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Abstract:
Introduction:  Low-dose  Computed Tomography (LDCT)  images  are  often corrupted by  Gaussian noise  owing to
electronic interference and environmental factors during image acquisition. This type of noise significantly degrades
image quality, obscures fine structural details, and hinders accurate medical interpretation. To overcome this, the
current study aims to develop an effective denoising method that suppresses Gaussian noise, preserves edges and
sharp  features,  and  improves  the  overall  visual  quality.  The  proposed  method  outperforms  existing  denoising
techniques  in  terms  of  Peak  Signal-to-Noise  Ratio  (PSNR),  Structural  Similarity  Index  Measure  (SSIM),  Entropy
Difference (ED), Feature Similarity Index Measure (FSIM), and Root Mean Squared Error (RMSE), thereby improving
overall diagnostic precision.

Methods:  The  proposed  denoising  method  integrates  the  Nonsubsampled  Shearlet  Transform  (NSST),  guided
filtering, and BayesShrink thresholding method in a dual-stage process. Initially, the NSST process decomposes the
noisy CT image into approximation and detail components. The approximation component is improved using guided
filtering to preserve fine structural details, whereas detail components are denoised using BayesShrink thresholding
for noise reduction. A method noise-based approach is then evaluated and further enhanced by applying NSST and
BayesShrink methods to the residual part. Finally, the denoised outputs from the two stages are fused to reconstruct
the final denoised CT image. The comparative evaluation of the proposed method against Discrete Wavelet Transform
(DWT), NSST with bilateral filtering, Method noise-based Convolutional Neural Network (CNN), NSST with Bayes
shrinkage,  NSST  with  Wiener  filtering,  and  Stein’s  Unbiased  Risk  Estimate  Linear  Expansion  of  Thresholds
(SURELET), and Tetrolet transform. Quantitative evaluation metrics (PSNR, SSIM, ED, FSIM, and RMSE) were used
across varying noise levels  (σ = 5,10,15,20),  confirming its  consistent  superiority  in  noise suppression and edge
preservation.

Results: The proposed denoising method consistently outperformed all  other standard methods at  varying noise
levels. It achieved higher PSNR and SSIM values, lower RMSE values, and enhanced ED and FSIM values. These
experimental outcomes demonstrate superior denoising performance in terms of both noise reduction and edge detail
preservation.

Discussion:  The integration of  NSST with  guided filtering and Bayesian thresholding significantly  improves  the
denoising  ability  in  LDCT  images  without  degrading  the  fine  image  details.  The  iterative  method  noise-based
refinement process improved the denoising performance. Although computationally intensive, the proposed method is
clinically applicable, specifically in lower-dose imaging scenarios.

Conclusion: This study demonstrates a hybrid denoising approach that combines NSST, BayesShrink thresholding,
guided filtering, and method noise-based refinement process. The method shows remarkable efficacy in suppressing
Gaussian noise while preserving edge and structural details, thereby improving diagnostic quality in low-dose CT
images.
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1. INTRODUCTION
CT  imaging  is  a  crucial  modality  in  therapeutic

diagnostics  that  helps  in  examining  the  complications
related to the human body. It provides crucial information
for  disease  diagnosis,  surgical  planning,  and  treatment
monitoring [1-3]. However, CT scans use different sensors
to  capture CT images,  making them more susceptible  to
noise.  CT  images  are  generated  using  X-ray  radiation.
However, exposure introduces noise and artifacts during
image acquisition and transmission owing to factors such
as low radiation dose, equipment constraints, and patient
movement.  However,  while  higher  radiation  improves
imaging quality, excessive exposure poses health risks.In
LDCT imaging, these issues often result in uncertainty in
medical  diagnosis.  The  most  common  noise  types  are
Gaussian and Poisson noise, with Gaussian noise following
a  Gaussian  distribution  [4].  Gaussian  noise  often
compromises  the  quality  of  low-dose  images,  posing  a
significant challenge to precise clinical diagnostics. It can
obscure crucial  information,  making it  difficult  to  detect
lesions  and  recognize  abnormalities.  Photon  shot  noise,
electrical  signal  interference,  and  transmission  errors
generate  a  grainy,  pseudo-random texture  in  the  image,
causing  distortion  and  the  reduction  of  intricate
information.

Image  denoising  is  a  major  step  for  noise  reduction
and detail retention such as edges and textures, thereby
improving  its  quality  and  clarity.  Over  the  past  few
decades, researchers have developed different methods to
address  image-denoising  issues  [5].  Traditional  methods
include sinogram filters, iterative reconstruction methods,
and  post-processing  methods.  Sinogram-based  filters
initially  preprocess  sinogram  information,  then
reconstruct the sinogram to a CT image using a filter back
projection  algorithm.  A  sinogram  is  denoted  as  the  raw
data  collected  from  a  CT  scan,  which  represents
projectional  information  of  a  specific  object  at  various
angles.  The  projection  space  methods  like  stationary
wavelet transform, penalized weighted least squares, and
sinogram  smoothing  suppress  noise  in  sinograms.  The
main  limitation  of  sinogram  filtering  methods  is  the
potential  for  data  inconsistency,  which  can  lead  to
artifacts  in  reconstructed  LDCT  images  [6-8].

Iterative  reconstruction  methods  rely  on  both  the
sinogram  and  image  domains  to  obtain  high-quality  CT
images.  Researchers  have  proposed  multiple  methods

aimed  at  noise  suppression  in  CT  images.  Unlike  the
traditional  Filtered-Back  Projection  (FBP),  which
reconstructs  the  image  using  a  single  pass,  iterative
reconstruction methods process the information multiple
times, refining the image with each iteration. For example,
methods  such  as  nonlocal  priors  [9],  total-variation
methods,  and others  [10-12].  However,  the  complex  and
time-consuming nature of iterative reconstruction methods
can lead to the over-smoothing of images while minimizing
noise,  potentially  obscuring  crucial  image  details  for
medical diagnosis. Image processing techniques form the
basis  of  postprocessing  methods,  which  denoise
reconstructed  low-quality  CT  images  without  relying  on
raw  projectional  data.  Postprocessing  methods  such  as
bilateral filtering and Block Matching 3D filtering (BM3D)
directly suppress noise in reconstructed images, allowing
for more precise noise suppression without affecting raw
data [13, 14].

However,  conventional  denoising  methods  often  face
difficulty  in  distinguishing  between  noise  and  important
image features, resulting in over-smoothing or inadequate
noise  mitigation.  These  methods  also  face  difficulty  in
preserving important edge and contour details, leading to
a loss of diagnostic quality. Therefore, there is a need for
advanced  hybrid  denoising  techniques  that  can
differentiate between noise at various levels and preserve
important edges and sharp features.  Recent advances in
deep  learning  for  noise  reduction  in  LDCT  images  have
incorporated  Convolutional  Neural  Networks  (CNNs),
Transformer  models,  and  diffusion  models  [15-17].  The
CNN architectures,  such as the Encoder-decoder and U-
Net,  are  useful  for  feature  extraction  and  retaining
important  details  while  reducing  radiation  dosage.
Generative  Adversarial  Networks  (GANs)  are  effectively
utilized  in  hybrid  learning-based  approaches  to  improve
imaging  quality  by  combining  generative  and
discriminative  models.  Transformer  models  utilize  self-
attention models to acquire long-range dependencies and
general  context,  but  they  may  not  preserve  fine  image
details.  In  diffusion  models,  both  forward  and  reverse
diffusion  techniques  are  employed  to  generate  denoised
images  by  progressively  introducing  and  then  gradually
removing  noise.  Overall,  these  novel  techniques  aim  to
enhance  diagnostic  confidence  in  medical  imaging  by
addressing  the  challenges  of  noise  suppression  in  LDCT
images.
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1.1. Major Contributions
The major contributions are summarised as follows:

The  proposed  novel  hybrid  method,  NSST  with
BayesShrink, is an edge guided filtering method designed
for  denoising  low-radiation  images,  aiming  for  noise
suppression  and  detail  edge  preservation.
The  shearlet  transform  can  capture  various  directional
features, and this hybrid method aims to bridge the gap
by combining the nonsubsampled shearlet transform with
BayesShrink  thresholding  to  perform  effective  noise
suppression.
An  edge-guided  filter  and  residual  processing  on  the
initial  denoised  CT  images  effectively  suppresses
Gaussian  noise  while  preserving  crucial  edge  details,
thereby  improving  overall  image  quality  and  clarity.
The  Convincing  results  from  traditional  methods  like
NSST and edge-guided filters develop an enhanced hybrid
approach  that  improves  image  quality  for  clinically
assisted  diagnosis.

2. RELATED LITERATURE
Medical  imaging  has  developed  a  variety  of  denoising

methods,  including  spatial  domain,  transform  domain,  and
deep learning-based techniques, to suppress Gaussian noise
interference in imaging, thereby enhancing imaging quality
[18-20].  However,  due  to  their  simplicity  and  effective
removal of specific types of noise, traditional spatial domain
techniques  for  denoising,  including  Gaussian  filtering,
bilateral  filtering,  and  median  filtering,  have  been  widely
used in CT images. However, these methods often experience
over-smoothing and the erosion of fine details. Conventional
techniques frequently assume a uniform distribution of noise
across  the  entire  image.  This  assumption  may  not  be
effective  in  situations  where  noise  levels  vary  in  different
regions. The higher noise regions can obscure structural and
critical  details,  leading  to  degradation  in  imaging  quality.
Conversely, global denoising negatively impacts lower-noise
regions,  causing  over-smoothing.overcome  these  issues,
guided  filtering  has  gained  attention  due  to  its  ability  to
preserve edges while suppressing noise. The Guided filter is
an edge-preserving filter primarily used for image denoising,
smoothing,  and  enhancement  [21].  It  utilizes  a  guidance
image to assist in smoothing while preserving crucial edges.
The  guided  filter  operates  under  the  assumption  that  the
relationship  between  guidance  G  and  the  guided  filtering
output  is linear. Suppose that  is linear transformation
of G in a window wk centered at pixel k, and it is expressed as
shown in Eqs. (1, 2):

(1)

(2)

where,

i  is  the ith  output  image-pixel,  Gi  is  the ith  guidance
image-pixel,

ni are the ith pixel noisy components,

qi  is  the  input  pixel  at  ith  location,  and  (xk,  yk)
represents the certain linear coefficients considered to be
constant in wk.

An  input  image  q  and  the  coefficients  xk  and  yk  are
calculated within a local  window ωk  around each pixel  i.
The Coefficient xk is calculated as illustrated in Eq. (3):

(3)

The Coefficient yk is calculated as expressed in Eq. (4)
below:

(4)

where:
μk  and  are  local  means of  q  and G  in  the window

(ωk),

σk
2 - represents the variance of G in ωk,

|ω| - represents the number of pixels in ωk, and
∈  -  is  denoted  as  the  regularization  parameter  to

prevent  division  by  zero.
The  efficiency  of  the  guided  filter  depends  on  the

selection of the guidance image, the window size (radius),
and  the  regularization  factor  (ϵ).  It  is  highly  useful  for
image smoothing and preserving sharp edges, making it a
popular  choice  in  various  image  processing  tasks.
Adaptive  thresholding  methods,  in  conjunction  with
various  transform  domain  techniques  such  as  wavelet,
curvelet,  tetrolet,  and  shearlet  transforms,  are  effective
for local noise estimation and denoising. These techniques
decompose an image at multiple scales and orientations,
providing  a  more  detailed  analysis  of  crucial  image
features  and  noise  patterns.  The  wavelet  transform  is
widely  used  for  image  denoising  and  enhances  image
quality due to its multi-resolution properties, sparsity, low
entropy, decorrelation, and energy compaction. Wavelets
are  the  mathematical  functions  that  split  the  image into
wavelet  coefficients,  capturing  random  variations  at
multiple  scales  and  orientations.  This  allows  for  the
separation of noisy coefficients from important details and
the  reduction  of  noise  by  applying  thresholding  to  the
noisy coefficients. Gabralla et al. proposed a methodology
in which the Discrete Wavelet Transform (DWT) is applied
to  mitigate  Gaussian  noise  in  CT  images  [22].  However,
the  wavelet  transform  is  prone  to  limited  directionality
and  edge  discontinuities,  which  can  lead  to  inaccurate
analysis  of  complex  features  like  textures  and  edges.

Diwakar et al. introduced a methodology that identifies
noise  in  CT  images  by  analyzing  a  patch-based  gradient
approximation  of  the  image  and  then  reduces  the  noise
using tetrolet transform with locally adaptive thresholding
and  nonlocal  means  filtering.  This  method  effectively
preserves  crucial  details  and  results  in  higher  imaging
quality. However, the tetrolets are not shift-invariant due
to their discrete and block-based nature, which can cause
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inconsistencies and variations with small translations that
occur in the image. Researchers have proposed multiscale
and multi-directional geometric analysis methods, such as
curvelet  and  shearlet  transform,  to  overcome  these
limitations.  Kamble  et  al.  proposed  a  methodology  in
which  the  curvelet  transform  utilizes  optimal  sparsity,
using fewer coefficients to represent images with edges,
and  anisotropic  scaling,  which  scales  differently  along
various axes to capture edges and curves effectively [23,
24].  The  curvelet  transform  is  specifically  designed  to
capture image details along various directions and handles
line singularities or curved features in order to represent
edges  and  curves  more  efficiently.  However,  the  limited
directional representation of the curvelet transform fails
to preserve crucial details.

Routray  et  al.  suggested  a  methodology  that  the
Shearlet-transform  with  bilateral  filtering  approach
effectively  suppresses  noise  while  maintaining  subtle
features  of  an  image  [25].  The  NSST  is  an  advanced
approach derived from the shearlet transform, extending
the principles of the wavelet transform. It is constructed
through  an  iterative  application  of  atrous  convolution
methods combined with shearlet filters to ensure a shift-
invariant  multiscale  and  multidirectional  decomposition
process.  NSST  is  derived  from  the  classical  theory  of
affine systems with multiple dilations and exhibits five key
properties:  good  localization,  spatial  localization,  high
directional  sensitivity,  parabolic  scaling,  and  optimal
sparse representation. The NSST is achieved by combining
the  nonsubsampled  laplacian  pyramid  transform  with
various  shearing  kernels.  Unlike  the  traditional  shearlet
transform,  NSST  does  not  involve  downsampling  or
upsampling, resulting in full shift-invariance, which helps
to  preserve  finer  image  details  during  image  processing
tasks  such  as  denoising.  The  shearlet  transform  can  be
represented  in  both  continuous  and  discrete  forms  to
preserve  fine  image  details  effectively.  The  continuous
shearlet transform acts as a non-isotropic extension of the
continuous  wavelet  transform with  enhanced  directional
sensitivity.  In  the  case  of  two  dimensions  (n=2),  the
continuous shearlet transform is expressed as a mapping
function,  allowing  for  the  capture  of  directional
information at multiple scales and orientations, making it
effective for operations involving in-depth image analysis.

The dimensions of  n=2,  and for  i>0,  j∈R,  k∈ R2.  The
shearlets can be expressed as illustrated in Eq. (5):

(5)

where,
ψf(i,j,k) are referred to as shearlets. For i > 0, j∈R, k∈

R2,  the shearlets could be evaluated as illustrated in Eq.
(6):

(6)

The matrix Ai,j can be factorized as shown in Eq. (7):

(7)

The anisotropic dilation can be described as illustrated
in Eq. (8):

(8)

Where  I>0,  manages  the  scale  of  shearlets  and
provides  frequency  to  acquire  finer  scales.

The shear matrix is obtained as shown in Eq. (9):

(9)

Each matrix Ai,j is coupled with two different actions:
Anisotropic dilation resulting from the matrix Mi  and

shearing induced by the matrix Nj.
The  direction  of  shearlets  is  controlled  by  the  shear

matrix.  Therefore,  the  shearlet  transform  relies  only  on
three  variables,  including  scale  i,  orientation  j,  and
location  k.  Ψ  is  a  well  localised  function  adhering  to
admissibility  criteria.

For ξ0 = (ξ1,ξ2) ∈R2, ξ1≠ 0, let ψ be issued by using
Eq. (10):

(10)

where,

 is  fourier  transformation of   is  denoted  as
smooth functions characterized by their supports existing
in  [−2,−(1/2)]  ∪  [1/2,2]  and  [−1,1],  correspondingly.
Subsequently, each f(x)∈S 2(R2) can be restored using the
following formula (Eq. 11):

(11)

In the frequency domain, it is illustrated as (Eq. 12):

(12)

The support of each and every function i,j,k is given by
the following set (Eq. 13):

(13)

Each shearlet  ψi,j,k  has  frequency  support  on  pairs  of
trapezoids  at  different  scales,  symmetrically  around  the
origin, and aligned along a line with a slope determined by
(j).  As  i→0,  the  support  becomes  thinner,  allowing  the
shearlets  to  generate  a  group  of  precisely  localized
waveforms at multiple scales, orientations, and locations,
managed by the parameters i, j, and k, correspondingly.

The  discrete  shearlet  transform  serves  to  illustrate
multi-dimensional  functions.  These  functions  are
generated  by  discretizing  the  scaling,  shearing,  and
translation  parameters.  Specifically,  i=2-2n,j=-L  with  n,
k=P  ∈Z2  and  L  ∈Z.  This  ensures  the  efficient  repre-
sentation of data across different scales, orientations, and
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positions in a discrete domain.
The discrete shearlet transformation can be expressed

as given in Eq. (14):

(14)

where:  M0  and  N0  are  associated  with  scaling  and
shear  matrix  can  be  denoted  as  given  in  Eq.  (15):

(15)

From each  function  f  ∈  L2  (R2),  the  provided  method
can  be  reconstructed  by  utilizing  the  properties  of  the
function ψ as explained below in Eq. (16):

(16)

Singh et  al.  proposed a  methodology in  which a  new
hybrid method employs a CNN with a method noise-based
denoising  approach  to  optimize  the  CT  imaging  quality
[26].  This  approach  aims  to  recover  lost  information
during  the  noise  reduction  process.  The  aim  of  the
technique  is  to  utilize  the  method  of  noise  to  recognize
noisy patterns and refine the denoising process. The CNN
effectively  learns  to  eliminate  noise  patterns  while
conserving significant features and edges in the images.
However,  the  performance  of  the  method  noise-based
DnCNN  approach  is  sensitive  to  hyperparameter  tuning
such as thresholding value and learning rate. Diwakar et
al.  proposed  a  methodology  in  which  a  noise  reduction
technique using the Bayes shrinkage rule in the shearlet
domain  performs  noise  suppression  and  fine  detail
preservation  effectively  [27].  The  multiscale  and
multidirectional  features  of  the  shearlet  transform allow
for the identification of noisy coefficients by estimating the
optimal  threshold  value  based  on  noise  features  and
statistical  properties,  thereby  ensuring  effective  noise
suppression  in  CT  images.

Kumar  et  al.  suggested  a  hybrid  approach  that
combines the NSST with SURELET and a wiener filter for
effective  denoising  of  CT  images  [28].  The  shearlet
transform  captures  multiscale  and  multi-directional
features from the noisy image. The thresholding function
SURELET  is  used  to  adaptively  threshold  the  image’s
noise  coefficients,  depending  on  an  unbiased  estimate
relating to the Mean Squared Error (MSE). The main aim
of SURELET is to minimize MSE by choosing the optimal
threshold value for noise mitigation while maintaining the
fine details of images. The Wiener filter is applied to the
shearlet  coefficients  to  suppress  noise  by  using  local
variance, which adaptively sets the strength of the Wiener
filter  to  achieve  optimal  noise  suppression.  Finally,
combining the NSST transform with Wiener filtering helps
to maintain image details and diminish artifacts. Kumar et
al.  [29]  suggested  a  method  in  which  the  tetrolet
transform  is  applied  on  noisy  CT  images,  employing  a
locally  adaptive  shrinkage  method  on  high-frequency
components  to  effectively  suppress  noise,  particularly  in
smooth  regions  with  geometric  features.  However,  the

tetrolet transform fails to capture edge details, as well as
multidirectional and anisotropic features of LDCT images,
which are crucial for effective noise suppression.

Abuya  et  al.  proposed  a  methodology  in  which  an
Anisotropic  Gaussian  Filter  (AGF)  and  the  Haar  wavelet
transform are suggested as preprocessing steps, while a
deep learning-based Denoising CNN (DnCNN) framework
is used as a postprocessing step to mitigate any residual
noise in CT images [30]. The ability of AGF to depict edge
orientation  and  directional  information  helps  to  reduce
edge blurriness in CT images, especially when the noise is
distributed in a non-uniform manner. The method ensures
better noise suppression, although it might cause a loss of
fine image details in highly textured (edge) regions, which
can degrade diagnostic accuracy.

In  recent  decades,  deep  learning  techniques  have
proven  remarkable  results  in  addressing  CT  denoising
issues. Yang et al. suggested a methodology that includes
a deep CNN for image denoising, which preserves critical
diagnostic  information  by  assessing  the  perceptual
features of the ground truth and denoised images in image
feature space rather than using mean squared error [31].
Unlike  traditional  methods,  which  focus  on  minimizing
mean squared error through pixel-to-pixel variations, often
resulting in the over-smoothing of images, the new method
focuses  on  perceptual  features,  thereby  preserving
important structural details for precise medical diagnosis.
However, the implementation of deep learning models and
feature  space  comparisons  can  lead  to  computational
overhead. Wu et al.  proposed a methodology to enhance
the  diagnostic  accuracy  of  LDCT  images  using  adaptive
edge  prior  and  deep  learning  Cross  Scale  Residual
Channel  Attention  Network  framework  (RCA-Net)  to
suppress  Gaussian  noise  while  maintaining  edge  details
and lesion characteristics in CT images [32]. The adaptive
edge prior is  combined into the network to preserve the
integrity of image boundaries and unique image features.
Additionally,  Cross  Scale  Mapping  And  A  Dual-Element
Module  (CMDM)  are  used  to  maintain  complex  edge
patterns during training, helping the model to distinguish
between  edge  textures  and  lesion  regions.  The  novel
compound  loss  function  integrates  mean  squared  error
with  multiscale-attention-residual  perception-loss  to
mitigate  excessive  smoothing  of  denoised  CT  images.
However, complexity may arise in the implementation of
adaptive edge priors and the CMDM framework, and the
use of multiple models can result in longer training times.

Zhang et al. proposed a deep CNN framework, which
is accompanied by the shearlet transform and a Denoising
Autoencoder  (DAE)  to  minimize  noise  in  CT  images  and
enhance image quality [33]. Initially, the author uses the
shearlet  transform to  split  the  image  into  low  and  high-
frequency coefficients, then analyzes the image at various
scales and orientations to identify and suppress different
noise levels. After the shearlet transform, DAE is applied
to the transformed coefficients to further mitigate noise.
The  DAE  consists  of  an  encoder-decoder  network.  The
encoder  compresses  the  original  image  into  a  lower-
dimensional  (more  concise)  latent  representation,  while

ψ𝑖,𝑗,𝑘(x) =|det M0|
n/2 ψ(𝑁0

𝐿M0
𝐿(𝑥 − 𝑘)) 

𝑀0 = (
4 0
0 2

) and 𝑁0 = (
1 1
0 1

) 

𝑓 = ∑   𝑖,𝐿𝑧,𝐾𝑍2 < f, ψ𝑖,𝐿,𝐾 > ψ𝑖,𝐿,𝐾  
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the  decoder  reconstructs  the  image  from  this
representation. The autoencoder is trained using pairs of
low- high-quality images to learn how to transform noisy
images  into  clean  images,  helping  the  model  effectively
extract  structural  information  and  suppress  noise.  The
decoding  process  reconstructs  the  final  denoised  image
from  the  processed  coefficients,  effectively  mitigating
noise to achieve a superior image. The combination with
respect  to  the  shearlet  transform  and  DAE  not  only
preserves  edges  but  also  effectively  suppresses  noise  in
LDCT images. However, this method relies heavily on the
quality  of  preprocessing  operations,  such  as  noise
suppression and initial image orientation, which can affect
overall  denoising  performance.  Recently,  transformer
models  have  also  played  a  significant  role  in  noise
suppression  for  CT  images.

Zhang  et  al.  proposed  a  hybrid  denoising  technique
that  incorporates  transformer  models  with  CNNs  to
enhance  the  quality  of  tomographic  images  [34].  The
transformer  identifies  long-distance  dependencies  and
global contextual information throughout the whole image,
while  the  CNN  extracts  local  spatial  attributes  and  fine
details.  The  combination  of  the  CNN’s  ability  to  extract
local  features  (including  noise)  and  the  transformer’s
capability to retain global dependencies leads to improved
denoising performance.

Zhang et al. proposed a methodology that incorporates
the  Denoising  Swin  Transformer  model  (DnST),  which
integrates a modified Shifted Window (SWIN) Transformer
with  perceptual  loss  and  a  residual-mapping  process  to
enhance  denoising  [35].  Perceptual  PSNR  (PPSNR)  is
leveraged to measure the perceptual traits of the image,
comparing them with the ground (baseline)truth in feature
space to assess CT imaging quality. The SWIN transformer
architecture is ideal for handling complex structures and
textures in various types of LDCT imaging, outperforming
traditional  CNN  models.  However,  the  model’s  success
highly relies on large, labeled datasets of noisy and clean
CT images for training.

Zubair et al. proposed a methodology that incorporates
the Difference of Gaussian (DoG) Sharpening layer in the
network,  which  enhances  features  at  different  scales
based on the DoGs and utilizes  attention mechanisms to
focus on important details, thereby improving the clinical
detection rate  [36].  This  approach efficiently  suppresses
noise  while  conserving  image  details.  However,  the
model’s  interpretational  complexity,  associated  with
higher resource consumption, may hinder its applicability
in  real-time  healthcare  environments.  Zubair  M  et  al.
proposed  EdgeNet+,  a  variant  of  U-Net  with  21
convolutional layers and three skip connections, designed
to  capture  structural  information  for  noise  suppression
and image refinement [37]. It employs a multi-stage edge
detection  block  at  a  deeper  level  and  utilizes  a  loss
function  combining  SSIM  and  L1  losses  to  improve
detection  accuracy.  EdgeNet+  demonstrates  enhanced
noise  suppression  and  artifact  removal,  producing
denoised CT images that closely resemble normal-dose CT
images. However, the integration of advanced techniques

might complicate implementation and require specialized
expertise.

A  recent  approach,  the  hybrid  Attention-Guided
enhanced  U-Net  with  hybrid  edge-preserving  structural
loss, has been developed for LDCT image denoising [38]. It
utilizes residual blocks for key detail detection, attention
gates  to  enhance the  upsampling process,  and a  custom
hybrid  loss  that  combines  structural  loss  with  Euclidean
norm  gradient  regularization.  This  method  achieves  a
PSNR of 39.65,  an SSIM of 0.91,  and an RMSE of 0.016
but  requires  high  computational  resources.  In  contrast,
the  proposed  method  integrates  NSST,  an  edge-guided
filter, and a method noise approach. NSST ensures multi-
directional analysis, the edge-guided filter preserves edge
details,  and  method  noise  enhances  structural  details,
yielding superior image quality while preserving diagno -
stic accuracy.

3. PROPOSED METHODOLOGY
The overall process is introduced as follows:
This  method  combines  NSST,  guided  filtering,  the

BayesShrink method, and residual processing for effective
noise  mitigation  in  medical  imaging,  which  is  often
corrupted by Gaussian noise [39]. The proposed approach
is segmented into two primary stages. In the first stage,
initial  denoising is  performed using the NSST approach,
guided  filtering,  and  the  BayesShrink  thresholding
method.  In  the  second  stage,  residual  processing  is
applied to further suppress noise and preserve fine image
details.

3.1. The Proposed Algorithm
Input: Noisy CT image X'

n.
Output: Denoised CT image X'

f.

3.1.1. Gaussian Noise
Initially,  Gaussian  noise  is  introduced  to  the  clean

image  (X'),  and  it  is  expressed  as  (Eq.  17):

(17)

X'
n is the resulting noisy image,

 is the noise scaling factor, σ represents the noise
standard deviation, and

N  is  the  noise  component,  usually  Gaussian  noise,
which  is  incorporated  to  clean  the  image.

3.1.2. Noisy Input
For  a  noisy  input  image  Xn′X_n'Xn′,  decompose  the

image using the NSST approach with a low-pass filter and
specific shear parameters to obtain (Eq. 18):

(18)

where,
i represents the scale level,

𝑋𝑛 
′ = 𝑋′ +

𝜎

255
. 𝑁, 𝑁 ∼  (0,1) 

 
𝜎

255

{𝐿𝑋𝑛
′

 , 𝐻𝑖,𝑗
𝑋𝑛

′

} = 𝑁𝑆𝑆𝑇 (𝑋𝑛
′ , 𝑠𝑐𝑎𝑙𝑒𝑠) 
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j represents the directional component, and
scales represent the number of decomposition levels.

3.1.3. Apply Filtering
Apply  guided  filtering  to  the  low-frequency

components(approximation) LX'n based on the parameters r

=  4  (filter  radius)  ϵ  =  0.012  (degree  of  smoothing)  to
obtain the filtered image Lf

X'n as described in Eqs. (3 and
4) and shown in Eq. (19):

(19)

Process the neighborhood pixels by applying the max
rule on decomposed low-frequency components LX'n of the
input  images,  depending  on  the  average  of  3x3
neighborhood  pixels.

3.1.4. Decomposition Level
For each decomposition level, i do For each orientation

j  do  Process  the  high-frequency  components  Hi,j
X'n  by

applying the BayesShrink method to assess the noise and
signal variance.

The noise variance can be expressed as (Eq. 20):

(20)

The signal variance can be expressed as given in Eq.
(21) below:

(21)

Calculate  the  BayesShrink  threshold  value  using  the
following formula (Eq. 22):

(22)

Apply  thresholding  to  the  high-frequency  noisy
components  Hi,j

X'n  to  obtain  the  filtered  approximation
details,  as  expressed  in  Eq.  (23):

(23)

end for (j)
end for (i)

3.1.5. Combine Components
Combine  the  filtered  low-frequency  components  and

thresholded high-frequency components to reconstruct the
denoised CT image X'rec as illustrated in Eq. (24):

(24)

3.1.6. Compute
Compute residual image y, as expressed in Eq. (25):

(25)

3.1.7. Apply Decomposition
Apply NSST decomposition to the residual image y.
The decomposition process of residuals is shown in Eq.

(26):

(26)

where,

L'
y illustrates the low-frequency components of residual

image y after the NSST process and

 represents  the  high-frequency  components  of
residual image y after the NSST process.

3.1.8. Repeat Thresholding
Repeat the BayesShrink thresholding method on high-

frequency (detail) components of residual
using step 4.

3.1.9. Reconstruct Residual Image
Reconstruct the residual image using the inverse NSST

process (Eq. 27):

(27)

3.1.10. Merge Images
Merge  the  reconstructed  image  and  the  denoised

residual image to obtain the final denoised image X'f (Eq.
28):

(28)

3.2. Proposed Approach
The core steps of the proposed algorithm are outlined

in  Fig.  (1),  which  demonstrates  the  structure  of  the
proposed method. A detailed explanation of the proposed
methodology is provided in the following section.

Assuming that CT images are frequently compromised
by Additive White Gaussian Noise (AWGN) featuring zero
mean and standard deviation (σ),  variance σ2

n,  the noisy
image can be mathematically represented as expressed in
Eq. (29):

(29)

where:
m (i1, j1) represents the noisy image,
x (i1, j1) - illustrates the clean image, and
n (i1, j1) – illustrates the Gaussian noisy coefficients.

𝐿
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3.3. Proposed Algorithm Explanation
The proposed approach consists of two stages. In the

first  stage,  the generalized NSST approach is  applied to
the CT image X', which contains Gaussian noise, resulting
in  a  noisy  version  X'n.  The  image  X'n  is  decomposed  by
NSST to low and high-frequency components {LX'n,Hi,j

X'n} at
decomposition  level  i  and  direction  j.  The  number  of
decomposition levels n plays a crucial role in the denoising
process. Typically, low-frequency components capture the
overall  intensities  of  the  input  images,  while  high-
frequency  components  represent  variations  across
different  scales  and  directions.  The  low-frequency
components,  which  contain  smoother  regions,  are
processed  using  guided  filtering.  Meanwhile,  the  high-
frequency  components,  which  include  edges  and  fine
details, are processed using the BayesShrink thresholding
method  to  suppress  noise  without  degrading  image
quality.  This  results  in  the  denoised  low-frequency
components  Lf

X'n  and  the  denoised  high-frequency  com-
ponents . The final denoised image X'

rec is obtained by
applying the inverse NSST to reconstruct the image.

In  the  second  stage,  residual  image  y  is  used  to

capture  discrepancies  between  the  noisy  image  and  the
denoised image. This residual image isolates the noise that
was  removed  during  the  denoising  process,  further
enhancing  the  overall  image  quality.  The  NSST  is
reapplied  to  the  residual  image  to  decompose  it  into
coarse  (low-frequency)  components  (L'

y)  and  fine  (high-
frequency)  components  ( ).  The  low-frequency
components  represent  smooth  structures,  such  as  basic
shapes  and  gradients,  while  the  high-frequency
components  capture  sharp  features  like  edges  and
textures. The high-frequency components of the residual
image  are  further  processed  using  BayesShrink  thre-
sholding to obtain denoised coefficients. The residuals are
then reconstructed using the inverse NSST process.

Finally,  the  overall  final  denoised  image  (X'
f)  is

obtained by combining the initially reconstructed denoised
image (X'

rec) with the reconstructed residual image (X'
recrec

).
This  combination  enhances  noise  suppression  while
preserving important diagnostic details in the CT images.
This  novel  two-stage  denoising  process  effectively
alleviates both low and high-frequency noise components,
ultimately  improving  image  quality  for  more  accurate
medical  interpretation.

Fig. (1). Flowchart of the proposed denoising method.

  �̂�𝑖,𝑗
𝑋𝑛

′
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Fig. (2). Clean CT images.

Fig. (3). Noisy CT images at noise variance σ =10.

4. THE EXPERIMENTAL RESULTS AND DISCUSSION
The existing denoising methods, along with the newly

proposed  method,  are  applied  to  various  Gaussian  noisy
CT  images  to  validate  the  method’s  efficiency.  The
grayscale CT images, with a resolution of 512x512 pixels,
are  acquired  from  the  “Large  COVID-19  CT  scan  slice
dataset.” The experiments on Gaussian noisy images allow
for  validating  the  proposed  method  in  terms  of  noise
suppression and edge preservation capabilities. The clean
CT images (CT1, CT2, CT3, and CT4) are shown in Fig. (2),
while  Additive  Gaussian  noisy  images  with  a  noise-
variance  of  σ  =  10  are  depicted  in  Fig.  (3).

A  systematic  technique  was  implemented  for  an  in-
depth  analysis  of  the  effectiveness  of  various  denoising
methods  while  compensating  for  possible  variations.
Gaussian  noise  was  introduced  into  the  CT  images  at
different noise variance levels, ranging from 5 to 20. The
primary focus of these denoising implementations was to
mitigate  Gaussian  blur  noise  and  preserve  edges  across
diverse  noise  levels,  thereby  evaluating  the  denoising
effectiveness  and  assessing  CT  image  quality.

4.1. Quantitative Analysis metrics
The  proposed  method  was  verified  through  various

existing denoising methods. The quantitative performance
evaluation metrics like Peak Signal-to-Noise Ratio (PSNR),
Structural  Similarity  Index  Measure  (SSIM),  Entropy

Difference (ED), Feature Similarity Index Measure (FSIM),
and Root Mean Squared Error (RMSE) were implemented
to measure the experimental result. The proposed method
NSST with BayesShrink thresholding and guided filtering
were  evaluated  in  conjunction  with  other  modern
denoising  methods  using  PSNR,  SSIM,  ED,  FSIM,  and
RMSE as standard measures of quantity as shown below
[40, 41].

4.1.1. Peak-Signal-to-Noise-Ratio (PSNR):
It  is  used  to  evaluate  the  quality  of  denoised  images

compared to original images. PSNR measures the ratio of
the maximum power of a signal and the power of noise or
distortion affecting the signal.

For the input CT image P and the denoised CT image
Q,

PSNR is expressed as folllows (Eq. 30):

(30)

Here, MSE can be calculated as follows (Eq. 31):

(31)

where,
MAX  illustrates  the  maximum  grayscale  value  in  the

image,

   

 (a)    (b)      (c)   (d)         

   

(a)    (b)      (c)   (d)         

𝐏𝐒𝐍𝐑 = 𝟏𝟎𝐥𝐨𝐠𝟏𝟎 (
𝐌𝐀𝐗2

𝐌𝐒𝐄
)

𝐌𝐒𝐄 =
𝟏

𝐫𝐬
∑  ∑  𝐬

𝐢=𝟏
𝐫
𝐢=𝟏 [𝐏(𝐢, 𝐣) − 𝐐(𝐢, 𝐣)]𝟐     
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MSE stands for  the mean-squared error between the
original image and the denoised CT image,

P (i, j) represents the clean CT image,
Q(i,  j)  represents  the  denoised  or  filtered  CT  image,

and  r  x  s  indicates  the  size  of  the  pixel  of  the  original
image and processed or denoised CT image.

4.1.2. Structural-Similarity-Index-Measure (SSIM):
It is used to assess the similarity between two images

i.e. the perceptual quality of an image based on structural
details  and  visual  interpretation  aspects  including
contrast,  brightness,  and  structural  details.

The range of SSIM value between -1 and 1, in which 1
denotes perfect similarity, -1 implies dissimilarity between
two  images,  and  0  indicates  no  structural  correlation
between  images  (Eq.  32):

(32)

where,
P denotes clean CT image and
Q denotes denoised CT image.
µP  µQ  are  represented  as  the  local-means   are

denoted as variances of P and Q, and σPQ covariance of the
image’s  P  and  Q.  Here,  M1=(x1C)2  and  M2=(x2C)2  are
stabilizing factors for division with zeros, where C is the
dynamic range of pixel brightness values between 2bits-per-

pixel-1 and 1. Here, x1 and x2 are constant values x1= 0.01
& x2 = 0.03.

4.1.3. Entropy Difference (ED)
The Entropy Difference is the statistical noise metric to

measure the amount of randomness or information in the
image, that helps in analyzing the texture patterns of the
given  input  images.  Shannon  entropy  is  calculated  in
comparison to the original image (P) and the denoised CT
image  (Q).  The  mean  value  discrepancy  is  illustrated  as
ED. ED is computed as demonstrated in Eq. (33):

(33)

where:
SE denotes the Shannon entropy.
Shannon Entropy is calculated as given in Eq. (34):

(34)

4.1.4. Feature Similarity Index Measure (FSIM):
Feature-similarity-index-measure  is  a  visual  quality

performance benchmark for evaluating the congruence of
the denoised image with the clean image with regard to its
structural features. The FSIM is derived from the way the
human visual system primarily interprets an image, which
is influenced by its low-level features.

The  FSIM  is  calculated  using  the  following  formula
(Eq. 35):

(35)

where:
Ω  represents  the  total  image  space  or  domain,  and

also,  Sj  =  SQC.SH  and  QCn  =  max(QC1.QC2).  Here,  SQC,
which represents the phase congruency similarity, can be
expressed as (Eq. 36):

(36)

SH,  which  represents  gradient  magnitude  similarity
can  be  expressed  as  (Eq.  37):

(37)

where:
QC1  and  QC2  denote  phase  congruency-maps  and  H1

and  H2  denote  gradient  magnitude  maps.  T1  is  used  to
represent small positive constants to improve the stability
of SQC. The T1 is assessed based on the dynamic range of
QC values, while T2 represents a positive constant based
on the dynamic range of gradient magnitude values. For
the  experiments,  the  values  were  set  to  T1=0.85  and
T2=160.

4.2. The quantitative result analysis
The performance of the proposed method was validated

and tested by comparing the different Gaussian noisy CT-
based images  with  other  existing  denoising  methods.  The
CT images CT1, CT2, CT3, and CT4 were used to compare
the  proposed  method  with  different  denoising  techniques
for  noise  variance  (σ=5,10,15,20).  The  comparisons  of
proposed  ensembled  method  with  other  denoising
approaches,  such  as  Discrete  Wavelet  Transform  [22],
NSST  with  bilateral  filter  [25],  method  noise-based  CNN
[26],  NSST with Bayes Shrinkage [27],  NSST with wiener
filtering  and  SURELET  [28],  Tetrolet  transform  [29],  and
their performance in terms of PSNR, SSIM, ED, FSIM and
RMSE  are  displayed  in  Tables  1-4.  The  graphical
comparison of PSNR, SSIM, ED, FSIM, and RMSE values of
different denoising schemes and the proposed approach for
CT image are depicted in Figs. (4-8).

The best experimental outcomes are shown in bold. The
experimental outcomes displayed in the tables validate the
excellence  of  the  proposed  method  among  other  existing
denoising methods. The experimental outcome of the PSNR
values  of  the  proposed  method,  compared  to  other
denoising  methods,  are  shown  in  Table  1.  The  proposed
hybrid method shows the best results among the compared
methods. Generally, if the PSNR value is low, the restored
imaging quality  could  be  better.  It  was  observed that  the
NSST with the Bilateral filtering method [25] at σ = 10 in
the CT4 image depicts the best performance relative to all
other  methods,  even  though  the  complete  texture  of  the
proposed  method  is  better  at  σ  =  10  in  the  CT4  image.
Overall, in CT images 1- 4, the proposed method shows the
best  outcomes  at  various  noise  levels,  improving  imaging
quality.
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2
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𝟐𝐇𝟏.𝐇𝟐+𝐓𝟏

𝐇𝟏
𝟐+𝐇𝟐

𝟐+𝐓𝟐
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The  comparisons  of  the  proposed  ensembled  method
with other denoising approaches and their performance in
terms  of  SSIM  values  are  illustrated  in  Table  2.  The
proposed method’s SSIM values yield the superior results
among  all  the  compared  methods.  The  resulting  SSIM

value  falls  within  the  range  of  0  and  1.  Here,1  denotes
perfect  similarity,  0  illustrates  no  similarity,  and  -1
illustrates  perfect  anti-correlation.  It  was  noted  that  the
proposed  approach  offers  the  best  results  with  the
resultant  SSIM  values  between  0  to  1.

Table 1. PSNR values of proposed method and existing methods for CT image denoising.

Image σ

PSNR

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]

Tetrolet
Transform [29] Proposed

CT 1

5 36.24 33.85 28.19 31.42 27.63 36.14 40.52
10 31.90 33.54 22.43 29.68 21.67 31.93 37.77
15 29.40 33.00 19.15 28.53 18.38 2.231 36.41
20 27.49 32.20 17.79 27.72 17.13 27.25 34.17

CT 2

5 36.59 35.16 26.76 32.11 28.36 37.05 39.17
10 32.62 34.80 22.76 30.70 26.96 32.49 35.20
15 29.91 34.16 18.93 29.71 18.56 29.64 34.99
20 27.93 33.24 16.31 28.92 15.99 27.51 33.95

CT 3

5 37.00 34.27 28.25 33.51 28.05 37.00 40.53
10 32.57 33.97 21.87 31.27 22.51 32.57 35.67
15 29.97 33.41 19.89 29.85 19.48 29.97 36.12
20 28.18 32.59 17.70 28.70 16.22 28.18 34.46

CT 4

5 37.74 37.32 27.84 35.51 26.85 37.74 41.05
10 33.11 36.70 22.02 33.66 21.55 33.11 36.02
15 30.17 35.72 18.07 32.44 17.80 30.17 38.00
20 28.17 34.36 16.35 31.10 15.96 28.17 36.30

Table 2. SSIM values of the proposed method and various existing methods for Denoising CT images.

Image σ

SSIM

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]

Tetrolet
Transform [29] Proposed

CT 1

5 0.6491 0.9113 0.9054 0.8460 0.9019 0.9157 0.9698
10 0.4970 0.9011 0.8673 0.8128 0.7693 0.7949 0.9381
15 0.4070 0.8839 0.8196 0.7874 0.6195 0.6746 0.9138
20 0.3443 0.8552 0.7807 0.7588 0.4903 0.5708 0.9201

CT 2

5 0.6380 0.9208 0.8961 0.8581 0.9030 0.9173 0.9503
10 0.4735 0.9148 0.8682 0.8379 0.7514 0.7950 0.9287
15 0.3651 0.9007 0.8204 0.8215 0.5841 0.6646 0.9089
20 0.2942 0.8736 0.7766 0.7928 0.4567 0.5503 0.8953

CT 3

5 0.5487 0.9305 0.8875 0.8814 0.9141 0.9110 0.9486
10 0.4204 0.9084 0.8511 0.8455 0.7556 0.7680 0.9123
15 0.3458 0.8763 0.8031 0.8153 0.5940 0.6324 0.9124
20 0.2956 0.8334 0.7965 0.7740 0.4676 0.5245 0.8854

CT 4

5 0.4657 0.9596 0.8951 0.9252 0.9089 0.9173 0.9677
10 0.3231 0.9466 0.8631 0.9063 0.7274 0.7701 0.9498
15 0.2459 0.9228 0.8158 0.8863 0.5560 0.6247 0.9414
20 0.2020 0.8852 0.7811 0.8373 0.4304 0.5040 0.9243
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Table 3. ED values of the proposed method and existing methods for CT image denoising in CT images.

Image σ

ED

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]
Tetrolet

Transform [29] Proposed

CT 1

5 0.1257 0.1699 0.1762 0.1221 0.1440 0.1972 0.1183
10 0.1676 0.2497 0.2181 0.2260 0.1753 0.1775 0.1745
15 0.2007 0.2977 0.2954 0.3024 0.1817 0.1472 0.1413
20 0.2093 0.3214 0.3698 0.3362 0.1909 0.1509 0.1503

CT 2

5 0.1636 0.2224 0.2677 0.2625 0.2271 0.1882 0.1564
10 0.2758 0.3701 0.3039 0.4332 0.2786 0.2698 0.2692
15 0.2993 0.4630 0.4947 0.5516 0.3196 0.2458 0.2400
20 0.2995 0.4871 0.6424 0.5971 0.3283 0.2531 0.2942

CT 3

5 0.1970 0.3119 0.1953 0.4091 0.2093 0.1956 0.1910
10 0.2839 0.4219 0.3224 0.6017 0.2248 0.2273 0.2244
15 0.3144 0.4635 0.4365 0.6996 0.2422 0.2466 0.2399
20 0.2776 0.4225 0.5020 0.6647 0.1679 0.2523 0.2695

CT 4

5 0.2612 0.5259 0.2693 0.4210 0.3100 0.2712 0.2602
10 0.3811 0.7040 0.4685 0.6438 0.2837 0.3066 0.3027
15 0.4420 0.8004 0.6184 0.7952 0.3118 0.3564 0.3102
20 0.4784 0.7964 0.7494 0.8137 0.3273 0.3624 0.3258

Table 4. FSIM values of the proposed method and existing methods for CT image denoising in CT images.

Image σ

FSIM

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]

Tetrolet
Transform [29]

Proposed

CT 1

5 0.9882 0.9979 0.9980 0.9850 0.9930 0.9998 0.9999

10 0.9658 0.9978 0.9994 0.9781 0.9858 0.9991 0.9995

15 0.9409 0.9977 0.9989 0.9729 0.9812 0.9979 0.9990

20 0.9139 0.9975 0.9983 0.9702 0.9784 0.9960 0.9985

CT 2

5 0.9847 0.9971 0.9996 0.9812 0.9892 0.9995 0.9997

10 0.9961 0.9973 0.9985 0.9762 0.9830 0.9978 0.9989

15 0.9327 0.9969 0.9979 0.9731 0.9800 0.9949 0.9981

20 0.9038 0.9964 0.9966 0.9702 0.9774 0.9908 0.9970

CT 3

5 0.9862 0.9968 0.9985 0.9791 0.9891 0.9989 0.9993

10 0.9587 0.9969 0.9986 0.9686 0.9817 0.9972 0.9987

15 0.9282 0.9966 0.9965 0.9615 0.9803 0.9937 0.9975

20 0.8997 0.9959 0.9963 0.9585 0.9778 0.9892 0.9969

CT 4

5 0.9837 0.9976 0.9991 0.9719 0.9825 0.9987 0.9990

10 0.9490 0.9967 0.9960 0.9659 0.9786 0.9941 0.9971

15 0.9088 0.9960 0.9954 0.9644 0.9802 0.9880 0.9966

20 0.8711 0.9935 0.9936 0.9629 0.9805 0.9811 0.9948

For example, in CT images, values such as 1, 2, 3, and 4
that are very close to 1 indicate an almost perfect similarity
between the original image and the denoised image.

The ED values of the various existing denoising methods
and the proposed method are depicted in Table 3. However,
the proposed method gives better-denoised results indicating

low entropy difference in CT images. The entropy difference
measures  the  amount  of  randomness  in  the  CT  images.
Higher ED values indicate a lot of noise or detail, while lower
ED  values  suggest  smooth  areas  in  CT  images.  Table  3
reveals that the Discrete Wavelet Transform method achieves
higher entropy values at σ=10 in the CT1 image, while the
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Tetrolet  Transform  shows  lower  ED  values.  At  σ=20,  the
NSST  method  combined  with  Wiener  filtering  and  the
SURELET approach achieved optimal results in CT3 and CT4
[22,  28,  29].  Although  these  methods  show  slightly  lower
entropy  difference  values  in  some  cases,  the  proposed
method  consistently  demonstrates  better  denoising  perfor-
mance. The FSIM values of the proposed method, along with

other existing denoising methods, are depicted in Table 4. It
is  demonstrated  that  the  proposed  approach  excels  over
other  denoising  approaches  in  terms  of  FSIM  values  by
comparing  with  other  existed  methods.  The  FSIM  aligns
more  closely  with  human  visual  perception,  providing  a
clearer  assessment  of  denoising  effectiveness.

Fig. (4). Graph comparison of PSNR values of various denoising schemes and the proposed method for CT images CT1, CT2, CT3, and
CT4.

Fig. (5). Graphical notation of SSIM values at various noise variance intensities from 5 to 20.
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Fig. (6). Graphical representation of a comparison of ED values of CT images CT1, CT2, CT3, and CT4 using the proposed method and
other denoising schemes.

Fig. (7). Graph comparison of FSIM values of various denoising schemes and the proposed method for CT images CT1, CT2, CT3, and
CT4.
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Fig. (8). Graph comparison of RMSE values of various denoising schemes and the proposed method for CT images-CT1, CT2, CT3, and
CT4.

The RMSE values of the proposed method, in comparison
with other denoising approaches, are shown in Table 5. The
proposed  method  depicts  the  best  performance  in
suppressing  noise  and  achieving  the  lowest  RMSE  values
across various noise levels. RMSE is used to measure pixel-
wise  differences  between  the  input  clean  images  and  the
denoised  images.  A  lower  RMSE  value  denotes  superior
denoising performance. For example, with the noise intensity
level of σ = 5, RMSE values 0.0092 for the CT3 image and

0.0008  for  the  CT4  image,  outperforming  all  other  noise
levels. Among NSST-based techniques, NSST with a Bilateral
filter can be considered competitive but less efficient, having
an RMSE of 0.0136 in the CT4 image at σ = 5 [25]. Analyzing
the  results,  the  Discrete  Wavelet  Transform  (DWT)  is  less
effective  compared  to  the  Tetrolet  transform,  especially  at
high noise levels, with an RMSE of 0.0219 of CT2 at σ=20.
Overall,  the  proposed  method  is  superior  to  existing
denoising  methods  in  improving  image  quality  [22,  29].

Table 5. RMSE values of the proposed method and existing methods for CT image denoising in CT images.

Image σ

RMSE

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]

Tetrolet
Transform [29]

Proposed

CT 1

5 0.0399 0.0203 0.0419 0.0261 0.0408 0.0203 0.0118

10 0.0655 0.0211 0.0866 0.0329 0.0869 0.0210 0.0182

15 0.0875 0.0223 0.1114 0.0374 0.1080 0.0224 0.0189

20 0.1100 0.0246 0.1559 0.0412 0.1887 0.0245 0.0222

CT 2

5 0.0377 0.0175 0.0375 0.0248 0.0358 0.0175 0.0109

10 0.0599 0.0182 0.0748 0.0292 0.0947 0.0182 0.0172

15 0.0819 0.0196 0.1087 0.0323 0.1146 0.0195 0.0177

20 0.1018 0.0217 0.1678 0.0356 0.1594 0.0219 0.0201
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Image σ

RMSE

Discrete Wavelet
Transform [22]

NSST with
Bilateral [25]

Method noise-
based CNN [26]

NSST with Bayes
shrinkage [27]

NSST with Wiener
Filter and

SURELET [28]

Tetrolet
Transform [29]

Proposed

CT 3

5 0.0366 0.0194 0.0399 0.0210 0.0425 0.0194 0.0092

10 0.0609 0.0200 0.0672 0.0272 0.0677 0.0201 0.0164

15 0.0833 0.0214 0.1067 0.0321 0.1229 0.0213 0.0158

20 0.1034 0.0235 0.1234 0.0370 0.1304 0.0236 0.0190

CT 4

5 0.0332 0.0136 0.0540 0.0168 0.0450 0.0136 0.0008

10 0.0570 0.0146 0.0817 0.0121 0.0863 0.0147 0.0157

15 0.0782 0.0165 0.1173 0.0240 0.1133 0.0164 0.0126

20 0.1020 0.0194 0.1494 0.0278 0.1716 0.0192 0.0153

The  experimental  results  are  tested  over  different
noise levels, but visual results are depicted only at noise
intensity level 10. The analysis of the experimental output
images  in  Figs.  (9-15),  unveiled  that  the  proposed
approach excels  beyond other methods in  the context  of
noise suppression and edge retention of significant image
details.

The  experimental  outcomes  of  CT  images  using  the
discrete wavelet transform are shown in Fig. (9) [22]. This
method shows that at low noise intensity (σ=5), it results
in  moderate  PSNR  values  ranging  from  36  to  38  dB.
Overall,  CT  images  depict  moderate  denoising

effectiveness at mild noise intensity levels. However, the
proposed approach consistently achieves 3-4 dB at higher
PSNR values across all noise intensities than DWT [22]. As
the noise  intensity  levels  increase (σ=15 and 20),  PSNR
decreases significantly, indicating a diminished ability to
maintain  image  quality.  The  proposed  method  retains
higher PSNR values in these scenarios, indicating stronger
resilience to noise. The lower FSIM values and moderate
RMSE  at  lower  noise  intensities,  as  compared  with  the
proposed method, exhibit inconsistency in preserving fine
details.  Overall,  it  was  observed  that  although  noise
suppression  is  effective,  edge  preservation  declines  as
noise  levels  rise  due  to  limited  directional  sensitivity.

Fig. (9). Outcomes of discrete wavelet transform [22].

Fig. (10). Outcomes of the NSST with Bilateral filter [25].

   

(a)    (b)      (c)   (d) 

   

(a)    (b)      (c)   (d) 

(Table 5) contd.....
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Fig. (11). Outcomes of method noise-based DnCNN [26].

Fig. (12). Outcomes of NSST with bayes shrinkage thresholding [27].

Fig. (13). Outcomes of NSST with Wiener filter and SURELET [28].

Fig. (14). Outcomes of tetrolet transform [29].

   

(a)    (b)      (c)   (d) 

   

(a)    (b)      (c)   (d) 

   

(a)    (b)      (c)   (d) 

   

(a)    (b)      (c)   (d) 
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Fig. (15). Outcomes of the proposed method.

The  experimental  outcomes  of  NSST  with  bilateral
filter , as depicted in Fig. (10), show better denoising of
CT images [25]. However, as the noise levels escalate, it
loses its ability to preserve image detail features in higher
noise regions. The findings of the proposed approach, as
depicted in Fig. (15), state that the method achieves the
highest  PSNR  values  at  different  noise  levels  in  images
(CT1,  CT2,  CT3,  and  CT4).  This  means  that  the  noise  is
effectively  suppressed  while  edge  details  are  preserved,
enhancing  the  overall  quality  of  the  CT  image.  It  was
observed that, when compared to other methods, the low
ED  values  at  lower  noise  intensity  levels  significantly
increase  with  rising  noise.  The  lower  ED  values  denote
better  denoising  performance.  The  proposed  method
shows consistent ED values, depicting balanced denoising
performance  with  stable  accuracy  across  various  noise
levels for CT1 to CT4 images. The FSIM values are closer
to  1,  which  denotes  the  optimal  image  feature  preser  -
vation.  The  method  noise-based  CNN  and  the  Tetrolet
Transform  perform  well;  however,  their  FSIM  values
decrease  more  significantly  than  those  of  the  proposed
approach  under  higher  noise  conditions.  The  proposed
method’s  SSIM  values  are  closer  to  0.999  [26,  29],
indicating its effective preservation of essential structural
details. The proposed approach consistently achieves the
highest PSNR, SSIM, ED, FSIM and RMSE values over all
CT  images  and  different  noise  intensities,  showing
superior denoising performance and effectively preserving
the  edges  and  structural  features.  This  highlights  the
proposed  approach  as  the  most  resilient  and  reliable
choice  for  CT  image  noise  suppression  among  all  the
methods.

The experimental results of method noise-based CNN
are shown in Fig (11) [26]. The PSNR, SSIM, ED, FSIM,
and  RMSE  demonstrate  moderate  noise  mitigation  and
feature retention but often fail to preserve edges at higher
noise  levels  and  observed  promising  results  in  the
experimental outcome when compared with different noise
levels. For example, The PSNR values drop from 28.19 dB
to  16.35 dB (σ  = 5-20),  while  the  SSIM value decreases
from  0.9054  to  0.7766  at  higher  noise  levels,  indicating
challenges  in  edge  preservation  under  severe  noise
conditions.  Additionally,  ED and RMSE exhibit  moderate
denoising performance. However, the FSIM value remains
close  to  1  across  all  CT images,  demonstrating  effective
feature  preservation.  Regions  with  higher  image  details

exhibit over-smoothing, causing a diminution of intricate
details.  The  denoising  results  of  NSST  with  Bayes
shrinkage  are  displayed  in  Fig  (12)  [27].  In  comparison
with the proposed method, all (CT1, CT2, CT3, and CT4)
images exhibit moderate denoising performance and edge
preservation.

The  visual  outcomes  of  NSST  with  Wiener  filter  and
SURELET  are  shown  in  Fig.  (13)  [28].  CT  images  with
lower  noise  levels  exhibit  moderate  denoising
performance. For example, in the CT4 image, PSNR-26.85,
SSIM-0.9089, ED-0.3100, and FSIM-0.9825 at σ = 5 and
RMSE indicate lower noise mitigation and maintenance of
edge characteristics in CT images as the noise increases.
The  experimental  visual  denoising  outcomes  of  the
Tetrolet  transform,  as  depicted  in  Fig.  (14),  effectively
perform  noise  minimization  and  edge  preservation  [29].
The denoising method shows competitive results at lower
noise levels, achieving a PSNR value of 37.74 dB for the
CT4 image, which is very close to the proposed method’s
PSNR  value  of  41.05.  In  some  cases,  the  Tetrolet
Transform  is  less  effective  at  higher  noise  intensities,
resulting in limited noise suppression. Notably, in CT1 at a
noise intensity of σ=20, the SSIM, ED, FSIM, and RMSE
metrics  indicate  a  significant  improvement  in  CT  image
quality  [29].  However,  while  this  method  preserves  the
overall  texture of the image, it  fails to adequately retain
sharp  image  details,  such  as  edges,  as  noise  levels
increase. The outcomes of the proposed method are shown
in Fig.  (15).  The suggested method effectively leverages
worthy  features  of  both  shearlet  transform  with  the
BayesShrink rule and guided filtering. It is clear that the
noise  is  effectively  suppressed,  while  edges  and  corners
are  well  preserved  for  local  details.  Additionally,  the
smoothness  over  uniform  regions  is  maintained.  The
proposed  method  significantly  enhances  the  high-
frequency components, and the BayesShrink rule is used
to calculate the optimal threshold value for effective noise
suppression  and  guided  filtering  on  low-frequency
components to preserve edges, thereby improving overall
imaging quality.

The denoised CT3 image with an annotated line segment
is  depicted  in  Fig  (16).  The  intensity  profiles  help  to
visualize abrupt variations in intensity values, indicating the
image’s edge details. The intensity profiles of the noise-free
image,  noisy-image,  various  denoising  methods,  and  the
proposed  technique  are  shown  in  Fig  (17).

   

(a)    (b)      (c)   (d) 
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Fig. (16). The linear segment serves to represent the intensity profile of the CT3 image and existing denoising techniques.

Fig. 17 contd.....
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Fig. (17). Intensity profiles of the clean image, noisy image, various denoising methods, and the proposed method. The intensity profiles
are used to perform an in-depth analysis for addressing variations in pixel-intensity values with specific lines in clean images, noisy images
at noise variance 10, and filtered-image. The comparison of noisy and denoised image’s intensity profile can analyze the noise level within
the image and the efficacy of different denoising algorithms. The intensity profile of the ground truth image is indicated in red color, and it
preserves a smooth profile in regions, and steep transitions represent edges in the image. The noisy image intensity profile is represented
in green color. The noise generally introduces fluctuations in the intensity profile and shows minor irregular deviations, but noisy image
signal follows the clean image but additional variability.

The denoised CT image is shown in blue color. Denoised
images  often  follow  clean  images  very  closely,  indicating
that the denoising method effectively suppresses noise while
preserving textures and edges of CT images. The proposed
method  intensity  profile  shows  that  the  new  denoising
method  successfully  suppresses  noise  or  distortion  in  the
noisy  CT  image.  The  denoised  images  align  well  with  the
intensity profile of the clean CT image, indicating effective
preservation of both smooth regions and edge details. This
demonstrates  that  the  proposed  method  outperforms
existing  filtering  techniques  in  terms of  noise  suppression
and edge preservation.

CONCLUSION
In this study, the new hybrid method introduced for CT

image  noise  reduction  and  edge  preservation  merges

Nonsubsampled shearlet transform with Guided filtering and
BayesShrink  thresholding.  Subsequently,  it  integrates  the
result of the denoised image of the NSST framework and the
application  of  NSST  on  residuals  to  reconstruct  the  final
denoised image. The proposed framework effectively utilizes
the strengths of NSST to capture multidirectional features
and preserve fine image details, guided filtering’s capability
for structural enhancement, and BayesShrink’s efficacy for
noise  suppression  and  reapplies  NSST  on  residuals  for
enhanced denoising effect to elevate overall imaging quality
and  clarity.  The  comprehensive  effectiveness  of  the
proposed approach is  examined and evaluated against  the
existing  methods,  in  which  findings  show  that  the  novel
method yields improved visual outcomes in conjunction with
performance measures (PSNR, SSIM, ED, FSIM and RMSE).
The intensity profiles of the original image, noisy image, and
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denoised  image  were  analyzed,  along  with  additional
approaches,  and  it  was  found  that  the  proposed  method
achieves  superior  results.  Therefore,  it  can  be  concluded
that  the  proposed  method  effectively  performs  noise
suppression and edge preservation, significantly improving
the overall quality of CT imaging.

Future work for this study to improve the applicability
of  the  novel  proposed  method  in  various  imaging
modalities  like  MRI  and  PET  scans  ought  to  be
investigated  to  evaluate  its  adaptability  in  different
diagnostic perspectives. Additionally, testing the proposed
approach on diverse datasets and various noise intensity
levels and scanner types would confirm its reliability and
practicality.
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