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Abstract:
Background:  Cancer  is  one  of  the  leading  causes  of  death  worldwide,  accounting  for  approximately  10  million
deaths annually. The most prevalent type of cancer in women is breast cancer, and there are not any prospective
vaccinations available for the treatment of this disease.

Objective: This study aimed to identify potent substances derived from natural products, such as curcumin analogs,
which are crucial for enriching drug discovery, particularly in the prevention of breast cancer.

Methods: This study utilized twelve novel curcumin analogs, specifically dibenzylidene-cyclohexanones, to predict
their biological activity against breast cancer. Based on Lipinski's rule of five, selected compounds were screened
using  ADMETlab  3.0  to  assess  their  drug-likeness  properties.  Then,  the  selected  compounds  were  subsequently
subjected to pharmacophore modeling using LigandScout, followed by molecular docking studies with the human
estrogen receptor alpha (ERα; PDB ID: 2IOG) using AutoDock. Curcumin and tamoxifen were included as reference
compounds for comparison.

Results: Based on the research conducted, all of the curcumin analogs met the criteria of Lipinski’s rule of five,
except  compound  12.  Compound  4  demonstrated  the  best  potential  as  an  anticancer  agent  against  ERα,  with  a
pharmacophore fit-score of 36.87 based on pharmacophore modeling and binding energy of -11.10 kcal, which was
higher than tamoxifen (-10.45 kcal/mol) and curcumin (-9.18 kcal/mol) based on a molecular docking study.

Conclusion: Exploring curcumin analogs as potential anti-breast cancer agents is crucial for drug discovery and
development.  This  study  suggests  that  curcumin  analog  compound  4  can  act  as  a  potent  inhibitor  against  ERα.
However, further in vitro studies are required to confirm the efficacy of this compound.
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1. INTRODUCTION
Breast  cancer,  as  defined  by  the  World  Health

Organization  (WHO),  is  a  disease  characterized  by  the
uncontrolled  growth  of  abnormal  breast  cells  that  can
form tumors. If left untreated, tumors have the potential to
spread throughout the body and become fatal.

Breast  cancer  cells  first  multiply  in  the  milk  ducts
and/or the milk-producing lobules of the breast. In 2022,
2.3 million women were diagnosed with breast cancer, and
670,000 people died from the disease worldwide.  Breast
cancer can affect women at any age after puberty, with its
incidence increasing as women grow older [1].

The  degree  to  which  the  cancer  has  progressed  to
lymph  nodes  or  other  bodily  areas  will  depend  on  its
subtype. There are many treatments available for breast
cancer. Breast cancer subtypes based on the expression of
the  hormone  receptors  are  categorized  into  four
categories:  human  epidermal  growth  factor  receptor-2
positive (HER-2+), progesterone receptor positive (PR+),
estrogen  receptor-positive  (ER+),  and  those  that  lack
expression of all three receptors, known as triple-negative
breast  cancer  (TNBC),  which  is  more  aggressive  than
other  subtypes  [1,  2].

Estrogen  receptor  (ER)  and  progesterone  receptor
(PR)  are  hormones  that  are  essential  for  regulating  key
physiological  processes,  such  as  sexual  maturation
(including  breast  development),  pregnancy,  postpartum,
and menopause. However, normal breast cells can become
cancerous  when  DNA  damage  occurs,  leading  to  rapid
growth  and  uncontrolled  spread,  often  influenced  by
related  hormones  [3].  Alpha  (α)  and  beta  (β)  estrogen
receptors  are  encoded  by  two  genes,  ESR1  and  ESR2,
respectively  [4].  Examples  of  endocrine  (hormone)
therapies  that  are  effective  in  treating  malignancies
expressing ER and/or PR include tamoxifen and aromatase
inhibitors.  Chemotherapy  is  required  for  “hormone
receptor negative” cancers that do not express either ER
or PR [1].

Much  research  has  been  carried  out  to  find  and
develop  drugs  that  can  inhibit  this  highly  aggressive
cancer  [5-8].  One  of  the  most  challenging  obstacles  in
treating breast cancer, which eventually results in death,
is  multidrug  resistance.  Therefore,  an  in-depth
understanding  and  analysis  of  the  molecular  basis  of
cancer resistance is required, and the development of new
effective drugs is urgently needed [9].

Natural  materials  have  been  used  as  a  source  of
medicine for many years. Today, approximately half of all
pharmaceutical  drugs  are  still  derived  from  natural
sources. These products are usually isolated from plants,
marine  flora,  and  microorganisms.  Their  therapeutic
potential can be enhanced through structural modification
[10, 11].

Curcumin  is  a  major  bioactive  compound  found  in
rhizomes  and  has  attracted  significant  attention  from
researchers due to its diverse biological activities. It has
shown  potential  benefits  in  conditions,  such  as  cardio-

vascular diseases, diabetes mellitus, etc [11, 12]. Previous
studies reported that curcumin has the potential to be an
anti-breast cancer agent because it affects the number of
phenotypes through mechanisms of action, such as (a) P-
glycoprotein  activity  inhibition  and  drug  resistance
reduction,  (b)  cell  cycle  induction,  (c)  ferroptosis  and
apoptosis  initiation,  and  (d)  control  of  the  epithelial-
mesenchymal  transition  (EMT)  [13,  14].

Other reports demonstrated that curcumin exhibits its
anticancer  properties  via  a  complex  molecular  signaling
network  that  includes  those  related  to  HER-2,  ER,  and
proliferative pathways.  In  addition,  experimental  studies
have  reported  that  curcumin  regulates  genes  and
microRNAs  linked  to  cell  phase  and  apoptosis  in  breast
cancer cells [15]. However, curcumin is known to have a
poor  pharmacokinetic  profile,  and  its  systemic
bioavailability  is  low  due  to  limited  absorption,  rapid
metabolism,  and rapid  excretion.  One way to  slow down
the metabolism of curcumin is to explore new curcumin-
derived  compounds  with  lower  toxicity  yet  increased
effectiveness  [16].

Structural  modification  of  curcumin  is  expected  to
serve  as  a  next-generation  drug  candidate  for  cancer
therapy. Several research works have been carried out to
explore the effects of curcumin and its analogs as cancer
therapy,  especially  in  breast  cancer.  Several  curcumin
analogs  have  been  synthesized  and  tested  for  their
anticancer activity using in-vitro methods in MCF-7 cells,
and  it  was  found  that  some  curcumin  analogs  exhibit
toxicity  even  at  small  concentrations  [8,  17].

A  previous  study  conducted  by  Shen  et  al.  (2020)
reported  that  curcumin  analog  with  mono-carbonyl
(acetone) B14 has antitumor activity and potent selectivity
for MCF-7 and MDA-M-231 cells with IC50  values of 8.84
and 8.33 μmol/L, respectively. Its IC50 value for MCF-10A
breast  epithelial  cells  was  34.96  μmol/L.  Moreover,  B14
demonstrated better bioavailability compared to curcumin
[18].  Furthermore,  monocarbonyl  curcumin  analogues
have been shown to have enhanced intestinal permeability
and  water  solubility,  as  well  as  good  chemical  and
metabolic stability linked to improved bioavailability [19].

Based on previous studies and the global prevalence of
breast  cancer,  curcumin  analogs,  particularly
monocarbonyl curcumin analogs, show promising potential
as anti-breast cancer agents. The findings of this study can
be a source of updated information for researchers on the
topic  of  curcumin  analogs  as  potential  breast  cancer
agents. In a previous study, the curcumin analogs with di-
benzylidene-cyclohexanones (Fig. 1) [17, 18] were tested
for  their  antioxidant  activity.  In  this  study,  we  aim  to
evaluate the pharmacokinetic and ADMET profiles of these
compounds  through  virtual  screening,  as  well  as  assess
their  interaction  with  human  estrogen  receptor  alpha
(ERα), a key breast cancer receptor, using pharmacophore
modeling and molecular docking in an in silico approach.
This  study  is  preliminary  research,  which  is  expected  to
continue with synthesized and laboratory tests.
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Fig (1). Structure template for dibenzylidene-cyclohexanones.

2. MATERIALS AND METHODS

2.1. Analysis of Drug-Likeness Properties
The  evaluation  of  drug-likeness  properties  was

performed  based  on  Lipinski’s  rule  of  five  (molecular
weight  (MW)  ≤  500  Daltons,  logP  ≤  5,  hydrogen  bond
acceptors (HBA) ≤ 10, and hydrogen bond donors (HBD) ≤
5)  [20]  using  ADMETlab  3.0  (https://  admetlab3.
scbdd.com/) [21]. Table 1 presents the tested ligands with
their structures shown in Fig. (1) as a template. This study
used canonical SMILES generated by MarvinSketch after
drawing the structures of the compounds.

2.2. Pharmacophore Modeling
The  pharmacophore  model  was  carried  out  using

LigandScout  v4.4.1  (licensed  by  Padjajaran  University).
LigandScout  employs  the  Espresso  algorithm,  which
involves  multiple  stages,  such  as  clustering  and
conformation  generation.  The  Ligandscout  algorithm
creates a pharmacophore on each training molecule and
then  aligns  the  test  molecule  using  this  pharmacophore
[22].  Therefore,  pharmacophore  modeling  started  with
model validation, which is crucial for virtual screening as
it  helps predict the possible pharmacophore activities at
the  receptor.  In  this  process,  a  1:4  ratio  of  active
compounds to decoy compounds obtained from the DUD-E
database  (https://dude.docking.org/)  was  used.  This
process  ensures  the  selection  of  models  with  sufficient
accuracy [23].

The pharmacophore validation process yielded a model
based on the structure of the active compound, which was

subsequently  used  to  screen  curcumin  analog  test
compounds.  The  model  was  based  on  the  receiver
operating  characteristic  (ROC)  curve,  true  positive  (TP),
and  false  positive  (FP).  The  ROC  curve  illustrates  the
model's ability to distinguish between active and inactive
substances, and this performance is measured by the area
under the ROC curve (AUC) [22]. An AUC value close to 0
indicates a poor classifier, as the model incorrectly ranks
decoys  (compounds  that  should  be  inactive)  higher  than
active  compounds.  Conversely,  an  AUC  value  close  to  1
indicates  an  excellent  classifier,  correctly  prioritizing
active  compounds  over  decoys.  In  addition,  other
statistical  parameters  like  goodness-of-hit  score  (GH),
enrichment factor (EF), and accuracy (ACC) will determine
the performance of the model [23, 24].

The  3D  structures  of  these  compounds  were
constructed using the ChemDraw application. They were
then combined using  Discovery  Studio  and  saved  in  .sdf
format. The hit compounds were selected based on their
pharmacophore fit score values.

2.3. Molecular Docking

2.3.1. Selection and Retrieval of Receptors
Literature was searched for possible targets for anti-

cancer  treatments.  The  three-dimensional  structure  (in
PDB  format)  of  each  of  the  selected  receptors  was
retrieved  from  the  RCSB  protein  data  bank  (PDB)
(https://www.rcsb.org/)  using  PBD  ID  2IOG  (human
estrogen receptor alpha ligand-binding domain in complex
with compound 11F) [25].

Table 1. List of curcumin analogs.

Compounds R1 R2 R3 R4 R5

Compound 1 -H -Br -OCH3 -H -H
Compound 2 -COOH -H -H -H -H
Compound 3 -Cl -H -H -H -F
Compound 4 -Cl -H -Cl -H -H
Compound 5 -OH -OCH2CH3 -H -H -H
Compound 6 -H -OCH2CH3 -OH -H -H
Compound 7 -H -H -H -NO2 -H
Compound 8 -H -COH -H -H -H
Compound 9 -OCH3 -H -H -OCH3 -H

Compound 10 -OCH3 -H -H -H -H
Compound 11 -H -OH -H -H -H
Compound 12 -H -Br -OH -Br -H

https://admetlab3.scbdd.com/
https://admetlab3.scbdd.com/
https://dude.docking.org/
https://www.rcsb.org/
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2.3.2. Retrieval of Ligands and Screening
The structures of all curcumin analogs were obtained

from the literature [17, 18] and used in molecular docking
studies  to  investigate  their  interactions  with  the  target
protein.  The  reference  and  control  compounds  were
retrieved  from  the  PubChem  compound  database
(https://pubchem.ncbi.nlm.nih.gov/)  using  PubChem  CID
(Curcumin: 969516, Tamoxifen: 2733526) [26]. Curcumin
analogs were drawn and optimized by energy minimization
using the  Merck molecular  force  field  (MMFF94)  on the
MarvinSketch application (https://www.chemaxon.com).

2.3.3. Molecular Docking Studies
AutoDock  v4.2.6  software  (AutoDock  4.2,  Scripps

Research,  La  Jolla,  CA,  USA,  https:  //autodock.  scripps.
edu/download  -autodock4/,  accessed  on  20th  December,
2023)  was  used  in  this  study  for  molecular  docking.
Validation analysis of the native ligand was carried out to
determine  the  Root  Mean  Standard  Deviation  (RMSD)
value and grid box. RMSD showed 0.82 Å, and the grid box
dimensions were adjusted on the X, Y, and Z coordinates
to 50 × 44 × 46. The grid center was 31.767, -0.942, and
24.202,  respectively,  in  the  active  site  of  Erα.  AutoGrid
was  used  to  construct  a  3D  grid  around  the  receptor's
target  binding  location  to  make  docking  calculations
easier [27]. The binding energy and inhibition constant of
the  interaction  between  the  ligands  and  targets  were
estimated using the Lamarckian genetic algorithm (with a
maximum of 100 conformers evaluated for each chemical
to  obtain  optimal  conformation).  The  remaining
parameters were left as default for the molecular docking
study.

AutoDock employs the Lamarckian Genetic Algorithm
(LGA).  This  algorithm  is  used  to  determine  the  optimal
docking  position  between  the  ligand  and  the  protein,
which then generates the function's empirical binding free
energy  value.  This  algorithm  allows  the  ligand  to  move
flexibly.  Molecular  mechanics  components,  including
dispersion  or  repulsion,  hydrogen  bonding,  electrostatic
interactions,  and  covalent  geometry  optimization,
constitute the first four terms in the algorithm's molecular
free  energy  calculation.  The  final  terms  account  for
internal  torsional  strain,  global  rotation  and  translation,
desolvation upon binding, and hydrophobic interactions. A
good  ligand  conformation  is  typically  associated  with  a
lower binding free energy [28].

After  the  validation  analysis  and  determining  the
algorithm, molecular docking was carried out between the
curcumin  analogs  and  the  protein.  All  of  the  steps  were
similar to the validation analysis, including the dimensions
of the grid box. The only difference was that we used our
energy-minimized  ligand  for  the  analysis.  The  results
showed the binding energy and interactions between the
ligands  and  the  protein,  demonstrating  their  potential
compatibility  as  anticancer  agents.

3. RESULTS AND DISCUSSION
The  curcumin  analogs  utilized  in  this  study  were

dibenzylidene-cyclohexanone  derivatives,  which  were

successfully synthesized in a previous study and reported
to  have  antioxidant  activity  better  than  tocopherol  [17,
18]. Antioxidants help to protect cells from damage caused
by free radicals or oxidative stress, which are one of the
factors that can cause various diseases, including cancer
[29].  It  has  been  found  that  antioxidants  like  vitamin  C
(ascorbic acid), vitamin E (tocopherol), and beta-carotene
have  potential  anti-cancer  effects  [30].  Therefore,  our
study investigated the potential of these curcumin analogs
as  anticancer  agents,  especially  for  the  treatment  of
breast  cancer.

The  backbone  structure  (Fig.  1)  with  various
substituents  (Table  1)  was  designed  using  the  Marvin
Sketch  application,  generating  2D  structures  and
canonical  SMILES for  each compound.  These  were  used
for  virtual  pharmacokinetic  screening—including  drug-
likeness  evaluation,  pharmacophore  modeling,  and
molecular  docking.  The primary target  protein is  human
estrogen receptor alpha (ERα; PDB ID: 2IOG), which plays
a key role in breast cancer.

3.1. Analysis of Drug-Likeness Properties
Drug-likeness properties and ADMET prediction were

assessed  using  ADMETlab  3.0  [21].  Properties  like
molecular  weight,  hydrogen  bond  acceptor,  hydrogen
bond donor, and LogP were identified using Lipinski’s rule
of five, as mentioned in Table 2. The molecule should have
a molecular weight of ≤500, a partition coefficient (LogP)
of  ≤5,  hydrogen bond donors  of  ≤5,  and hydrogen bond
acceptors  of  ≤10,  respectively,  to  adsorb  well  following
Lipinski's rule of five [20]. The LogP is a logarithm of the
octanol-water  partition  coefficient,  which  measures  a
compound’s  lipophilicity  or  its  tendency  to  dissolve  in
lipids  (like  octanol)  compared  to  water  [31].

Oral  bioavailability  is  believed  to  be  significantly
influenced  by  each  of  these  characteristics,  as  well  as
molecular flexibility [32]. If the compound has two or more
violations  of  Lipinski’s  rule  of  five,  its  absorption  in  the
intestine will be low. All curcumin analogs met Lipinski’s
rule of  five,  except compound 12.  Compound 12  did not
meet the criteria in terms of molecular weight and LogP,
indicating  its  poor  oral  bioavailability  based  on  virtual
screening.

3.2. Pharmacophore Modeling
Validation of the pharmacophore modeling method was

carried  out  to  confirm  the  ability  of  the  pharmacophore
model to distinguish the structures of active and inactive
compounds [33]. Model nine showed the best performance
with AUC values of 1.00, 1.00, and 0.85 at thresholds 1.5,
10,  and 100%, respectively,  along with 72 true positives
(TP)  and  32  false  positives  (FP).  These  values  are  very
good as they are close to 1. The ROC plot is shown in Fig.
(2A).  The pharmacophore features  are  presented in  Fig.
(2B).  Three  features  were  created  in  the  model:  one
hydrophobic feature (AR) depicted by a yellowish sphere,
one hydrogen bond donor (HBD), and one hydrogen bond
acceptors (HBA) seen with a red-green sphere shape.

https://pubchem.ncbi.nlm.nih.gov/
https://www.chemaxon.com
https://autodock.scripps.edu/download-autodock4/
https://autodock.scripps.edu/download-autodock4/
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Table 2. Drug-likeness properties of curcumin analogs.

Compounds Criteria
Drug-likeness

MW* (≤500) HBA* (≤10) HBD* (≤5) LogP*(≤5)
Curcumin Yes 368.13 6 2 2.374

Compound 1 Yes 489.98 3 0 5.01
Compound 2 Yes 378.35 5 2 3.93
Compound 3 Yes 356.43 1 0 5.03
Compound 4 Yes 409.98 1 0 6.32
Compound 5 Yes 394.18 5 2 4.07
Compound 6 Yes 394.18 5 2 3.82
Compound 7 Yes 364.11 7 0 4.40
Compound 8 Yes 330.13 3 0 3.88
Compound 9 Yes 394.18 5 0 4.65

Compound 10 Yes 334.16 3 0 4.75
Compound 11 Yes 306.13 3 2 3.63
Compound 12 No 617.77 3 2 5.514

Tamoxifen Yes 371.22 2 0 6.311
*MW: Molecular weight; HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; LogP: Coefficient partitions.

Fig (2). (A) ROC plot of the pharmacophore model and (B) Visualization of ligand-based pharmacophore features.

This  pharmacophore  model  tested  curcumin  analogs
mapped according to the same pharmacophore. From this
study, it can be predicted that if the structures have the
same pharmacophore, they will have the same biological
properties [34]. The hit compounds are listed in Table 3,
indicating  that  two  out  of  twelve  had  the  highest
pharmacophore  fit  score.  The  pharmacophore  fit-score

values  evaluated  the  degree  of  overlap  between  the
pharmacophore  features  and  the  compound's  chemical
functions  [23].  The  pharmacophore  study  identified  two
curcumin  analogs,  compounds  4  and  11,  that  have
pharmacophore fit-score values similar to the model and
have  the  same  pharmacophore  as  the  active  compound
(training set).
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Table  3.  Pharmacophore  model  results:  Two-dimensional  and  three-dimensional  projections  of  the
pharmacophore model and hit compounds. The pharmacophore features are hydrophobic features (yellowish
sphere) and hydrogen bond acceptor-donor (red-green sphere).

Compounds
Pharmacop

hore
Fit-Score

Mapping in
2D and 3D

Model (active
compound) 46.87

Compound 4 36.87

Compound 11 36.65
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3.3. Molecular Docking
Molecular docking studies were conducted to predict

the binding mode, affinity, binding free energy (ΔG), and
interaction between a small  molecule and protein target
receptors  [35].  They  were  carried  out  using  AutoDock
between ten curcumin analogs, curcumin, and tamoxifen
against  the  ERα enzyme.  Before  molecular  docking with
the  tested  compounds,  the  validation  method  was
performed first to determine the grid box and Root Mean
Square Deviation (RMSD). RMSD was used to compare the
docking  orientation  between  the  corresponding  co-
crystallized  pose  of  the  same  ligand  molecule.  Three
solutions  were  identified  based  on  the  RMSD  value:  (a)
good  solutions  when  the  RMSD  was  less  than  2.0,  (b)
acceptable solutions when the RMSD was between 2.0 and

3.0,  and  (c)  bad  solutions  when  the  RMSD  was  greater
than 3.0 [36].

The validation method result  showed a good solution
with  an  RMSD value  of  0.82  Å.  The  interaction  between
the native ligand and the protein was based on literature
data  from  the  RCSB  PDB,  highlighting  Asp351  as  a  key
amino acid residue in the catalytic site. This residue was
also  identified  from  studies  on  the  interactions  of
raloxifene  and  bazedoxifene  with  human  ERα  [25].
Subsequently, molecular docking of curcumin analogs was
performed using the same validated method. In this study,
curcumin  was  used  as  a  lead  compound,  and  tamoxifen
was  used  for  comparison.  The  binding  energy  and
inhibition constant (Ki) of curcumin analogs are presented
in Table 4.

Table  4.  Molecular  docking  results  from  curcumin  analogs  and  2D  interaction  between  amino  acids  and
ligands. The colors below the structures indicate the type of interactions for each compound.

Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Native ligand (Compound
11F) -14.51 0.02

Curcumin -9.18 186.65
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Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Compound 1 -10.76 12.87

Compound 2 -9.22 174.44

Compound 3 -10.09 40.08
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Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Compound 4 -11.10 7.36

Compound 5 -9.29 155.92

Compound 6 -10.24 31.38
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Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Compound 7 -10.24 31.12

Compound 8 -10.17 34.88

Compound 9 -9.80 65.82



In Silico Study of Dibenzylidene Cyclohexanone-Based 11

Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Compound 10 -9.77 68.67

Compound 11 -9.97 49.07

Compound 12 -12.06 1.45
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Compounds Binding Energy
(kcal/mol)

Inhibition
Constant (Ki)

(nM)
2D Interaction (Protein-ligand)

Tamoxifen -10.45 21.87

   

Tamoxifen is a common treatment for breast cancer; it
works  by  reducing  estrogen  activity  in  certain  tissues.
Similar  to  many  cancer  drugs,  it  has  various  adverse
effects. Hot flashes, irregular periods, vaginal discharge,
peripheral edema, hypertension, mood swings, discomfort,
depression,  skin  rashes  and  changes,  weakness,  nausea
and  vomiting,  arthritis,  arthralgia,  lymphedema,  and
pharyngitis  are  some  of  the  other  frequent  side  effects
caused  by  tamoxifen  [37].  There  is  a  need  to  search  for
drugs  that  have  lower  side  effects  to  overcome  the
increasing  drug  resistance.

Binding energy refers to the strength of the interaction
between  a  biomolecule  and  its  ligand.  The  dissociation
constant  of  the  enzyme-inhibitor  combination  is
represented by the Ki value, also known as the inhibition
constant. A decreased chance of dissociation is indicated
by  a  lesser  Ki  value,  which,  in  turn,  leads  to  stronger
inhibition [38]. As mentioned in Table 4, the best binding
energy  was  demonstrated  by  compound  12,  followed  by
compound  4  and  compound  1,  with  values  of  -12.06,
-11.10,  and  -10.76  kcal/mol,  respectively,  better  than
tamoxifen  and  curcumin  as  existing  drug  and  lead
compound.  They  showed  interactions  with  important
residues  with  the  Asp351.  The  interactions  and  the
conformation  are  presented  in  Table  4.

Compound  12  demonstrated  the  highest  binding
energy than other curcumin analogs. It has substituent -Br
in  R2  and  R4  and  -OH  in  R3.  The  key  residue,  Asp351,
interacted with the side aromatic structure in compound
12  with  the  π-anion  type  of  interaction.  π-Anion
interaction is one non-covalent interaction that can build
between  a  negatively  charged  species  (anion)  and  the
electron-deficient  π  system  of  an  aromatic  ring  [39].  In
addition, its bonding energy is supported by several other
interactions,  such  as  halogen  interaction  and  π-alkyl
interactions. The π-alkyl interaction is an interaction that

occurs in a hydrophobic environment where aromatics and
alkyl  sides  can  interact  (part  of  the  van  der  Waals
interaction) [40]. Compound 12 was found to be a complex
compound  as  it  demonstrated  poor  pharmacokinetics
profiles,  based on Lipinski’s  rule  of  five.  However,  some
research  works  have  indicated  that  formulations  can
improve the bioavailability or pharmacokinetics profile of
drugs,  like  nanosuspensions,  solid  lipid  nanoparticles,
liposomes,  or  microemulsions  [41].

In compound 4 and compound 1, with -Cl substituents
in R1 and R3 (compound 4) and -Br in R2 and -OCH3 in R3
(compound 1), Asp351 residues interacted with aromatic
structures  forming  π-anion  interaction,  similar  to
compound  12.  While  compound  11F  acted  as  a  native
ligand,  Asp321  interacted  with  the  H  group  in  the
cyclohexanone  to  form  a  salt  bridge  interaction.  Salt
bridges are ionic interactions between oppositely charged
groups.  Salt  bridges  tend  to  be  stronger  than  π-alkyl
interactions  [40].  Other  interactions  that  occurred
between compound 4 and protein were van der Waals, π-
anion, π-sulfur, π-π, and alkyl interactions. In compound 1,
there were carbon-hydrogen bonds, π-anion, π-sulfur, π-π,
and alkyl interactions that contributed to binding energy.

The curcumin analogs have higher binding energy than
curcumin  and tamoxifen  but  less  than  the  native  ligand.
There is a conventional hydrogen bond in the interaction
between native ligand and protein. This interaction plays a
crucial role in drug binding [42], which likely explains why
the native ligand exhibited a higher binding energy.

The development of artificial intelligence (AI) tools and
technology  has  made  AI-driven  drug  discovery  more
prominent.  It  offers  speed,  cost-effectiveness,  and  the
ability  to  identify  novel  drug  candidates  and  repurpose
existing ones, whereas traditional methods like molecular
docking  can  be  computationally  intensive  and  may
struggle  with  large-scale  screening  [43].  However,  we
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found that traditional molecular docking is better than AI-
driven  drug  discovery,  such  as  deep  learning.  This  is
because some of the deep learning approaches employ an
entire protein (blind docking) for docking, which does not
satisfy the common requirements, whereas the old method
uses the catalytic site as the binding site [44].

Many  advanced  deep  learning  techniques,  such  as
those  used  for  low-dose  CT  image  denoising,  could
enhance  the  quality  of  this  study.  Improved  imaging
quality would enable more accurate visualization of tumor
morphology  and  the  response  to  curcumin-based  drug
candidates.  Additionally,  high-resolution  imaging  could
support  the  identification  of  subtle  biomarkers  that  are
essential  for  understanding the  mechanisms of  action  of
medications  based  on  curcumin  and  their  influence  on
breast cancer progression. Furthermore, the integration of
advanced techniques, such as attention-guided enhanced
U-Net  architectures,  offers  the  opportunity  to  develop
robust predictive models that combine imaging data with
molecular and pharmacological information, facilitating a
more  comprehensive  and  data-driven  approach  to  drug
development [45, 46].

CONCLUSION
This  study  is  a  computational  study  that  aims  to

explore dibenzylidene-cyclohexanone curcumin analogs as
anticancer  agents  for  the  treatment  of  breast  cancer.  It
analyzed  drug  similarity  based  on  Lipinski's  rule  of  five
using  ADMETlab  3.0  (virtual  screening),  then  explored
structural  similarity  based  on  pharmacophore  modeling
using  LigandScout,  and  finally  determined  how  the
curcumin  analogs  interact  with  hERα receptor  based  on
molecular docking. The virtual screening revealed that all
of  the  curcumin  analog  compounds  met  the  criteria  of
Lipinski’s rule of five, except 12 because it has a LogP of
more than 5 and a molecular weight of more than 500 Da.
Pharmacophore modeling results showed that compounds
4 and 11 have similar structures to compounds that have
activity as hERα inhibitors (training compounds) with high
pharmacophore fit-score, while molecular docking results
revealed  that  curcumin  analog  compounds  12,  4,  and  1
have  better  binding  energy  values  (-12.06,  -11.10,  and
-10.76  kcal/mol,  respectively)  than  curcumin  (-9.18
kcal/mol)  and  tamoxifen  (-10.45  kcal/mol),  one  of  the
anticancer  drugs.  Research  on  curcumin  analogs  as
potential  inhibitors  of  breast  cancer  proteins  warrants
further  investigation.  Future  studies  are  expected  to
include molecular dynamics simulations, as well as in vitro
and  in  vivo  experiments,  to  thoroughly  evaluate  the
potential  and  mechanisms  of  these  curcumin  analog
compounds.
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