, and patient outcomes.
Although challenges remain,  current  research and techno-
logical  advancements  are  expected  to  mitigate  these  limi-
tations, pushing the boundaries of medical imaging through
CNN-based fusion.
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