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Abstract:
Inttroduction: To detect cyberattacks and assess risks in cyber-physical systems used in pharmaceutical treatment,
this study presents a two-tiered approach that combines machine learning and Internet of Things (IoT) security. By
prioritizing  risk-based  responses  and  facilitating  real-time  threat  mitigation,  it  improves  system  resilience.Drug
delivery, patient data management, and healthcare efficiency have all been greatly improved by the incorporation of
cyber-physical  systems  (CPS)  into  pharmaceutical  care  services.  However,  because  digital  and  physical
infrastructures are now interconnected, this development has created serious cybersecurity risks. Strong detection
and mitigation procedures are necessary because cyberattacks have the potential to compromise patient safety, data
integrity, and service reliability. The necessity for a specific cybersecurity architecture for pharmaceutical CPS is
highlighted by the fact that current security solutions frequently fall short in addressing real-time threat detection
and risk assessment.

Methods: To detect and eliminate cyber threats instantly, the suggested method makes use of sophisticated machine
learning models, intrusion detection systems, and Internet of Things security strategies. A risk-estimation system that
assesses attacks according to impact,  detectability,  and risk estimation factor (REF) is  included in a two-layered
strategy. To evaluate the performance of the proposed method in comparison with existing security frameworks,
simulations  were  conducted.  Analysis  is  performed  on  important  variables  such  as  system  resilience,  risk
quantification,  and  detection  accuracy.

Results: The results of the simulation show that the suggested method improves the accuracy of threat identification
and offers a methodical framework for risk evaluation. The strategy demonstrates increased accuracy in detecting
cyberattacks and prioritizing mitigation measures when compared to current approaches. By accurately estimating
the intensity of an assault, the risk estimation approach guarantees preventative security measures.

Discussion: A comprehensive answer to the changing cybersecurity issues in pharmaceutical CPS is provided by the
layered architecture that combines machine learning and IoT security. The suggested approach facilitates informed,
risk-based decision-making for mitigation in addition to improving real-time threat detection. This proactive strategy
protects sensitive patient data and helps avoid service interruptions. Nevertheless, the study has certain drawbacks,
such  as  reliance  on  the  caliber  of  training  data  and  the  requirement  for  frequent  model  upgrades  in  order  to
accommodate new threats. Future studies might concentrate on combining adaptive models and federated learning to
improve system privacy and adaptability even more.

Conclusion: A unique cybersecurity  architecture for  intelligent  CPS in  pharmaceutical  care is  presented in  this
paper. The method improves system resilience, protects patient data, and guarantees the dependable functioning of
pharmaceutical  services  against  changing  cyber  threats  by  combining  real-time  threat  detection  with  risk
assessment.
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1. INTRODUCTION
Intelligent  healthcare  technologies  make  major

contributions  to  daily  life  by  providing  electronic
healthcare  services  and  have  the  potential  to  improve
patient  care  quality.  Technology  is  used  in  a  variety  of
applications, including smart homes intelligent businesses
intelligent  neighborhoods  mobility  intelligent  healthcare
and  satellites.  Due  to  their  tiny  size  and  heterogeneity,
smart devices and apps have grown fast in recent years,
making  them  very  vulnerable  to  cyberattacks  [1-6].  The
integration  of  advanced  technologies  has  transformed
wearable  and  healthcare  devices,  leading  to  the
development of intelligent medical systems [7]. Due to the
gadgets and wearables, remote monitoring in healthcare is
now  feasible,  keeping  patients  safe  and  motivating
clinicians  to  provide  the  best  treatment  possible  [8].
Patient  participation  and  comfort  have  increased,  and
medical  interactions  have  become  more  efficient  [9].
Unfortunately,  the  connectivity  of  this  large  number  of
IoMT  devices  has  drawn  attackers  into  the  healthcare
system. The latest  cyberattacks highlighted fundamental
flaws in the IoMT ecosystem [10]. Inadequate architecture
and security methods can allow attackers to intercept such
networks. Unauthorized access poses a security risk due
to  a  lack  of  detection  and  prevention.  An  attacker  can
modify medicine doses remotely and use IoMT sensors as
botnets for DDoS assaults [11]. Healthcare organizations
have experienced hacking and unauthorized access, such
as  the  2018  Ransomware  cyber-attack  that  cost  Indiana
hospitals  $55,000  [12].  A  cyber-attack  aims  to  ruin  and
interfere  with  computer  network  operation  [13].  The
numerous  cyber-attack  categories  are  denial-of-service
(DoS),  logical  bombs,  spam,  sniffers,  viruses,  worms,
Trojan  horses,  and  botnets.  The  DoS  attack  keeps  the
system  from  communicating  with  other  computers  or
surfing the internet. Attacks might start fast from one or
many  scattered  sources.  Protecting  networks  and  data
from several kinds of assaults depends on cybersecurity. It
is  thus  important  to  have  a  plan  for  spotting  different
types  of  attacks  in  IoHT.  Apart  from  safety  concerns,
medical professionals do not openly access databases on
cyber-attacks as sensitive material is at risk and can harm
and kill  people [14].  CPS is  an engineering and physical
system  that  relies  on  communication,  computation,  and
control to coordinate and monitor processes. This CPS has
been used in significant industries, including biomedical,
smart grids, and ITS (intelligent transportation systems).
The Healthcare Cyber-Physical System (H-CPS) generates
a smart healthcare environment all around. From sensors,
the  H-CPS  combines  e-health  data,  IoMT  (artificial
intelligence), and EHR. To build smart healthcare, H-CPS
integrates  biosensors,  implanted  medical  devices  (IMD),
conventional  healthcare,  ICT,  wearable  devices,
communication  mechanisms,  and  artificial  intelligence
[15-17].  We  use  a  special  technique  to  identify  several
cyberattacks to reduce the described risks. Cyber-Physical
Systems (CPS) automate and regulate industrial processes
by  combining  cyber  elements  for  processing  and
communication with physical components for sensing and

actuation.  Important  sectors  include  healthcare,  traffic
management,  industry,  and  energy  infrastructure,  all  of
which are extensively used. These systems use commercial
and  open-source  software  as  well  as  common
communication  protocols  to  enable  interaction  with
corporate  networks  and  save  infrastructure  expenses.
These  technologies  have,  however,  been  susceptible  to
fresh  security  concerns  and  cyberattacks,  therefore
upsetting  normal  business  operations.  Recent  advanced
attacks  on  systems  draw  attention  to  the  necessity  of
methods  and  instruments  to  control  cybersecurity
vulnerabilities [18]. Early in the course of system design,
safety and security needs should be noted and taken care
of  [19].  IT  security  risk  assessment  follows  recognized
international  standards,  such  as  those  mentioned  in  a
study [20]. This paradigm presents new hazards compared
to  traditional  computer  networks.  Data  loss  can  have  a
wide range of consequences, including service disruption
and loss of life. To improve efficiency in e-health systems,
risk  assessment  approaches  should  be  updated
accordingly. Trustworthiness and patient confidence in e-
healthcare security and data protection are crucial for its
widespread  adoption.  To  promote  the  expansion  of
electronic linked devices in the healthcare industry, firms
must  balance  low  transaction  costs  with  effective  and
efficient data transfers and acceptable hazards. Effective
security mechanisms need increased processing expenses.
E-health system builders support risk as an indirect cost
[21].  In  this  study,  we  are  providing  a  cyber-risk
estimation  technique.

2. MOTIVATION
Among  other  uses,  CPSs  were  extensively  used  in

sectors  like  distribution  networks,  manufacturing,  cons-
truction,  pharmaceutical,  and  transportation.  Advance-
ments in IMoT technology are resulting from the growing
number  of  connected  wearable  devices  and  communi-
cation via PCS as it is emerging. Adoption of edge-based
CPSs  underlines  dependability  and  credibility.  We  are
aware  that  dependability  and  trustworthiness  are
multifaceted  aspects  intimately  related  to  CPS,  human
perception, and trust security. Researchers are developing
AI-based  approaches  to  solve  future  CPS  difficulties.
Researchers  have  created  many  healthcare  monitoring
models; however, limits remain for cloud-enabled systems,
making them unsuitable for real-world applications. Cloud
computing  and  healthcare  organizations  face  communi-
cation  overhead,  latency,  and  privacy  challenges  when
aggregating  sensitive  data.  As  the  number  of  IoT-based
healthcare networks grows, hostile assaults have become
more  sophisticated.  Privacy  concerns  for  IoT  nodes,
smartphones,  and  computer  systems  on  the  internet.
Companies,  especially  pharmaceuticals,  are  increasingly
relying  on  technology  for  their  operations.  Businesses
have  successfully  adapted  to  remote  work,  with  TCS
projecting  that  by  2025,  75%  of  their  personnel  will  be
working from home. As firms adjust to this new work style,
mitigating related risks becomes increasingly important.
Effective risk management is essential for digital and tech-
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Table 1. Cyber attacks identified.

Cyber Attack Types Different Attacks Cyber Risk Types

Social engineering attacks

Baiting
Pretexting Tailgating

Business Email Compromise Whaling
Vishing

Watering Hole

Data loss
Credential theft

Malware and ransomware Financial loss
Reputation damage

Legal and regulatory
consequences

Damaged client relationships Legal liabilities
Reputation damage

Application attacks -
Cryptography attacks -

Control Hijacking attacks

Buffer Overflow Attack
Integer Overflow Attack

Format String Vulnerabilities
Reconnaissance attacks

Computer network attacks

DoS Attacks
DDoS Attack

Bots and botnets
Malware attacks

Phishing attacks -
Password attacks -

Man-in-the-middle attack -
Spoofing -

Identity-Based Attacks -
Code Injection Attacks -
Supply Chain Attacks -

nological  transformation.  Digital  risk  refers  to  the  risks
that  arise  when  a  firm  transitions  to  digital  platforms.
Identifying and mitigating possible risks is crucial for all
industries.  Businesses  might  experience  data  loss  and
theft  of  crucial  information.  Privacy breaches occur as a
result of digital advancements in business. Businesses may
encounter  risks  associated  with  automation  and
compliance.  This  research  analyses  the  viewpoints  and
experiences  of  subject  matter  specialists  in  the
pharmaceutical  sector,  coding  the  data  to  draw  precise
findings. In the detailed study, it was found that there are
different types of attacks. Our primary accomplishments of
this study effort are as follows:

•  We  developed  algorithms  that  can  detect
cyberattacks  in  pharmaceutical  care  services.

•  Introduced  a  novel  risk  estimation  factor  (REF)  to
quantify attack severity based on impact and detectability.

• Included anomaly detection and IoT security methods
to  improve  the  security  and  dependability  of
pharmaceutical  care  services.

• The proposed algorithms are performing better than
the existing ones.

The remaining work is  organized as  follows:  starting
with  the  literature  review  followed  by  the  proposed
scheme.  The  next  segment  contains  a  discussion  of  the
experiment. Finally, the conclusion summarizes the work
and outlines potential directions for future research.

3. DIFFERENT TYPES OF CYBER ATTACKS
Table  1  lists  all  the  identified  attacks  and  highlights

the various types of risks that could occur if any of these
attacks  were  executed  on  the  system.  This  section

contains details about each attack and also describes the
different techniques required to detect these attacks.

3.1. Social Engineering Attacks
When it comes to cyber security, many people feel that

they  should  defend  themselves  against  hackers  that  use
technological  flaws  to  assault  data  networks.  However,
there is another method for infiltrating organizations and
networks  that  makes  use  of  people’s  vulnerabilities.
“Social  engineering”  refers  to  the  process  of  deceiving
someone into disclosing information or getting access to
data  networks.  In  short,  social  engineering  is  the
manipulation  of  individuals  so  that  they  can  access  or
expose information or data. Social engineering, like other
cyber-attacks,  seeks  to  circumvent  an  individual’s  or
organization’s security measures. Anyone can fall prey to a
social  engineering  attack.  However,  elderly  individuals
with inadequate technical skills, individuals very minimal
human  connection,  along  with  those  susceptible  to
impetuous  behavior  are  frequent  targets.  One’s
own/exclusive information should not be disclosed to avoid
potential  attacks;  anyone  attempting  to  communicate
should be investigated; URL/address verification must be
undertaken; unreliable sources ought to be ignored. Social
engineering  assaults  use  human  psychology  to  deceive
people into disclosing critical information. Here are some
examples of social engineering assaults and the algorithms
they use:

3.2. Baiting
This  assault,  like  phishing,  takes  advantage  of  a

target’s greed, temptation, or fear by providing something
appealing in exchange for personal information.
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3.3. Pretexting
This  assault  employs  appealing  stories  to  persuade

victims  that  they  are  genuine  and  then  exploits  their
beliefs  to  obtain  personal  information.

3.4. Tailgating
Tailgating  is  an  exploit  that  allows  hackers  to  enter

restricted  regions  without  appropriate  authentication.
Corporate Email Compromise (BEC) is an attack in which
an individual obtains access to a corporate email account
and uses it to send fraudulent emails.

3.5. Whaling
Senior  executives  are  the  target  of  this  kind  of

phishing  assault,  which  poses  as  a  genuine  email  and
tempts  them  to  perform  a  secondary  action,  such  as
initiating  a  wire  transfer.

3.6. Vishing
This type of targeted assault sends recorded messages

over  the  phone,  such  as  alerting  victims  that  their  bank
accounts  have  been  hacked.  The  attacker  then  gains
access  to  the  victims’  accounts  when  they  are  asked  to
enter their information on the keypad of their phone.

3.7. Watering Holes
Attacks  known  as  “watering  holes”  entail  infecting

unprotected websites and online sources that the targeted
individuals  often  access.  The  objective  may  obtain
exposure  to  the  target’s  infrastructure  or  infect  devices
with malware.

3.8. Application attacks
Cybercriminals can access unauthorized sites using an

application  attack.  Often,  attackers  start  scanning  the
application  layer  for  flaws  in  code-based  services.
Numerous  apps  representing  different  programming
languages  are  attacked,  even  if  certain  programming
languages are targeted more frequently than others. There
are flaws in commercial software and free frameworks and
libraries.  Cybercriminals  can  take  advantage  of
application flaws to attack programs in production. These
attacks  target  open-source  frameworks  and  libraries  as
well  as  proprietary  programs.  Cybercriminals  exploit  a
variety  of  techniques,  including  flaws  in  programming,
vulnerabilities  brought  on  by  outdated  certificates,  and
vulnerabilities brought on by inadequate authentication.

3.9. Cryptography Attacks
The technique of storing and sending data in a certain

manner such that only the intended receivers can access
and comprehend is known as cryptography. The processes
of encryption, which transforms plain text into cipher text,
and  decryption,  which  transforms  cipher  text  back  into
plain  text,  are  used  to  accomplish  this.  A  cryptographic
attack  occurs  when  an  attacker  looks  for  weaknesses  in
the  code,  cipher,  encryption  protocol,  or  key  handling
system  to  compromise  an  encryption  system.  Such
assaults can be split into two distinct categories: passive
or  aggressive.  While  active  attacks  change  or  start  an

unauthorized flow of information, passive attacks permit
the illegal disclosure of  data with no compromising with
the  exchange  of  information  channels.  While  active
assaults entail altering data without authorization, passive
attacks  are  frequently  linked  to  information  theft.  The
confidentiality  and  integrity  of  sensitive  data  may  be
jeopardized  by  any  kind  of  assault.

3.10. Hijacking Attacks
Hijacking  assaults  are  a  subset  of  security-related

attacks  wherein  an  assailant  gains  control  of  computer
systems,  software  applications,  and  network
communications. The majority of cyber attacks depend on
some  sort  of  hijacking,  and  hacking  is  routinely—if  not
always—illegal, with grave repercussions for the victim as
well  as  the  attacker.  Among  these  incidents  are  those
involving  aircraft  hijackers  or  the  commandeering  of  an
armored  transport  truck.  There  are  several  varieties  of
hijack  assaults;  these  are  enumerated  here:  Session,
Domain Name System (DNS), browser, clipboard, Internet
Protocol (IP) and page hijacking.

3.11. Computer Network Attacks (CNAs)
These  involve  gaining  unauthorized  control  over  a

computer  or  network  to  manipulate,  delete,  reject,  or
distort data within the system. CNAs can be used to shut
down systems, alter data, exploit resources for botnets, or
perform  any  activity  that  compromises  the  availability,
confidentiality, or integrity of the targeted system. A CNA
executes  attacks  by  manipulating  data  streams.  For
example, it might transmit malicious code or commands to
the  central  processing  unit  (CPU),  potentially  causing
hardware  malfunctions  or  forcing  system  shutdowns.
Attackers  join  the  network  and  scout  it  before  acting  to
execute a CNA. Discovery helps one to learn the network
configuration and choose the best approach to engage in
negative behavior.

3.12. Phishing Attacks
Computer  Network  Attacks  (CNAs)  involve  gaining

unauthorized  control  over  a  computer  or  network  by
modifying, deleting, rejecting, or distorting data within the
system.  These  attacks  can  shut  down  systems,  alter  or
erase  data,  exploit  system  resources  for  botnets,  and
perform  other  actions  that  compromise  the  availability,
integrity, or functionality of the targeted system.The CNA
runs the attack using the data stream. For example, a CNA
might  send  a  code  or  order  to  a  central  processing  unit
forcing system shutdowns. Attackers join the network and
scout it before acting to execute a CNA. Discovery enables
an  attacker  to  identify  the  network  configuration  and
determine  the  most  effective  method  to  carry  out
malicious  activities.

Paying  attention  and  learning  will  help  prevent
phishing attacks. Although email monitoring systems can
block  many  regular  phishing  attempts,  employee  email
security  training  can  help  reduce  the  number  of
prospective  victims  by  raising  an  understanding  of
phishing  risk.  Simultaneously,  one  should  be  careful  of
website pop-ups and ensure the URL starts with “HTTPS”
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and features a closed lock icon next to the address bar to
stop phishing efforts.

3.13. Malware Attacks
Malware, short for malicious software, is designed to

compromise computer systems, steal data, or disrupt users
through  various  harmful  activities.  Among  the  several
instances  of  this  kind  of  program  are  Trojan  horses,
worms,  viruses,  and  rootkits.  Though  their  main
classification  is  as  software,  they  can  resemble  simple
codes.  Often  referred  to  as  scumware,  malware  may  be
distributed  in  almost  any  programming  or  scripting
language  and  written  in  several  file  formats.  Malware
might keep gathering data and spy for a significant length
of time without informing the affected computer system.
Moreover,  it  can  be  used  for  extortion  of  money  or
payments  or  for  damage or  disturbance  of  the  system it
targets (such as Stuxnet).

3.14. Bots and Botnets
Standing  for  “robot,”  a  “bot”  is  a  piece  of  software

designed to do specified, automated, repeating operations.
Bots  regularly  copy  or  replace  the  acts  of  human  users.
Being automated, they run significantly faster than human
users. They may be used practically for customer service
or search engine indexing, or they can be used as malware
to seize complete control of a machine. To spread spam,
scan  contact  lists,  breach  user  accounts,  and  complete
other evil activities, one can design or hack malware bots
and Internet bots. The term “botnet” combines the words
“robot”  and  “network.”  A  botnet  is  an  assembly  of
Internet-connected computers interacting with other such
devices  to  achieve  goals  and  repetitive  activities.  Spam
emails are sent using these networks rather often. Under
attacker control,  a  botnet  can be as vast  as hundreds of
thousands of zombie computers or even thousands. Every
software agent program also is run remotely.

3.15. Password Attacks
One of the most common forms of cyberattacks is the

password assault. Both personal and business targets are
susceptible  to  password  assaults.  By  stealing  the
passwords  to  any  area  that  needs  one,  including  social
media networks, technology, or software that the person
or  organization  uses,  the  goal  is  to  cause  harm  to  the
organization or individuals. Easy passwords are typically
preferred by people or organizations to prevent forgetting
them.  Specifically,  social  media  users  can  provide  a
summary of the password text they use on their profiles.
For  instance,  a  person’s  social  media  profiles  provide  a
wealth  of  information,  like  their  date  of  birth,  place  of
residence, spouse or partner’s name, years of relationship,
and the team they support. For hackers, this knowledge is
crucial.  As  a  result,  disclosing  this  information  makes  it
easier for hackers to execute password assaults.

3.16. Man-in-the-middle Attack
A  “man-in-the-middle”  attack  is  the  first  type  of

cybercrime in which a hostile  person discreetly  meddles
with  two  parties’  communication.  This  hack  provides

access to and even modification capability for the victim’s
supplied  data.  The  attacker  succeeds  by  creating  a
clandestine,  phony  link  between  their  devices  and  the
victims. Usually aiming to either mimic one of the parties
or get passwords, bank information, and personal data, a
man-in-the-middle  assault  is  These  deeds,  regretfully,
might  include  changing  login  passwords  or  beginning  a
money  transfer.  The  optimum  locations  for  an  attack  to
take  place  are  those  with  free  Wi-Fi.  The  content  of
unencrypted  packets  is  easily  accessible.  Attackers  use
Wi-Fi  sites  to  control  network  traffic  so  it  flows  across
them.  Consequently,  the  assailant  turns  into  the  traffic
conduit  for  the  users  of  the  network.  The  assailant  who
intercepts  this  message  may  find  passwords  or  personal
information.

3.17. DDoS (Distributed DoS)
A  kind  of  DoS  attack  aimed  at  one  system by  use  of

several hacked systems.

3.18. Denial of Service (DoS)
An attack that overwhelms a system or network with

traffic or requests to make it unavailable to its users

3.19. Reconnaissance Attacks
These include techniques such as packet sniffing, ping

sweeps, port scanning, and internet information queries,
which  are  used  to  gather  information  about  a  target
system  or  network.

4. CYBER-ATTACK DETECTION TECHNIQUE

4.1. Technique 1
Proof of Source Authenticity (PoSATM) from Memcyco:

It employs AI to identify anomalous activity and provides
organizations  with  complete  assault  information  for
transparency. Memcyco enhances security by immediately
alerting  users  when  they  visit  a  fraudulent  website.  It
provides a comprehensive analysis of the attack and uses a
unique, editable watermark to authenticate web pages. As
an agentless solution, Memcyco requires no registration or
installation from your clients.

4.2. Technique 2
Anomaly  Detection:  Based  on  a  known  pattern  in  a

system,  organizations  can  use  tools  and  procedures  to
detect anomalous conduct. In this scenario, anomalies are
defined as any user or system events that depart from a
baseline pattern. Techniques for anomaly detection can be
used by businesses to find important incidents.

4.3. Technique 3
Signature-based  Detection  in  Intrusion  Detection

Systems (IDS):  Signature-based detection  is  a  fundamental
detection  method.  By  recognizing  danger  indicators,  the
approach  enables  intrusion  detection  systems  (IDS)  to
identify  malicious  activity  or  unauthorized  network  access.
An  expert  system  in  cervical  dysplasia  is  a  specialized
computer-based  application  designed  to  assist  healthcare
professionals, such as gynecologists and pathologists, in the
diagnosis  and management  of  cervical  dysplasia,  a  precan-
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cerous condition of the cervix [15-17].  This technique com-
bines  clinical  know-how  and  artificial  intelligence  to  offer
accurate assessments, recommendations, and aid for health-
care practitioners in their choice-making methods.

4.4. Technique 4
Heuristic  Analysis  Examining  code  for  questionable

elements—a technique known as “heuristic analysis”—may
also  be  necessary  for  threat  detection.  By  enabling
security  experts  to  decompile  questionable  applications
and compare them with known malware code stored in a
heuristic  database,  the  approach  aids  in  malware
identification.  If  a  certain  proportion  of  the  program’s
source code matches a virus in the database, the software
is marked as potentially dangerous.

4.5. Technique 5
Sandboxing is the process of executing and examining

code  in  a  secure,  segregated  section  of  a  network.  It  is
best practice to employ a sandbox that replicates the real
end-user operating environment for better outcomes.

4.6. Technique 6
Honey  Pots  and  Honey  Nets  A  fascinating  security

method called a “honeypot” uses virtual or intruder traps to
entice hackers. Security experts create a purposefully weak
system that makes it easy for attackers to take advantage of
vulnerabilities. To strengthen their cybersecurity posture in
the  meantime,  the  security  team  might  research  the
strategies, methods, and practices used by the threat actors.

4.7. Technique 7
Endpoint Detection and Response (EDR) is an essential

tool in today’s dynamic threat landscape. The adage “time
is  money”  holds  particularly  true,  as  the  faster  you  can
detect, respond to, and recover from security threats, the
more  effectively  you  can  protect  your  system.  EDR
combines  automated  detection  and  response,  offering  a
streamlined approach to managing risks.

4.8. Technique 8
Artificial Intelligence and Machine Learning Prior to AI

and machine learning, IT systems could only detect known
and  tested  dangers  like  viruses  and  malware  using  rule
and  signature-based  threat  detection  methods.
Unfortunately,  the  ability  of  these  conventional  security
methods  to  identify  complex  and  changing  assaults  is
limited.  Missed  security  events  and  delayed  discovery
were  encountered  by  security  analysts.  EDR  is  an
integrated  security  method  that  combines  rule-based
analysis and response capabilities with real-time endpoint
event monitoring and recording.

5. LITERATURE REVIEW
Cyberspace  has  evolved  into  a  breeding  ground  for

new  types  of  entrepreneurship,  technical  developments,
the  spread  of  free  expression,  and  new  social  networks
that  power  our  economy  and  reflect  our  values.  Critical
infrastructure  is  required  to  ensure  the  nation’s  and  its

economy’s safety,  health, and well-being. The efficacy of
cyberspace  is  essential  to  our  national  security  and
economy.  Cyberspace,  which  allows  all  information
infrastructures to be available over the Internet outside all
geographical  boundaries,  poses  a  tremendous  danger  to
our  national  security,  economic  prosperity,  and  public
safety  and  health.  Cyberspace  has  become  the  most
hazardous area in the world, the number one threat to our
Homeland,  and  defending  against  cyberattacks  is
exceedingly  tough.  Salahuddin  et  al.  [21]  designed edge
gateway  hardware  to  build  a  smart  healthcare  system
combining  publicly  accessible  networks  and  wireless
networks of sensors (WSN). Smart gates alert doctors to
crises and offer data-driven decision-making. Janjua et al.
[22]  assessed  the  insider  threat  detection  capability  of
many  machine-learning  techniques.  The  proposed  spam
detection algorithm was developed by the authors from a
dataset  of  24  users’  activity  traces  spanning  five  days.
With  98.3%  accuracy,  Adaboost  excelled  among  other
methods.  In  a  study  [23],  the  authors  introduced
affordable block chain task scheduling (CBTS) with many
techniques for cyber- physical systems to control security
costs  and  deadlines.  Data  validation  in  cyber  security
drops by 33%; security execution drops by 50%. Fisayo et
al. [24] proposed a framework for protecting data against
privacy  concerns.  The  authors  achieved  higher  data
usefulness  compared  to  other  classic  anonymization
strategies.  Manimurugan  et  al.  [25]  utilized  the  CICIDS
2017 dataset to detect various types of attacks—primarily
botnet,  brute  force,  DoS,  intrusion,  and  port
attacks—using deep belief neural network models. Syed et
al. [26] noted that Intensive Care Units (ICUs) commonly
contain a range of medical devices, such as ECG monitors,
glucose  meters,  syringe  pumps,  and  others.  Among  the
several assaults, these devices can be subjected to include
ransomware,  man-in-the-middle,  and  DoS.  Several
research  applied  machine  learning  algorithms  on  the
medical  information  mart  for  intensive  care  (MIMIC)
dataset,  comprising  discrete  structured  clinical  data,
physio-logical  waveform  data,  free  text  documents,  and
radiology  imaging  reports,  according  to  the  study.  T.
Mohamed  et  al.  [27]  defined  a  security  architecture
suitable  for  mobile  e-health  platforms.  It  uses
computerized  personal  health  records  to  establish  and
manage pharmaceutical  prescription services in mobility
settings. This design uses RFID technology to provide safe
and  authorized  interactions.  Wireless  Sensor  Networks
(WSNs)  are  a  weak  link  in  e-health  systems,  prompting
researchers to address security concerns. In Gonçalves et
al.’s  study  [28]  an  end-to-end  safe  routing  using  block
chain  architecture  was  created  and  a  technique  for
intrusion  prevention  in  mobile  WSNs  is  offered.  The
method takes the restricted funds and flexible structure of
mobile  WSN  into  account.  Table  2  contains  a  brief
overview  of  the  literature  review  and  shows  that  no
technique is available which can identify the cyber- attack
as  well  as  the  risk  can  also  be  estimated.  So  in  this
research, our aim is to develop a model that can do both
attack detection as well as risk estimation.
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Table 2. Research gap identified with existing work.

6. METHOD

6.1. Problem Statement

6.1.1. Notation
This study is related to pharmaceutical care services.

There  are  10  stakeholders  in  our  research.  The
stakeholders  are  as  follows.  The  patient  is  the  main
element  of  the  PCS,  followed  by  the  Hospital,  Staff,

Doctors,  MR,  Retailers,  Wholesalers  &  Raw  Material
Manufacturers, Investors, Drug Manufacturers and lastly
PBM & Governance. For each, the notation is mentioned in
Table 3. Subsequently, different features were selected to
design a PCS plan for a patient. The complete features are
listed in Table 4. When a plan is prepared for the patient,
many  factors  must  be  considered  before  training  and
testing.

Table 3. Notations used in the Proposed Scheme.

Stakeholder’s Name Notation

Patient NP

Hospital NH

Staff NS

Doctor ND

Medical representative NMR

Retailer NR

Wholesalers & raw material manufacturer NW(RM)

Investor NI

Drug manufacturer NDM

Pharmacy business management & governance NPBM(G)

Table 4. Features required for PCS.

Author Limitation Technique

PCS iPCS Cyber At-
tack De- tection

Cyber
Attack Risk Es- timation

Salahuddin et.al. [21] × × × Decision
Fusion

Janjua et.al. [22] × × × Naive
Bayes, LR, KNN,

Adaboost
Lakhan et al. [23] × × Task

Schedul- ing
Fisayo et al. [24] × × PAD

Manimurugan et al. [25] × × × Deep
Learning

Mohamed et.al. [27] × × × Random
Forest, Neural Network

Ganin et.al. [29] × × × Decision-
analysis- based

Haseeb et.al. [30] × × Blockchain

Tantawy et.al. [31] × Penetration

✓

✓

✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

Feature Sub Feature Patient
(Pnt)

Pharmacist
(Phst)

Doctor
(Dor)

Healthcare
Organisation

(Horg)

Demographic
(Pde)

Name (Pn) √ × √ √
Age (Pa) √ × √ √

Gender (Pg) √ × √ √
DoB (Pdob) √ × √ √

Medical
(Pme)

Weight & Height (Pwh) √ × √ √
Current Symptoms (Psym) √ × √ √
Past Medical History (Pmh) √ × √ √

Lab Information (Pli) √ × √ √
Allergies and Intolerance (Pai) √ × √ √

Vital Sign (Pvs) √ × √ √
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Fig. (1). Proposed Model for Cyber-Attack Detection and Risk Estimation.

6.2.2. Proposed Model
In  Fig.  (1),  the  suggested  model  is  displayed.

Architecture is created with CPS’s assistance, with smart
medical devices at the bottom that gather the necessary
data  from  the  surroundings.  Following  that,  the  data  is
examined  using  a  variety  of  cutting-edge  technologies,
each  of  which  is  accessed  through  an  interface.  This
filtered  data  is  available  for  use  by  various  parties.  We
have  chosen  11  stakeholders:  Patient,  Hospital,  Staff,

Doctors,  MR,  Retailers,  Wholesalers,  Raw  Material
Manufacturers, Investors, Drug Manufacturers, and last is
the  PBM  and  Governance  for  our  study,  and  protecting
privacy and security is our top priority. For this, we have
developed  algorithms  that  can  detect  different  types  of
cyberattacks on 11 different stakeholders, and after that,
risk  estimation  is  also  done.  For  analysis  and  pre-
processing, Algorithm 1 is used. For detection, Algorithm
2 is used.

Feature Sub Feature Patient
(Pnt)

Pharmacist
(Phst)

Doctor
(Dor)

Healthcare
Organisation

(Horg)

Design Therapist Plan
(Pdtp)

Prescribe medication (Pme) √ √ √ √
Medication used Before (Pmeb) √ × √ √

Medical Regimen (Pmr) √ × √ √
Compliance with therapy (Pct) √ × √ √

Medication allergies and Intolerances (Pme) √ × √ √
Lab Test (Plt) √ × √ √

Lifestyle (Pl)

Diet Exercise (Pde) √ × √ √
Recreation (Pre) √ × √ √

Tobacco/alcohol/caffeine/other substance use or abuse (Pls) √ × √ √
Daily activities (Pda) √ × √ √

Implementing therapeutic plan
(Pitp)

Dosage (Pdo) √ √ √ √
Medical Regimen (Pmr) √ × √ √

Diet Exercise (Pde) √ × √ √

Monitoring therapeutic plan
(Pmtp)

Patient Status (Pst) √ × √ √
Patient Condition (Pco) √ × √ √

Medication theraphy (Pmt) √ × √ √

(Table 4) contd.....

Interface for Stakeholders

Technologies

Cloud Computing Artificial Intelligence

Cyber Security

Data Analytics Augumented/Vertual 
Reality

Repositories

C
yb
er
 P
hy
si
ca
l S
ys
te
m

Detection Result

Analysis
Preprocessing using Algo1 
Prediction using Algo2

Features

Machine Learning

Smart Healthcare Devices 
Sensors/ Mobile Base Unit / Onboard Units
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6.3.3. Problem Formulation
First,  we  gathered  the  dataset  for  analysis  of  the

performance  of  the  suggested  approach  from  many
healthcare institutions. For analysis and comparison of the
suggested method’s performance with the already-existing
algorithm,  other  algorithms  are  also  applied,  including
Decision  tree,  Random  forest,  Diffie-Hellman,  Deep
convolution  network,  and  Naïve  Bayes.  To  start  the
investigation, we eliminated null and undesired elements
from all three datasets using conventional pre-processing
techniques. We applied data computation and normalizing
methods  to  remove  duplicate  features.  We  also  scale
features using principal component analysis (PCA). Based
on  the  component  variance  factor,  several  traits  were
determined:  we  mapped  category  features  to  numerical
values using the label encoding method. We investigated
binary  and  13-class  classifications  of  different  cyber
threats  and  attacks.  Aiming  to  consolidate  data
distribution,  the  centralized  technique  for  multi-source
transfer learning assesses the relationship depending on
consistency  and  similarity.  In  data  transmission,  the
Kullback-Leibler  (KL)  divergence  gauges  the  entropy
difference  between  two  different  distributions.  We
examine the likelihood of uniform information distribution
using  the  KL  divergence.  The  first  algorithm  uses  a
centralized  multi-source  transfer  learning  method.  We
assume a cyber-attack occurs at an unknown moment (y)
and  try  to  find  it  as  soon  as  possible.  The  attacker’s
techniques and talents. This presents the quickest change
detection problem for which the objective is to reduce the
false alarm rate as well as the average detection latency.
Fig.  (2)  explains  this  issue.  Two  hidden  states  exist:
suspicious  state  and  preliminary  attack  due  to  the
unknown  attack  launch  time  y:  At  each  time  ti,  after
collecting the measurement vector yt, the agent (defender)
has two options: halt and announce an attack or proceed
to  take  observations.  When  the  action  stop  option  is
selected, the system is assumed to enter a terminal state
and remain there permanently.

Under normal operating conditions, the system model
can  estimate  the  conditional  observation  probability
associated with the initial state. However, due to unknown

attacking  strategies,  the  conditional  observation  pro-
bability  for  the  prevention  state  is  assumed  to  be
completely unknown. The chance of transitioning between
the preliminary state and the prevention state is uncertain
due  to  the  unknown  assault  launch  time  (r).  To  reduce
detection  delays  and  false  alarm  rates,  both  false  alarm
and detection delay events should incur charges. Let c > 0
represent the proportional cost of a detection delay v/s a
false alarm occurrence. If the true underlying state is the
preliminary  state  and the  action  to  halt  is  taken,  a  false
alarm occurs, resulting in a penalty of 1 for the defender.
If  the  underlying  state  is  the  prevention  state  and  the
action to continue is chosen, the defender incurs a cost of
c due to the detection delay. For all other (hidden) state-
action pairings, the cost is set to zero. Once the action halt
is chosen, the defender will not incur any more costs while
in the terminal state.  The defender’s goal is  to minimize
their predicted total cost during this time. The defender’s
goal is to minimize its predicted overall cost by carefully
picking  its  actions.  The  defender  must  identify  the
appropriate  moment  to  declare  an  attack  depending  on
their observations. We suggest using a limited history of
observations.  We  suggest  employing  an  RL  algorithm to
learn  an  AT(s,  a)  value,  which  represents  the  projected
future cost for each observation-action combination (s, a).
This value is then kept in an AT-table. After learning the
AT-table, the defender’s policy will be to select the action
a with the lowest AT(s, a) for each observation. To train, a
simulation  environment  is  constructed.  During  the
procedure, the defender acts based on their observations
and  receives  a  cost  from  the  simulation.  Based  on  this
experience, the defender modifies and learns an AT-table.

During  the  online  detection  phase,  observations  are
used to select the action with the lowest projected future
cost (AT value) based on the previously learned AT-table.
The  online  detection  phase  continues  until  the  defender
chooses the action prevention state. When the preventive
state  is  selected,  an  attack  is  declared  and  the  process
terminates.  After  announcing  an  attack,  the  online
detection phase can be resumed after the system has been
restored to normal operating circumstances. That is, once
a  defender  is  taught,  no  more  training  is  required.
Summarize  the  learning  and  online  detection  stages.

Fig. (2). State transitions.
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6.3.3.1. Algorithm 1: Learning Algorithm
1: Collect Sample Data from the iCPS server for all 10

nodes (NP, NH,NS, ND, NMR, NR, NW(RM),NI,NDM,NPBM(G))
2:  Process  the  primary  data  for  removing  unwanted

features
3: SD<- split(x,y)
4: for i=1,2….10 do
for sd subset SD do
ES<- ES-ŋ Ṿfe(ES,SD)
end inner loop
end outer loop
5.Process data from the server
6.Feature Selected
7. Use PCA (Model dataset)
8. while PCA (DataSet Features) do
Evaluate the covariance matrix
Acquire eigenvalues and values
end loop
9.  Represents  the  reduced feature  set  obtained after

PCA.
10. Divide the data set into D1 and D2

11.D1old=D1old
i

D2old
i = D2oldL

i U D1oldU
i

12. Map D1 D2 into relation matrix
13. for i=1,2,….,N do

compute wi by MMD
Train the learner on a weighted sample from D1
End loop
14. The initial a
Initialize AT(s,a)
for i= 1 to 10 do
for j=1 to 10 do
t ← 0
st ← preliminary
select  an  initial  state  ‘st’  based  on  the  preliminary

state  and  choose  initial  action  a=continue
while st ≠ prevention and t< T do
ti←ti+1
if a= stop then
st← Prevention
r← ᴨ{t< г}
AT (s,a) ← AT (s,a)+α(r- AT (s,a))
elseif a=continue then
If ti>= г then
r ←c
st ←suspected

else
r←0
endif
Collect measurements mt and update the Kalman filter

using:
êt∣t−1=M1êt−1∣t−1+M2ut−1  and

Pt∣t−1=M1Pt−1∣t−1M1T+AT
Update: Kalman Gain

Kt =Pt∣t−1HT(HPt∣t−1 HT+R)−1

State Update
êt∣t=êt∣t−1 +Kt (mt −Hêt∣t−1)
Error Covariance Update
Pt∣t=(I−Kt H)Pt∣t−1

AT(s, a) ← AT(s, a) + α (r + AT(s’, a’) − AT(s, a))
s ← s’, a ← a’
end if
end while
end for
end for

6.3.3.1.1. Procedure
Risk Estimation (StT,ADT(1 to 10))
1: for each stakholder in StT do
2:  AttackList  ←  IdentifyRelevantAttacks  using

Algorithm  2
3: for each attack in AttackList ADT do
4: Impact ← Calculate Attack Impact (ADT)
5: Detectability ← Calculate Attack Detectability(ADT)
6: REF ← Impact × Detectability
7: MitigationList ← GetAttackMitigation (FMT)
8: end for
9: end for
10:  return  AttackLists,  Risk  Estimation  and

MitigationLists
11: end procedure

6.3.3.1.2. Algorithm 2
Cyber Attack Detection Algorithm
1. Input: Algorithm-learned AT-table 1.
2:  Select  the  initial  a  =  continue  and  an  initial  s

depending  on  the  prior  situation.
3. t ← 0
4: do 5: t → t + 1 while a ≠ stop
Sixth, gather measurements for each item.
7:  Find  the  new  s  as  it  appears  in  Algorithm  1  lines

20–22.
8: a ← arg minaQ(o, a).
9: finish whilst



Estimation Technique for Intelligent Cyber-physical Systems in PCS 11

10: Claim an assault and stop the process.
In  Algorithm 1,  after  detecting  an attack,  we have  also

defined a procedure for risk estimation. The approach is to
systematically  assess  risks  by  identifying  attacks  for  each
stakeholder,  quantifying  their  effect  and  detectability,  and
suggesting  mitigation  solutions.  Data  gathered  from  the
intelligent cyber-physical system (iCPS) server is processed
and prepared for cyberattack detection by this algorithm. It
starts  by  dividing  the  dataset  into  subsets  and  eliminating
any  unnecessary  features.  Using  an  evaluation  function,
superfluous  variables  are  removed  as  part  of  the  feature
selection process. After that, dimensionality is decreased and
key  features  are  extracted  using  Principal  Component
Analysis (PCA). For additional processing, the dataset is split
into two sets (D1 and D2), guaranteeing an optimal feature
representation  that  improves  the  effectiveness  of  attack
detection.  Impact:  It  indicates  the  severity  of  the  effects  if
the  attack  is  successful.  Detectability:  This  measures  how
readily  the  attack  may  be  discovered  or  detected  by  the
system or security team. The Risk Estimation Factor (REF)
combines  impact  and  detectability  to  provide  an  overall
assessment of the danger presented by an assault. A greater
REF signifies a more serious threat. Mitigation refers to the
techniques  or  procedures  utilized  to  lessen  the  danger  or
severity  of  an  attack.  Algorithm  2  is  used  to  find  the
stakeholder’s  relevant  attack  types  and  put  them  in
AttackList.  Loop  through  each  assault  in  AttackList  that
matches one of the attack types mentioned in the ADT. This
algorithm uses a reinforcement learning-based methodology
to  identify  cyberattacks.  It  iteratively  adjusts  its  state
depending on gathered measurements after beginning with
an  initial  state  and  action  based  on  historical  data.  By
reducing the attack risk function, the system detects possible
threats and continuously assesses its current state. By adding
additional observations to state estimates, the Kalman filter
improves  detection  accuracy.  The  operation  halts  and  the
system marks an assault if an attack is identified. In order to
prioritize  the  required  mitigation  steps,  the  risk  estimate
process then computes the attack impact, detectability, and
risk estimation factor (REF). To evaluate the impact of each
attack, it is important to consider how damaging it is to the
system,  the  stakeholders,  and  the  overall  organizational
objectives. Additionally, assess how easily the attack can be
detected by factoring in the level of monitoring, auditing, and
available  defense  mechanisms..  The  Risk  Exposure  Factor
(REF) is computed by multiplying the attack’s impact by its
detection  probability.  This  provides  an  overall  risk
assessment that accounts for both the harm and the chance
of  identifying  the  assault.  Viable  mitigation  measures  for
each  assault  using  the  FMT  are  determined  as  below:

Store the mitigation techniques in the Mitigation List.
End  the  loop  that  processes  each  attack  for  the

stakeholder.

End the loop that iterates through each stakeholder.
Return  the  AttackList,  RiskEstimationList,  and

Mitigation  List.
The  final  result  includes  lists  of  potential  attacks,

evaluated  risks,  and  recommended  mitigations.

7. RESULT AND DISCUSSION
We assessed the suggested model by dividing the data

into training and testing sets. About 30% of the data is set
aside for testing to evaluate generalization on unobserved
data,  while  the  remaining  70%  is  used  for  training  to
ensure  that  the  model  captures  a  variety  of  attack
patterns.  This  ratio  ensures  an  accurate  performance
evaluation  while  preventing  underfitting  by  offering
enough  training  samples.  Finding  the  ideal  balance
between accuracy and practical applicability is a regular
procedure  in  cybersecurity  research.  Depending  on  the
size and complexity of the dataset,  alternative splits like
60-40  or  90-10  may  be  utilized.  The  following  are  the
performance  metrics:

•  Precision:  (Eq.  1)  calculates  the  fraction  of
accurately classified attack classes compared to expected
attack results.

(1)

•  Recall:  The  fraction  of  properly  classified  assaults
compared to the total number of attacks is obtained using
(Eq. 2).

(2)

• F1-Score: It is denoted as the mean of the harmonic
between RC and P, which is determined as shown in Eq. 3.

(3)

We  evaluated  our  suggested  model  using  16-class  and
binary  classification  to  analyze  threat  identification  and
prediction  of  various  cyber-attack  types.  We  evaluated
detection accuracy using a centralized multi-source transfer
learning  model,  taking  into  account  heterogeneity,  data
availability,  and  privacy.  Centralized  learning  allows  for
better  identification  of  unknown  large-scale  threats  due  to
the  abundance  of  available  data.  This  research  compares
several  machine  learning  and  deep  learning  approaches  to
the suggested model. The models’ performance is evaluated
using  the  same  datasets  through  four  steps:  dataset
processing  and  analysis,  centralized  learning,  feature
selection,  and  data  classification  with  a  transfer  learning
model.  Fig.  (3)  compares  the  performance  of  a  centralized
multi-source transfer learning system to current techniques,
including  Random  Forest  (RF),  Decision  Tree  (DT),  Diffie-
Hallman,  Support  Vector Machine (SVM),  Naïve Bayes and
Deep Convolution Neural Network (DCNN). Fig. (3) shows an
examination of potential algorithms for 16-class, 8-class, and
4-class classifications. The suggested approach achieves the
maximum  accuracy  at  97.89%  for  16-class  classification,
98.45% for  8-  8-class  classification,  and 98.97% for  4-class
classification.

Tables 5-14 compares machine learning methodologies
to the proposed centralized multi-source transfer learning
model  for  16-class  classification,  including  Precision,

Precision(P)

=
TruePositive

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

Recall =
TruePositive

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

F1score =
2P. RC

𝑃 + 𝑅𝐶
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Recall, and F1-Score for all 10 stakeholders. Tables 5-14
compare  the  performance  parameters  of  recall  (RC),
precision  (P),  and  F1-score  for  16-class  classification
utilizing machine learning approaches including SVM, RF,

Naive Bayes, DT, Diffie-Hellman, and DCNN. Each table is
generated for all 10 stakeholders. Table 5 is for Patients,
Table 6 is for the Hospital, Table 7 is for Staff, Table 8 is
for  Doctors, Table 9  is  for MR, Table 10 is  for retailers,

Fig. (3). Comparative result based on 16,8 and 4-class classification.

Table 5. Cyber attack detection table for stakeholder 1.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99891 0.897001 0.69825 0.96864 0.99891 0.89801 0.96864 0.990495 0.893445 0.668325

RC 0.97485 0.991935 0.59295 0.9447 0.97485 0.87435 0.9447 0.9797 0.991935 0.59295
F1-Score 0.97485 0.99495 0.603 0.9447 0.97485 0.87435 0.9447 0.9797 0.99495 0.603

RF
P 0.991935 0.891435 0.70149 0.97485 0.991935 0.901485 0.97485 0.99687 0.891435 0.70149

RC 0.9849 0.903495 0.804 0.95475 0.9849 0.90249 0.95475 0.9898 0.903495 0.804
F1-Score 0.99495 0.903495 0.7839 0.93465 0.99495 0.903495 0.93465 0.9999 0.903495 0.7839

SVM
P 0.933645 0.833145 0.67335 0.99495 0.933645 0.99294 0.99495 0.93829 0.833145 0.67335

RC 0.923595 0.823095 0.9045 0.99495 0.923595 0.995955 0.99495 0.92819 0.823095 0.9045
F1-Score 0.9849 0.8844 0.77385 0.9849 0.9849 0.95475 0.9849 0.9898 0.8844 0.77385

DCNN
P 0.93264 0.93264 0.6633 0.9849 0.93264 0.833145 0.9849 0.93728 0.93264 0.6633

RC 0.99495 0.99495 0.9045 0.993945 0.99495 0.89445 0.993945 0.9999 0.99495 0.9045
F1-Score 0.97284 0.97284 0.7638 0.9648 0.97284 0.90048 0.9648 0.97768 0.97284 0.7638

Diffie-Hallman
P 0.923595 0.823095 0.63315 0.99495 0.923595 0.823095 0.99495 0.92819 0.823095 0.63315

RC 0.97485 0.8844 0.8643 0.97485 0.97485 0.87435 0.97485 0.9797 0.8844 0.8643
F1-Score 0.9849 0.893445 0.73365 0.97485 0.9849 0.8844 0.97485 0.9898 0.893445 0.73365

Naïve Bayes
P 0.89445 0.993945 0.7638 0.99495 0.89445 0.89445 0.99495 0.8989 0.993945 0.7638

RC 0.93264 0.9849 0.8844 0.9246 0.93264 0.93264 0.9246 0.93728 0.9849 0.8844
F1-Score 0.97485 0.99495 0.77385 0.97485 0.97485 0.97485 0.97485 0.9797 0.99495 0.77385

Proposed
P 0.99495 0.95475 0.79395 0.9648 0.99495 0.97485 0.9648 0.9999 0.95475 0.79395

RC 0.9849 0.89445 0.89445 0.9447 0.9849 0.99495 0.9447 0.9898 0.89445 0.89445
F1-Score 0.995955 0.99495 0.8844 0.99495 0.995955 0.923595 0.99495 0.991991 0.99495 0.8844
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Table 6. Cyber attack detection table for stakeholder 2.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99495 0.893445 0.668325 0.9648 0.99495 0.89445 0.9648 0.9999 0.893445 0.668325

RC 0.97485 0.991935 0.59295 0.9447 0.97485 0.87435 0.9447 0.9797 0.991935 0.59295
F1-Score 0.97485 0.99495 0.603 0.9447 0.97485 0.87435 0.9447 0.9797 0.99495 0.603

RF
P 0.991935 0.891435 0.70149 0.97485 0.991935 0.901485 0.97485 0.99687 0.891435 0.70149

RC 0.9849 0.903495 0.804 0.95475 0.9849 0.90249 0.95475 0.9898 0.903495 0.804
F1-Score 0.99495 0.903495 0.7839 0.93465 0.99495 0.903495 0.93465 0.9999 0.903495 0.7839

SVM
P 0.933645 0.833145 0.67335 0.99495 0.933645 0.99294 0.99495 0.93829 0.833145 0.67335

RC 0.923595 0.823095 0.9045 0.99495 0.923595 0.995955 0.99495 0.92819 0.823095 0.9045
F1-Score 0.9849 0.8844 0.77385 0.9849 0.9849 0.95475 0.9849 0.9898 0.8844 0.77385

DCNN
P 0.93264 0.93264 0.6633 0.9849 0.93264 0.833145 0.9849 0.93728 0.93264 0.6633

RC 0.99495 0.99495 0.9045 0.993945 0.99495 0.89445 0.993945 0.9999 0.99495 0.9045
F1-Score 0.97284 0.97284 0.7638 0.9648 0.97284 0.90048 0.9648 0.97768 0.97284 0.7638

Diffie-Hallman
P 0.923595 0.823095 0.63315 0.99495 0.923595 0.823095 0.99495 0.92819 0.823095 0.63315

RC 0.97485 0.8844 0.8643 0.97485 0.97485 0.87435 0.97485 0.9797 0.8844 0.8643
F1-Score 0.9849 0.893445 0.73365 0.97485 0.9849 0.8844 0.97485 0.9898 0.893445 0.73365

Naïve Bayes
P 0.89445 0.993945 0.7638 0.99495 0.89445 0.89445 0.99495 0.8989 0.993945 0.7638

RC 0.93264 0.9849 0.8844 0.9246 0.93264 0.93264 0.9246 0.93728 0.9849 0.8844
F1-Score 0.97485 0.99495 0.77385 0.97485 0.97485 0.97485 0.97485 0.9797 0.99495 0.77385

Proposed
P 0.99495 0.95475 0.79395 0.9648 0.99495 0.97485 0.9648 0.9999 0.95475 0.79395

RC 0.9849 0.89445 0.89445 0.9447 0.9849 0.99495 0.9447 0.9898 0.89445 0.89445
F1-Score 0.995955 0.99495 0.8844 0.99495 0.995955 0.923595 0.99495 0.991991 0.99495 0.8844

Table 7. Cyber attack detection table for stakeholder 3.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.9999 0.89789 0.67165 0.9696 0.9999 0.8989 0.9696 0.991485 0.89789 0.668325

RC 0.9797 0.99687 0.5959 0.9494 0.9797 0.8787 0.9494 0.971455 0.99687 0.59295
F1-Score 0.9797 0.9999 0.606 0.9494 0.9797 0.8787 0.9494 0.971455 0.9999 0.603

RF
P 0.99687 0.89587 0.70498 0.9797 0.99687 0.90597 0.9797 0.988481 0.89587 0.70149

RC 0.9898 0.90799 0.808 0.9595 0.9898 0.90698 0.9595 0.98147 0.90799 0.804
F1-Score 0.9999 0.90799 0.7878 0.9393 0.9999 0.90799 0.9393 0.991485 0.90799 0.7839

SVM
P 0.93829 0.83729 0.6767 0.9999 0.93829 0.99788 0.9999 0.930394 0.83729 0.67335

RC 0.92819 0.82719 0.909 0.9999 0.92819 1.00091 0.9999 0.920379 0.82719 0.9045
F1-Score 0.9898 0.8888 0.7777 0.9898 0.9898 0.9595 0.9898 0.98147 0.8888 0.77385

DCNN
P 0.93728 0.93728 0.6666 0.9898 0.93728 0.83729 0.9898 0.929392 0.93728 0.6633

RC 0.9999 0.9999 0.909 0.99889 0.9999 0.8989 0.99889 0.991485 0.9999 0.9045
F1-Score 0.97768 0.97768 0.7676 0.9696 0.97768 0.90496 0.9696 0.969452 0.97768 0.7638

Diffie-Hallman
P 0.92819 0.82719 0.6363 0.9999 0.92819 0.82719 0.9999 0.920379 0.82719 0.63315

RC 0.9797 0.8888 0.8686 0.9797 0.9797 0.8787 0.9797 0.971455 0.8888 0.8643
F1-Score 0.9898 0.89789 0.7373 0.9797 0.9898 0.8888 0.9797 0.98147 0.89789 0.73365

Naïve Bayes
P 0.8989 0.99889 0.7676 0.9999 0.8989 0.8989 0.9999 0.891335 0.99889 0.7638

RC 0.93728 0.9898 0.8888 0.9292 0.93728 0.93728 0.9292 0.929392 0.9898 0.8844
F1-Score 0.9797 0.9999 0.7777 0.9797 0.9797 0.9797 0.9797 0.971455 0.9999 0.77385

Proposed
P 0.9999 0.9595 0.7979 0.9696 0.9999 0.9797 0.9696 0.991485 0.9595 0.79395

RC 0.9898 0.8989 0.8989 0.9494 0.9898 0.9999 0.9494 0.98147 0.8989 0.89445
F1-Score 0.992982 0.99198 0.8888 0.99198 0.992982 0.920838 0.99198 0.992487 0.99099 0.8844
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Table 8. Cyber attack detection table for stakeholder 4.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99198 0.890778 0.674975 0.96192 0.99198 0.89178 0.96192 0.996138 0.890334 0.668325

RC 0.98455 0.987494 0.59885 0.94047 0.970485 0.870435 0.94047 0.976014 0.988481 0.59295
F1-Score 0.98455 0.990495 0.609 0.94047 0.970485 0.870435 0.94047 0.976014 0.991485 0.603

RF
P 0.988974 0.888774 0.70847 0.97194 0.988974 0.898794 0.97194 0.993119 0.888331 0.70149

RC 0.9947 0.912485 0.812 0.96425 0.9947 0.91147 0.96425 0.986076 0.900349 0.804
F1-Score 0.99198 0.900798 0.7917 0.93186 0.99198 0.900798 0.93186 0.996138 0.900349 0.7839

SVM
P 0.942935 0.841435 0.68005 0.990495 0.929465 0.988494 0.990495 0.93476 0.830244 0.67335

RC 0.932785 0.831285 0.9135 0.990495 0.91946 0.991496 0.990495 0.924698 0.820229 0.9045
F1-Score 0.9947 0.8932 0.78155 0.9947 0.9947 0.96425 0.9947 0.986076 0.88132 0.77385

DCNN
P 0.94192 0.94192 0.6699 0.9947 0.94192 0.841435 0.9947 0.933754 0.929392 0.6633

RC 0.99198 0.99198 0.9135 0.990978 0.99198 0.89178 0.990978 0.996138 0.991485 0.9045
F1-Score 0.98252 0.98252 0.7714 0.9744 0.98252 0.90944 0.9744 0.974002 0.969452 0.7638

Diffie-Hallman
P 0.932785 0.831285 0.63945 0.990495 0.91946 0.81941 0.990495 0.924698 0.820229 0.63315

RC 0.98455 0.8932 0.8729 0.98455 0.98455 0.88305 0.98455 0.976014 0.88132 0.8643
F1-Score 0.9947 0.902335 0.74095 0.98455 0.9947 0.8932 0.98455 0.986076 0.890334 0.73365

Naïve Bayes
P 0.90335 0.989495 0.7714 0.990495 0.890445 0.890445 0.990495 0.895518 0.990484 0.7638

RC 0.94192 0.9947 0.8932 0.9338 0.94192 0.94192 0.9338 0.933754 0.98147 0.8844
F1-Score 0.98455 0.990495 0.78155 0.970485 0.970485 0.970485 0.970485 0.976014 0.991485 0.77385

Proposed
P 0.99198 0.9519 0.80185 0.96192 0.99198 0.97194 0.96192 0.996138 0.951425 0.79395

RC 0.9947 0.90335 0.90335 0.9541 0.9947 0.990495 0.94047 0.986076 0.891335 0.89445
F1-Score 0.992982 0.99198 0.8932 0.99198 0.992982 0.920838 0.99198 0.997144 0.991485 0.8844

Table 9. Cyber attack detection table for stakeholder 5.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99198 0.890778 0.6783 0.96192 0.99198 0.89178 0.96192 0.992475 0.894512 0.668325

RC 0.9894 0.987197 0.6018 0.940188 0.970194 0.870174 0.940188 0.99425 0.993119 0.59295
F1-Score 0.9894 0.990198 0.612 0.940188 0.970194 0.870174 0.940188 0.99425 0.996138 0.603

RF
P 0.988974 0.888774 0.71196 0.97194 0.988974 0.898794 0.97194 0.989468 0.892499 0.70149

RC 0.9996 0.91698 0.816 0.969 0.9996 0.91596 0.969 0.98245 0.904574 0.804
F1-Score 0.99198 0.900798 0.7956 0.93186 0.99198 0.900798 0.93186 0.992475 0.904574 0.7839

SVM
P 0.94758 0.84558 0.6834 0.990198 0.929186 0.988198 0.990198 0.952225 0.83414 0.67335

RC 0.93738 0.83538 0.918 0.990198 0.919184 0.991198 0.990198 0.941975 0.824078 0.9045
F1-Score 0.9996 0.8976 0.7854 0.9996 0.9996 0.969 0.9996 0.98245 0.885456 0.77385

DCNN
P 0.94656 0.94656 0.6732 0.9996 0.94656 0.84558 0.9996 0.9512 0.933754 0.6633

RC 0.99198 0.99198 0.918 0.990978 0.99198 0.89178 0.990978 0.992475 0.996138 0.9045
F1-Score 0.98736 0.98736 0.7752 0.9792 0.98736 0.91392 0.9792 0.9922 0.974002 0.7638

Diffie-Hallman
P 0.93738 0.83538 0.6426 0.990198 0.919184 0.819164 0.990198 0.941975 0.824078 0.63315

RC 0.9894 0.8976 0.8772 0.9894 0.9894 0.8874 0.9894 0.99425 0.885456 0.8643
F1-Score 0.9996 0.90678 0.7446 0.9894 0.9996 0.8976 0.9894 0.98245 0.894512 0.73365

Naïve Bayes
P 0.9078 0.989198 0.7752 0.990198 0.890178 0.890178 0.990198 0.91225 0.995132 0.7638

RC 0.94656 0.9996 0.8976 0.9384 0.94656 0.94656 0.9384 0.9512 0.986076 0.8844
F1-Score 0.9894 0.990198 0.7854 0.970194 0.970194 0.970194 0.970194 0.99425 0.996138 0.77385

Proposed
P 0.99198 0.9519 0.8058 0.96192 0.99198 0.97194 0.96192 0.992475 0.95589 0.79395

RC 0.9996 0.9078 0.9078 0.9588 0.9996 0.990198 0.940188 0.98245 0.895518 0.89445
F1-Score 0.992982 0.99198 0.8976 0.99198 0.992982 0.920838 0.99198 0.993478 0.996138 0.8844
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Table 10. Cyber attack detection table for stakeholder 6.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.990594 0.889533 0.681625 0.960576 0.990594 0.890534 0.960576 0.992475 0.893445 0.668325

RC 0.970582 0.987592 0.60475 0.940564 0.970582 0.870522 0.940564 0.99425 0.991935 0.59295
F1-Score 0.970582 0.990594 0.615 0.940564 0.970582 0.870522 0.940564 0.99425 0.99495 0.603

RF
P 0.987592 0.887532 0.71545 0.970582 0.987592 0.897538 0.970582 0.989468 0.891435 0.70149

RC 0.980588 0.899539 0.82 0.95057 0.980588 0.898539 0.95057 0.98245 0.903495 0.804
F1-Score 0.990594 0.899539 0.7995 0.930558 0.990594 0.899539 0.930558 0.992475 0.903495 0.7839

SVM
P 0.929557 0.829497 0.68675 0.990594 0.929557 0.988593 0.990594 0.952225 0.833145 0.67335

RC 0.919551 0.819491 0.9225 0.990594 0.919551 0.991595 0.990594 0.941975 0.823095 0.9045
F1-Score 0.980588 0.880528 0.78925 0.980588 0.980588 0.95057 0.980588 0.98245 0.8844 0.77385

DCNN
P 0.928557 0.928557 0.6765 0.980588 0.928557 0.829497 0.980588 0.9512 0.93264 0.6633

RC 0.990594 0.990594 0.9225 0.989593 0.990594 0.890534 0.989593 0.992475 0.99495 0.9045
F1-Score 0.968581 0.968581 0.779 0.960576 0.968581 0.896538 0.960576 0.9922 0.97284 0.7638

Diffie-Hallman
P 0.919551 0.819491 0.64575 0.990594 0.919551 0.819491 0.990594 0.941975 0.823095 0.63315

RC 0.970582 0.880528 0.8815 0.970582 0.970582 0.870522 0.970582 0.99425 0.8844 0.8643
F1-Score 0.980588 0.889533 0.74825 0.970582 0.980588 0.880528 0.970582 0.98245 0.893445 0.73365

Naïve Bayes
P 0.890534 0.989593 0.779 0.990594 0.890534 0.890534 0.990594 0.91225 0.993945 0.7638

RC 0.928557 0.980588 0.902 0.920552 0.928557 0.928557 0.920552 0.9512 0.9849 0.8844
F1-Score 0.970582 0.990594 0.78925 0.970582 0.970582 0.970582 0.970582 0.99425 0.99495 0.77385

Proposed
P 0.990594 0.95057 0.80975 0.960576 0.990594 0.970582 0.960576 0.992475 0.95475 0.79395

RC 0.980588 0.890534 0.91225 0.940564 0.980588 0.990594 0.940564 0.98245 0.89445 0.89445
F1-Score 0.991595 0.990594 0.902 0.990594 0.991595 0.919551 0.990594 0.993478 0.99495 0.8844

Table 11. Cyber attack detection table for stakeholder 7.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99594 0.894334 0.68495 0.96576 0.99594 0.89534 0.96576 0.99297 0.893445 0.668325

RC 0.97582 0.992922 0.6077 0.94564 0.97582 0.87522 0.94564 0.9991 0.991935 0.59295
F1-Score 0.97582 0.99594 0.618 0.94564 0.97582 0.87522 0.94564 0.9991 0.99495 0.603

RF
P 0.992922 0.892322 0.71894 0.97582 0.992922 0.902382 0.97582 0.989961 0.891435 0.70149

RC 0.98588 0.904394 0.824 0.9557 0.98588 0.903388 0.9557 0.98294 0.903495 0.804
F1-Score 0.99594 0.904394 0.8034 0.93558 0.99594 0.904394 0.93558 0.99297 0.903495 0.7839

SVM
P 0.934574 0.833974 0.6901 0.99594 0.934574 0.993928 0.99594 0.95687 0.833145 0.67335

RC 0.924514 0.823914 0.927 0.99594 0.924514 0.996946 0.99594 0.94657 0.823095 0.9045
F1-Score 0.98588 0.88528 0.7931 0.98588 0.98588 0.9557 0.98588 0.98294 0.8844 0.77385

DCNN
P 0.933568 0.933568 0.6798 0.98588 0.933568 0.833974 0.98588 0.95584 0.93264 0.6633

RC 0.99594 0.99594 0.927 0.994934 0.99594 0.89534 0.994934 0.99297 0.99495 0.9045
F1-Score 0.973808 0.973808 0.7828 0.96576 0.973808 0.901376 0.96576 0.99704 0.97284 0.7638

Diffie-Hallman
P 0.924514 0.823914 0.6489 0.99594 0.924514 0.823914 0.99594 0.94657 0.823095 0.63315

RC 0.97582 0.88528 0.8858 0.97582 0.97582 0.87522 0.97582 0.9991 0.8844 0.8643
F1-Score 0.98588 0.894334 0.7519 0.97582 0.98588 0.88528 0.97582 0.98294 0.893445 0.73365

Naïve Bayes
P 0.89534 0.994934 0.7828 0.99594 0.89534 0.89534 0.99594 0.9167 0.993945 0.7638

RC 0.933568 0.98588 0.9064 0.92552 0.933568 0.933568 0.92552 0.95584 0.9849 0.8844
F1-Score 0.97582 0.99594 0.7931 0.97582 0.97582 0.97582 0.97582 0.9991 0.99495 0.77385

Proposed
P 0.99594 0.9557 0.8137 0.96576 0.99594 0.97582 0.96576 0.99297 0.95475 0.79395

RC 0.98588 0.89534 0.9167 0.94564 0.98588 0.99594 0.94564 0.98294 0.89445 0.89445
F1-Score 0.996946 0.99594 0.9064 0.99594 0.996946 0.924514 0.99594 0.993973 0.99495 0.8844
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Table 12. Cyber attack detection table for stakeholder 8.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99693 0.895223 0.688275 0.96672 0.99693 0.89623 0.96672 0.993465 0.893445 0.668325

RC 0.97679 0.993909 0.61065 0.94658 0.97679 0.87609 0.94658 0.973395 0.991935 0.59295
F1-Score 0.97679 0.99693 0.621 0.94658 0.97679 0.87609 0.94658 0.973395 0.99495 0.603

RF
P 0.993909 0.893209 0.72243 0.97679 0.993909 0.903279 0.97679 0.990455 0.891435 0.70149

RC 0.98686 0.905293 0.828 0.95665 0.98686 0.904286 0.95665 0.98343 0.903495 0.804
F1-Score 0.99693 0.905293 0.8073 0.93651 0.99693 0.905293 0.93651 0.993465 0.903495 0.7839

SVM
P 0.935503 0.834803 0.69345 0.99693 0.935503 0.994916 0.99693 0.961515 0.833145 0.67335

RC 0.925433 0.824733 0.9315 0.99693 0.925433 0.997937 0.99693 0.951165 0.823095 0.9045
F1-Score 0.98686 0.88616 0.79695 0.98686 0.98686 0.95665 0.98686 0.98343 0.8844 0.77385

DCNN
P 0.934496 0.934496 0.6831 0.98686 0.934496 0.834803 0.98686 0.96048 0.93264 0.6633

RC 0.99693 0.99693 0.9315 0.995923 0.99693 0.89623 0.995923 0.993465 0.99495 0.9045
F1-Score 0.974776 0.974776 0.7866 0.96672 0.974776 0.902272 0.96672 0.971388 0.97284 0.7638

Diffie-Hallman
P 0.925433 0.824733 0.65205 0.99693 0.925433 0.824733 0.99693 0.951165 0.823095 0.63315

RC 0.97679 0.88616 0.8901 0.97679 0.97679 0.87609 0.97679 0.973395 0.8844 0.8643
F1-Score 0.98686 0.895223 0.75555 0.97679 0.98686 0.88616 0.97679 0.98343 0.893445 0.73365

Naïve Bayes
P 0.89623 0.995923 0.7866 0.99693 0.89623 0.89623 0.99693 0.92115 0.993945 0.7638

RC 0.934496 0.98686 0.9108 0.92644 0.934496 0.934496 0.92644 0.96048 0.9849 0.8844
F1-Score 0.97679 0.99693 0.79695 0.97679 0.97679 0.97679 0.97679 0.973395 0.99495 0.77385

Proposed
P 0.99693 0.95665 0.81765 0.96672 0.99693 0.97679 0.96672 0.993465 0.95475 0.79395

RC 0.98686 0.89623 0.92115 0.94658 0.98686 0.99693 0.94658 0.98343 0.89445 0.89445
F1-Score 0.997937 0.99693 0.9108 0.99693 0.997937 0.925433 0.99693 0.994469 0.99495 0.8844

Table 13. Cyber attack detection table for stakeholder 9.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99792 0.896112 0.694925 0.96768 0.99792 0.89712 0.96768 0.994455 0.893445 0.668325

RC 0.97776 0.994896 0.61655 0.94752 0.97776 0.87696 0.94752 0.974365 0.991935 0.59295
F1-Score 0.97776 0.99792 0.627 0.94752 0.97776 0.87696 0.94752 0.974365 0.99495 0.603

RF
P 0.994896 0.894096 0.72941 0.97776 0.994896 0.904176 0.97776 0.991442 0.891435 0.70149

RC 0.98784 0.906192 0.836 0.9576 0.98784 0.905184 0.9576 0.98441 0.903495 0.804
F1-Score 0.99792 0.906192 0.8151 0.93744 0.99792 0.906192 0.93744 0.994455 0.903495 0.7839

SVM
P 0.936432 0.835632 0.70015 0.99792 0.936432 0.995904 0.99792 0.970805 0.833145 0.67335

RC 0.926352 0.825552 0.9405 0.99792 0.926352 0.998928 0.99792 0.960355 0.823095 0.9045
F1-Score 0.98784 0.88704 0.80465 0.98784 0.98784 0.9576 0.98784 0.98441 0.8844 0.77385

DCNN
P 0.935424 0.935424 0.6897 0.98784 0.935424 0.835632 0.98784 0.96976 0.93264 0.6633

RC 0.99792 0.99792 0.9405 0.996912 0.99792 0.89712 0.996912 0.994455 0.99495 0.9045
F1-Score 0.975744 0.975744 0.7942 0.96768 0.975744 0.903168 0.96768 0.972356 0.97284 0.7638

Diffie-Hallman
P 0.926352 0.825552 0.65835 0.99792 0.926352 0.825552 0.99792 0.960355 0.823095 0.63315

RC 0.97776 0.88704 0.8987 0.97776 0.97776 0.87696 0.97776 0.974365 0.8844 0.8643
F1-Score 0.98784 0.896112 0.76285 0.97776 0.98784 0.88704 0.97776 0.98441 0.893445 0.73365

Naïve Bayes
P 0.89712 0.996912 0.7942 0.99792 0.89712 0.89712 0.99792 0.93005 0.993945 0.7638

RC 0.935424 0.98784 0.9196 0.92736 0.935424 0.935424 0.92736 0.96976 0.9849 0.8844
F1-Score 0.97776 0.99792 0.80465 0.97776 0.97776 0.97776 0.97776 0.974365 0.99495 0.77385

Proposed
P 0.99792 0.9576 0.82555 0.96768 0.99792 0.97776 0.96768 0.994455 0.95475 0.79395

RC 0.98784 0.89712 0.93005 0.94752 0.98784 0.99792 0.94752 0.98441 0.89445 0.89445
F1-Score 0.998928 0.99792 0.9196 0.99792 0.998928 0.926352 0.99792 0.99546 0.99495 0.8844
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Table 14. Cyber attack detection table for stakeholder 10.

Algorithm Matrics
Social

Engineering
Attacks

Cryptography
Attacks

Control
Hijacking
Attacks

Computer
Network
Attacks

Phishing
Attacks

Malware
Attacks

Password
Attacks

DDoS
Attack

Identity
Based

Attacks
DoS

Attacks

DT
P 0.99891 0.897001 0.69825 0.96864 0.99891 0.89801 0.96864 0.990495 0.893445 0.668325

RC 0.97873 0.995883 0.6195 0.94846 0.97873 0.87783 0.94846 0.970485 0.991935 0.59295
F1-Score 0.97873 0.99891 0.63 0.94846 0.97873 0.87783 0.94846 0.970485 0.99495 0.603

RF
P 0.995883 0.894983 0.7329 0.97873 0.995883 0.905073 0.97873 0.987494 0.891435 0.70149

RC 0.98882 0.907091 0.84 0.95855 0.98882 0.906082 0.95855 0.98049 0.903495 0.804
F1-Score 0.99891 0.907091 0.819 0.93837 0.99891 0.907091 0.93837 0.990495 0.903495 0.7839

SVM
P 0.937361 0.836461 0.7035 0.99891 0.937361 0.996892 0.99891 0.97545 0.833145 0.67335

RC 0.927271 0.826371 0.945 0.99891 0.927271 0.999919 0.99891 0.96495 0.823095 0.9045
F1-Score 0.98882 0.88792 0.8085 0.98882 0.98882 0.95855 0.98882 0.98049 0.8844 0.77385

DCNN
P 0.936352 0.936352 0.693 0.98882 0.936352 0.836461 0.98882 0.9744 0.93264 0.6633

RC 0.99891 0.99891 0.945 0.997901 0.99891 0.89801 0.997901 0.990495 0.99495 0.9045
F1-Score 0.976712 0.976712 0.798 0.96864 0.976712 0.904064 0.96864 0.968484 0.97284 0.7638

Diffie-Hallman
P 0.927271 0.826371 0.6615 0.99891 0.927271 0.826371 0.99891 0.96495 0.823095 0.63315

RC 0.97873 0.88792 0.903 0.97873 0.97873 0.87783 0.97873 0.970485 0.8844 0.8643
F1-Score 0.98882 0.897001 0.7665 0.97873 0.98882 0.88792 0.97873 0.98049 0.893445 0.73365

Naïve Bayes
P 0.89801 0.997901 0.798 0.99891 0.89801 0.89801 0.99891 0.9345 0.993945 0.7638

RC 0.936352 0.98882 0.924 0.92828 0.936352 0.936352 0.92828 0.9744 0.9849 0.8844
F1-Score 0.97873 0.99891 0.8085 0.97873 0.97873 0.97873 0.97873 0.970485 0.99495 0.77385

Proposed
P 0.99891 0.95855 0.8295 0.96864 0.99891 0.97873 0.96864 0.990495 0.95475 0.79395

RC 0.98882 0.89801 0.9345 0.94846 0.98882 0.99891 0.94846 0.98049 0.89445 0.89445
F1-Score 0.999919 0.99891 0.924 0.99891 0.999919 0.927271 0.99891 0.991496 0.99495 0.8844

Fig. (4). Local analysis for varying edge-IoT devices for proposed model.
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Table  11  is  for  Wholesalers  &  Raw  Material
Manufacturers, Table 12 is for Investors, Table 13 is for
Drug  Manufacturers,  and  lastly,  Table  14  is  for  PBM  &
Governance. Algorithm 1 will collect sample data from all
10  stakeholders,  and  in  the  loop,  Algorithm  2  will  run
multiple  times  to  detect  the  attack  and  will  update  the
stakeholder's  state  in  Q-Table.  Tables  5-14  display  the
results achieved with the suggested approach for the same
metrics.  The  suggested  model  works  well  in  predicting
various assaults. Different types of attacks include: Social
engineering  attacks,  Cryptography  attacks,  Control
Hijacking  attacks,  Computer  network  attacks,  Phishing
attacks, Malware attacks, Password attacks, DDoS Attack,
Identity-Based Attacks, and DoS Attacks. All stakeholders
will be identified for these attacks. So we have 10 tables
as  a  result  for  each  stakeholder  by  running  different
algorithms  for  attack  detection.\color{black}  The
suggested  approach  achieves  high  accuracy  rates  of
93.98% for  precision,  94.42% for  recall,  and  96.67% for
F1-Score for diverse assaults, including Social engineering
attacks, Cryptography attacks, Control Hijacking attacks,
Computer  network  attacks,  Phishing  attacks,  Malware
attacks,  Password  attacks,  DDoS  Attack,  Identity  Based
Attacks, DoS Attacks. Compared to current strategies, our

suggested  model  outperforms  all  others  and  achieves  a
high  detection/accuracy  rate  for  16-class  classification.
Fig.  (4)  illustrates  the  local  analysis  performance  of  the
proposed model  on several  edge IoT devices with varied
patient counts. Using the EOT framework, we utilized an
Intel i7-3200 CPU with three cores and a virtual machine
with  32GB  RAM  and  3.2GHz  for  local  and  global
processing.  Increasing  data  size  results  in  a  linear
speedup  for  the  suggested  model.  The  distributed
technique significantly reduces performance overhead by
reducing global  and local  processing steps based on the
number  of  virtual  machines.  Different  Edge  IoT  devices
are used to determine the time difference between single,
8,  and 16 devices for  a specific  number of  patients.  Fig.
(5)  illustrates  the  performance  study  of  a  simulated
dataset across several edge IoT devices. Fig. (6) depicts a
study  of  accuracy  for  synthetic  datasets  with  varying
numbers  of  data  points.  Distributed  analysis  requires  a
shorter  execution  time  than  centralized  analysis.  The
accuracy  varies  according  to  the  size  of  the  data  set.
Furthermore,  VMs  with  a  range  of  1%  to  20%  may  be
impacted. In the end, we did a comparative analysis of all
algorithms  for  all  stakeholders  and  found  that  the
proposed algorithm best determines the precision, recall,
and F1 score, which is shown in Fig. (7).

Fig. (5). Data analysis performance for local analysis on varying edge-IoT devices.
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Fig. (6). Accuracy analysis for synthetic dataset.

Fig. (7). Comparative analysis among algorithms.

CONCLUSION & FUTURE SCOPE
This  paper  proposes  an  Edge  of  Things  (EoT)-based

centralized  Multi-Source  Transfer  Learning  system  to
analyze  cybersecurity  attacks  in  pharmaceutical  care
services.  This  model  focuses  on  assessing  machine
learning-based intrusion detection systems in a centralized
mode. We utilized principal component analysis to extract
16  major  features  from  three  datasets  and  analyzed

accuracy, precision, recall, and F1-score for the suggested
model.  The  simulation  results  of  the  proposed  study  are
compared  to  existing  machine-learning  approaches.  The
suggested model outperforms existing models,  achieving
more than 95% accuracy in detecting diverse attacks. In
the future, we aim to investigate multi-class classification
performance  using  additional  datasets  and  feature
selection  strategies.  The  key  constraint  of  this  proposed
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work  is  the  impact  of  training  settings  on  model
performance. Furthermore, the spread of Edge IoT devices
is  limited,  and  other  distributions  cannot  be  obtained
owing to time constraints. The execution duration of our
model grows with more patient data. However, we would
prefer  to  use  this  effort  to  address  the  constraint  as  a
future concern.
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