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Abstract:
Introduction: Accurate classification of brain tumours using MRI scans is vital for early diagnosis and treatment.
However, conventional deep learning models often require complete MRI sequences, which can prolong scan times
and lead to  patient  discomfort  or  motion-related image degradation.  Thus,  enhancing diagnostic  accuracy under
faster  scanning  conditions  is  a  critical  research  need.  Therefore,  this  research  aims  to  show  how  our  proposed
mechanism, namely Multiscale Parallel Feature Aggregation Network (MPFAN), accurately improves the diagnosis of
classifying brain tumours while maintaining Magnetic Resonance Imaging (MRI) quality in fast MRI scanning.

Methods: This article proposed an MPFAN architecture that utilizes parallel branches to extract image features from
different scales, using independent pathways with varied filters and movement steps. Feature combination blocks,
feedback prevention mechanisms, and strict training constraints enhance system reliability.

Results: MPFAN achieved an accuracy of 97.4%, outperforming many existing brain tumour classification models.
Performance improved steadily over training epochs, and optimizer comparisons showed Adam and Ada-Delta yielded
the best results. Ablation studies confirmed that multiscale feature extraction, dropout regularization, and feature
fusion significantly contribute to classification accuracy.

Discussion:  The  MPFAN  model  demonstrates  superior  performance  due  to  its  ability  to  effectively  extract  and
integrate multiscale features. Its dual-branch architecture enables deeper contextual understanding, and its high
accuracy validates its clinical potential. However, the model’s reliance on a single dataset and potential overfitting in
later training epochs indicate the need for broader validation and optimization in real-world clinical environments.

Conclusion: The proposed MPFAN architecture enhances brain tumour classification by improving image processing
efficiency and decision-making speed, making it a reliable and effective diagnostic tool.

Keywords:  Brain  tumour  classification,  Multiscale  feature  aggregation,  Deep  neural  network,  Medical  image
processing,  Computer-aided  diagnosis,  MRI,  MPFAN.
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1. INTRODUCTION
Brain  tumours  are  extremely  dangerous  and  fatal

cancers, which cause loss of life. Ageing or damaged brain
cells  that  fail  to  regenerate  properly  may  create  extra
tissue,  leading  to  tumour  formation  [1].  Brain  tumours
exist  in  two  forms:  cancerous  growths  that  spread  and
non-cancerous  growths  that  do  not.  Fast  detection  and
treatment  of  malignant  brain  tumours  have  become
essential  since  they  spread  rapidly  into  nearby  brain
tissues  to  increase  the  chances  of  survival  [2].

Doctors  often  choose  MRI  scans  to  discover  brain
tumours  because  these  devices  create  precise  brain
images  through  magnets  instead  of  radiation  exposure.
Brain tumours are generally categorized into three types
based on their location: meningiomas, pituitary tumours,
and gliomas [3]. There are two main brain tumour image
classification  strategies  using  MRI  scans:  traditional
manual  feature  analysis  and  deep  learning  techniques.
Doctors must select image features by hand before feeding
them into  standard  classifiers,  including  Support  Vector
Machine  (SVM)  and  K-Nearest  Neighbour  (KNN).  These
methods work well  but  take a  long time to  process  data
and  require  a  lot  of  effort  [4-7].  Convolutional  Neural
Networks  (CNNs)  enable  deep  learning  systems  to
automatically  identify  and  organize  features  while
addressing challenges related to improper data and slow
processing.

Standard  deep  learning  approaches  need  all  the
information  within  the  MRI  images  to  perform
classification.  Extended  MRI  procedures  make  patients
uncomfortable  and  result  in  damaged MRI  images  when
patients  move.  Deep  learning  methods  for  fast  MRI
scanning  must  improve  their  ability  to  preserve  image
quality  to  achieve  better  brain  tumour  classification
results  [8,  9].

Our  proposed  MPFAN  architecture  combines  CNN
features from different scales through parallel networks to
boost  brain  tumour  classification  results.  MPFAN  uses
parallel branches to extract detailed image features both
near and far. The system uses two independent pathways
to  examine  input  images  using  different  filters  and
movement  steps  to  produce  different  feature  sets.
Integrating separate feature combination blocks, feedback
prevention tools, and strict training limits helps the system
perform  more  reliably.  The  proposed  method  combines
efficient  brain  tumour  classification  with  powerful
diagnostic results through better processing and quicker
decision-making. The main contribution of the paper is as
follows:

We  present  a  state-of-the-art  method  to  classify  brain
tumours from MRI images.
We  present  a  Multiscale  Parallel  Feature  Aggregation
Network  (MPFAN)  to  detect  tumours  efficiently  from
medical  images.
We  experimentally  explore  this  network  for  different
parameters.

1.1. Related Work
The  current  literature  on  glioma  grading  and  brain

tumour classification predominantly relies on CNN-based
methods  due  to  their  ability  to  learn  local  features.
However,  these  methods  struggle  with  modelling  long-
range dependencies and global  context,  which may limit
classification  accuracy.  The  machine  learning-based
approach  discussed  by  Wang  et  al.  demonstrates
satisfactory  accuracy  but  provides  limited  insights  into
general performance across various tumour classes [10].

Attention mechanisms have increased the emphasis on
features,  yet  convolutional  operations  still  dominate,
making  capturing  objects  such  as  blurred  edges  or
intensity  variations  challenging.  On  the  other  hand,
previous  approaches  achieve  high  accuracy;  further
enhancements  are  needed  to  develop  more  general  and
multiscale classifiers. Rasheed et al. employed an efficient
CNN method to categorize three different types of brain
tumors [11]. Abd El-Wahab et al. proposed a deep learning
model  called  BTC-FCNN  to  enhance  classification
accuracy  while  reducing  the  computational  overhead  of
MRI-based classifiers [12].

Ozkaraca et al.  utilized Dense CNN to improve brain
tumour  classification  in  MRI  imaging  [13].  Similarly,
Muezzinoglu  and  Others  introduced  PatchResNet,  a
framework  leveraging  multi-sized  patch-based  feature
fusion to achieve high classification accuracy [14].  Their
approach  incorporates  KNN  classification  and  iterative
hard  voting,  which  are  crucial  for  boosting  accuracy.
Mijwil  et  al.  employed  MobileNetV1  to  classify  brain
tumors  in  MRI  images,  demonstrating  an  accurate  and
efficient model for medical imaging systems [15]. Saurav
et al.  introduced a simple attention-guided convolutional
neural  network  (AG-CNN)  architecture  that  utilizes
channel attention and global average pooling (GAP) as its
feature extraction mechanism [16].

Sekhar  et  al.  adopted  the  GoogLeNet  model  and
employed  SVM  and  KNN  classifiers  to  differentiate
gliomas,  meningiomas,  and  pituitary  tumors  [4].
Athisayamani et al. utilized ResNet152 to enhance feature
extraction  and  reduce  dimensionality,  improving
classification  performance  [17].  Shahin  et  al.  designed
MBTFCN,  which  classifies  tumors  across  multiple
categories  using three key techniques,  including feature
extraction  with  residual  connections  and  attention
mechanisms  [18].

In  their  research,  Aloraini  et  al.  integrated
Transformer and CNN elements into a single model, while
Zulfiqar  et  al.  leveraged  EfficientNets  for  brain  tumor
image  classification  [19,  20].  Mehnatkesh  et  al.  [21]
applied an improved ant colony algorithm to optimize MRI
tumor  classification  using  ResNet.  Singh  and  Agarwal
developed a CNN-based approach specifically designed for
T1WCE MRI images [22].

Isunuri and Kakarla utilized a neural network based on
separable convolution to maximize computational speed in
tumor classification [23]. Raza et al. extended GoogLeNet
into  a  15-layer  deep  network  to  enhance  expressive
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capabilities [24]. Aamir et al. employed EfficientNet-B0 for
feature extraction after grouping and segmenting images,
enhancing image contrast using nonlinear techniques [25].

A  new  approach,  referred  to  as  full-stack  learning
(FSL),  was  proposed  by  Wang  et  al.,  where  sampling,
reconstruction, and segmentation are co-performed due to
task dependencies and improve MRI workflow [26]. Ling
et al. proposed a new multitask attention network named
MTANet  for  better  segmentation  and  classification,
together  with  an  attention  mechanism  [27].  Wang  et  al.
developed a multi-stage hybrid attention network (MHAN)
model  to  conduct  MRI  image  super-resolution  and
reconstruction,  besides  having  specialized  modules
regarding enhanced spatial feature extraction [28]. Sui et
al.  applied  ConvNext  blocks  in  a  multi-task  learning
system for liver MRI analysis and found refined details for
higher  accuracy  [29].  Subsequently,  Delannoy  et  al.
proposed SegSRGAN, which employs the GANs to improve
the resolution in neonatal brain MRI and the segmentation
accuracy  [30].  Corona  et  al.  integrated  total  variation
reconstruction  and  Chan-Vesed  segmentation  using
nonconvex Bregman iteration to achieve enhanced output
from  both  systems  [31].  Cipolla  et  al.  also  presented  a
structure that uses geometric and semantic loss to allow
scene  analysis  with  maximum  efficiency  in  multi-task
learning [32]. Sun et al. developed SegNetMRI as a deep
learning technology that reconstructs and segments MRI
images using compressed sensing techniques [33]. Sui et
al. developed RecSeg to incorporate two U-Net structures,
making MRI reconstruction faster and lesion segmentation
more  accurate  [34].  Pramanik  and  Jacob  recently
employed  Deep-SLR  to  improve  the  parallel  MRI  data
reconstruction  and  segmentation  function  [35].

Recent  studies  also  highlight  the  use  of
Electroencephalogram  (EEG)-based  machine  learning
models  and  their  application  to  different  neurological
disorders with an unmatched accuracy rate [36]. Tripathi
et al.  developed a Weka-based ensemble framework that

integrated  EEG,  Electrocardiogram  (ECG),  and
Electromyography  (EMG)  signals  working  with  the
PhysioNet sleep-bruxism dataset [37]. They reported up to
99% accuracy in detecting sleep bruxism. M.B. Bin Heyat
et  al.  [38],  which  used  a  Decision  Tree  classifier  with
C4–P4  and  C4–A1  EEG  channels  for  sleep  bruxism
detection [39-41]. Wang et al. proved that single-channel
EEG (C4–P4) and some fine decision tree classifiers could
achieve 97.84% accuracy using a small REM-sleep dataset
for  bruxism  detection  [42].  In  the  Attention  Deficit
Hyperactivity  Disorder  (ADHD)  diagnosis,  Saini  et  al.
suggested a model to predict ADHD using EEG signals and
machine  learning  methods  [43].  This  method  tested
different types of classifiers to improve the accuracy and
reliability of the diagnosis of ADHD. The proposed method
showed  how  EEG-based  automated  systems  can  help  in
early  identification  and  can  be  useful  for  clinical  use.
Regarding  epilepsy  detection,  Alalaya  et  al.  suggested  a
method  to  detect  epilepsy  using  EEG  signals  [44].  This
method used DWT to extract features and then used PCA
or  t-SNE  to  reduce  the  complexity  of  the  data.  Several
classifiers, such as RF, XGBoost, and MLP, were tested to
see  which  one  works  best.  This  method  achieved  an
accuracy  of  up  to  98.98%,  which  is  better  than  the
accuracy  reported  in  previous  research.

Table  1  presents  a  comparative  analysis  of  various
deep  learning  models  (CNNs,  CNNs  with  Attention,  and
Transformers) for classifying Computed Tomography (CT)
scans  as  belonging  to  a  brain  tumour  [45-50].  It  proved
that CNNs can be more accurate when used, but they have
a  variety  of  limitations,  such  as  capturing  the  global
context or the long-range dependencies. The incorporation
of attention-based models enhances feature focus but, at
the  same  time,  presents  problems  such  as  blurred
boundaries  and  marginal  classification  errors.  Thus,
although transformer models seem to be accurate in many
tasks,  limited  data  exists  comparing  them  to  other
techniques  for  glioma  grading  or  multi-class
categorization.

Table 1. A review of deep learning approaches for brain tumour classification.

Author(s) Methodology Key Features Strengths Remarks

Rasheed et al. [11] CNN Three-class classification Efficient feature learning Baseline CNN; lacks advanced context
handling

Abd El-Wahab et al.
[12] BTC-FCNN Fast CNN for MRI High accuracy, low computation Prioritizes speed; suited for real-time

systems

Ozkaraca et al. [13] Dense CNN Dense connections Enhanced feature propagation Strong feature reuse, but risk of
redundancy

Muezzinoglu et al.
[14] PatchResNet + KNN Patch-based deep fusion Multi-size patch learning Creative patchwise fusion with

classical ML
Mijwil et al. [15] MobileNetV1 Lightweight CNN Efficient, mobile-friendly Suitable for edge deployment

Saurav et al. [16] AG-CNN Attention + GAP Emphasizes relevant features Emphasizes spatial attention for
classification

Sekhar et al. [4] GoogLeNet + SVM/KNN Hybrid deep + classical ML Effective multi-class separation Combines deep and traditional
techniques

Athisayamani et al.
[17] ResNet152 Feature extraction + reduction Strong residual learning Deep architecture with reduced

overfitting

Shahin et al. [18] MBTFCN Residual + attention Modular, scalable design Modular framework with strong
potential

Aloraini et al. [19] Transformer + CNN Hybrid deep learning Captures long-range
dependencies

Innovative mix of CNN and
Transformer
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Author(s) Methodology Key Features Strengths Remarks
Zulfiqar et al. [20] EfficientNet Efficient CNN model High accuracy, low parameters Balanced accuracy and efficiency

Mehnatkesh et al. [21] ResNet + Ant Colony
Optimization Feature optimization Intelligent hyperparameter

tuning Uses bio-inspired tuning; novel combo

Singh & Agarwal [22] CNN for T1WCE Tailored to specific MRI type Better domain-specific accuracy Specialized approach for T1WCE
modality

Isunuri & Kakarla [23] Separable Conv Net Faster computation Optimized inference speed Prioritizes speed with separable
convolutions

Raza et al. [24] Deep GoogLeNet (15-layer) Extended depth Richer feature extraction Deep stack model for richer features

Aamir et al. [25] EfficientNet-B0 + Image
Segmentation

Contrast enhancement +
segmentation High classification precision Strong results with preprocessing

boost

Wang et al. [26] Full-stack AI Joint sampling, segmentation Streamlined MRI workflow Holistic pipeline from input to
diagnosis

Ling et al. [27] MTANet Multi-task with attention Strong joint segmentation &
classification Multi-task enhances robustness

Wang et al. [28] MHAN Multi-stage hybrid attention Effective feature refinement Layered attention improves accuracy

Sui et al. [29] ConvNext + multi-task MRI liver analysis High accuracy in multi-task
setting Great potential, but for liver MRI

Delannoy et al. [30] SegSRGAN GAN for segmentation + SR High-resolution segmentation Combines SR with accurate
segmentation

Corona et al. [31] Nonconvex Bregman
Iteration

Joint reconstruction +
segmentation Strong theoretical foundation Mathematical rigor, practical

challenge

Cipolla et al. [32] Multi-task + uncertainty
loss Loss weighting via uncertainty Efficient scene understanding Smart uncertainty-based multitasking

Sun et al. [33] SegNetMRI Unified DL for MRI Effective joint learning Specific to compressed sensing

Sui et al. [34] RecSeg (dual U-Net) Fast MRI + lesion
segmentation Robust to noise, high accuracy Redundant dual net improves

segmentation
Pramanik & Jacob [35] Deep-SLR Image domain deep learning Better parallel MRI handling Deep learning for fast, quality MRI

Tripathi et al. [37]
Ensemble learning using
Weka with EEG, ECG, EMG
fusion

Power spectral density (EEG),
multi-signal fusion, PhysioNet
dataset

strong multi-modal approach
Combining EEG with ECG/EMG
greatly enhances bruxism detection
accuracy

Wang et al. [42] Fine decision tree classifier
on single-channel EEG

Time-frequency, nonlinear
features, bipolar channels
(e.g., C4–P4)

simplicity of single-channel use Single EEG channel (C4–P4) sufficient
for accurate bruxism classification

Saini et al. [43]
Applied Naïve Bayes, K-NN,
and Logistic Regression on
EEG dataset for ADHD
prediction

Dataset of 157 children (77
ADHD, 80 healthy), behavioral
symptom analysis

K-NN achieved highest accuracy
(89%), better than Naïve Bayes
and Logistic Regression

Useful for ADHD diagnosis in children

Alalayah et al. [44]

DWT for feature extraction,
PCA and t-SNE for
dimensionality reduction,
classifiers: RF, XGBoost, K-
NN, DT, MLP

EEG signals, DWT features,
PCA + t-SNE, K-means
clustering

Achieved 98.98% accuracy using
MLP with PCA + K-means, high
precision and F1-score

Effective for early epilepsy detection

2. PROPOSED METHODOLOGY
Fig.  (1)  shows  the  method  to  classify  brain  tumours

using Magnetic Resonance Imaging scans. Before analysis
begins, researchers resize images and eliminate noise by
applying a Wiener filter followed by a smoothing process.
The Wiener filter enhances image quality by responding to
local variations and fighting noise to keep vital edge and
texture  information  that  doctors  need  to  diagnose
correctly.  We  normalize  and  prepare  input  data  before
deep learning models perform their processing tasks.

The pre-processed images enter the MPFAN model to
dig  out  functional  image  content.  MPFAN  uses  multiple
processing pathways to examine different kinds of image
features  at  various  levels  of  detail,  while  attention
techniques highlight the most important image areas. The
model  classifies  the  images  into  four  categories:  The
system reacts to MR image input by labelling results into
four  tumour  groups,  which  include  “No  Tumour,”

“Glioma,”  “Pituitary,”  and  “Meningioma.”  The  system
combines  improved  processing  steps  with  MPFAN’s
focused  analysis  to  help  doctors  make  accurate  tumour-
type detections.
2.1. Image Preprocessing

Using  Wiener  filtering  enhances  medical  images
accurately,  especially  when  performing  vital  tasks  in
medical imaging research [51]. This method lowers image
noise  to  boost  overall  quality  without  harming  distinct
structural  and  textural  parts.  Wiener  filtering  helps
prepare MRI images for brain tumour classification before
deep learning models can analyze them. The Wiener filter
adjusts  to  image  areas  to  find  noise  power  and  then
applies  ideal  smoothing  to  each  region.  Compared  to
standard  filters,  the  Wiener  filter  keeps  vital  medical
image information intact.  It  does so by considering both
the signal-to-noise ratio and the local variance within the
image  (Eq.  1),  reducing  noise  selectively  without
compromising  sharpness.

(Table 1) contd.....
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Input Image

No Tumour

glioma

pituitary

meningioma

Image Pre-processing

Image
Resizing

Image
Smoothing

Feature Extraction & 
Classification

(Proposed MPFAN)

Fig. (1). Workflow of the proposed MPFAN-based brain tumour classification

(1)

Where G(u,v) is the restored image, H(u,v) represents
degradation functions, and F(u,v) is a degraded image in
the frequency domain. Here, the power spectral density is
represented  by  Sn(u,v)  and  Sf(u,v)  for  noise  and  the  original
image, respectively.

Processing  MRI  images  initially  helps  remove
acquisition noise and environmental interference that may
interfere  with  tumour  observation.  Wiener  filtering  both
boosts visual contrast and corrects distorted input data to
make the results clearer and of better quality.  Our deep
learning  model  achieves  better  detection  precision  by
operating  on  images  that  retain  natural  structure  and
shape  details.  The  processing  system  can  accurately
recognize brain tumours through MRI scans thanks to the
Wiener filtering application.

2.2. Proposed Algorithm: Multiscale Parallel Feature
Aggregation Network (MPFAN)

A  multi-branch  convolutional  neural  network  (CNN)
architecture incorporating a multiscale feature extraction
architecture  is  proposed  to  learn  multiscale  features
effectively  and achieve robust  performance,  as shown in
Fig. (2). It has an input layer of image shape 120 × 120 ×
3.  The  input  is  processed  independently  in  two  parallel
branches  using  convolutional  layers  (conv1  and  conv2)
with  different  kernel  sizes  and  strides.  By  this

configuration, the network can extract different features
of  the  input  images.  Eqs.  2  and  3)  represent  the
convolution and max pooling operations that are applied to
the images.

(2)

(3)

Where  W,  X,  and  b  are  kernel,  input,  and  bias,
respectively,  followed  by  activation  function  f(.).

Each  branch  consists  of  a  series  of  convolutional
blocks, which are then finished with maxpooling layers to
decrease spatial measurements while keeping significant
hierarchical  information.  One  of  the  key  features  of  the
architecture  is  the  use  of  concatenation  layers,  which
combine feature maps of different branches. The same is
shown in Eq. (4), which allows the network to retain and
integrate  information  from  multiple  scales,  preserving
global  and  local  spatial  patterns.

(4)

To take advantage of the higher accuracy of Thompson
sampling  on  stochastic  bandit  problems,  we  propose  a
multi-branch approach that allows for more complex input
data  by  combining  empirical  value  estimates  with
Thompson sampling. After the feature extraction process,
the network transitions to fully connected layers for high-
dimensional  transformation  and  classification.  The  first
step  is  to  flatten  the  feature  maps,  transforming  the  3D
tensors into 1D feature vectors.

𝐺(𝑢, 𝑣) =  
𝐻 ∗ (𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2 +  
𝑆𝑛(𝑢,𝑣)

𝑆𝑓(𝑢,𝑣)

𝐹(𝑢, 𝑣)            

 X′ =  f(W ∗  X +  b)                     

X′ =  𝑚𝑎𝑥(i,j)∈R𝑋(𝑖, 𝑗)                  

 Fflat  =  Concat(features  . . . )  
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Fig. (2). Architecture of the proposed Multiscale Parallel Feature Aggregation Network (MPFAN).
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In the first dense layer, we set the number of neurons
to  2048  to  learn  complex  patterns  (beyond  simple  lines
and planes) in the data. These learned features are passed
through a second dense layer with 512 neurons for further
refinement.  To  prevent  the  model  from  overfitting,
dropout  layers  with  well-chosen  rates  are  applied  after
each dense layer to ensure that the model generalizes well
to unseen data. Depending on whether the task is binary
classification,  the  final  dense  layer  consists  of  a  single
neuron with either a linear or sigmoid activation function.
Eq. (5) shows the functionality of a fully connected layer,
and softmax classification is represented by Eq. (6).

(5)

(6)

With its multi-branch design, layered structure, feature
concatenation, and regularization techniques, the network
is naturally suited for tasks that require high-dimensional
input  processing  and  precise  feature  extraction  and
classification.

2.3. Pseudo Code for MPFAN
Our MPFAN model implementation starts by defining

the  size  of  the  MRI  image  inputs.  The  input  layer
processes  the  images  and  passes  them  through  two
separate convolutional branches: one with a smaller filter
size. Our design uses one convolutional branch with 3 × 3
filters and another with 5 × 5 filters. These layers shrink
feature maps by taking their maximum values during each
subsampling step. The model merges scale feature maps
from each input branch to build its overall representation.

A  layer  of  2048 neurons  with  ReLU activation  builds
complex features that  reduce the dropout  layer  with 0.4
probability  to  prevent  overfitting.  After  processing
through  512  neurons,  the  layer  refines  another  step-in
feature  extraction  before  traditional  dropout  protection.
The  model’s  final  layer  consists  of  one  neuron  with  a
sigmoid  activation  to  provide  tumour  malignancy
likelihood. The model trains best using Adam optimization
and  binary  cross-entropy  loss  to  achieve  proper  results.
The same has been presented as an algorithm in Algorithm
1 for the proposed MPFAN model.

Algorithm 1: Multiscale Parallel Feature Aggregation
Network (MPFAN)

1: Input: MRI brain image I∈R120×120×3
2:  Output:  Tumour  classification

y∈{Glioma,Meningioma,Pituitary,No  Tumour}
3: Load MRI brain tumour image of size 120 × 120 ×

3.
4: FA1 ← ReLU(Conv2D32,3×3,s=2(I))
5: FA2 ← ReLU(Conv2D32,3×3,s=1(FA1))
6: FA3 ← ReLU(Conv2D64,3×3,s=1(FA2))
7: PA ← MaxPool3×3(FA3)
8: PA” ← ReLU(Conv2D64,3×3,s=2(FA3))

9: Concatenate: F1 ← Concat(PA, PA”)
10: FC1 ← ReLU(Conv2D64,1×1,s=1(F1))
11: FC2 ← ReLU(Conv2D64,5×1,s=1(FC1))
12: FC3 ← ReLU(Conv2D64,1×5,s=1(FC2))
13: FC4 ← ReLU(Conv2D96,3×3,s=1(FC3))
14: FD1 ← ReLU(Conv2D64,3×3,s=1(F1))
15: FD2 ← ReLU(Conv2D96,5×5,s=1(FD1))
16: Concatenate: F2 ← Concat(FC4, FD2)
17: PF2 ← MaxPool3×3(F2)
18: FE1 ← ReLU(Conv2D96,3×3,s=1(F2))
19: Concatenate: F3 ← Concat(PF2, FE1)
20: FB1 ← ReLU(Conv2D64,1×1,s=2(I))
21: FB2 ← ReLU(Conv2D64,3×1,s=1(FB1))
22: FB3 ← ReLU(Conv2D64,1×3,s=1(FB2))
23: PFB3 ← MaxPool3×3(FB3)
24: FE1 ← ReLU(Conv2D64,1×1,s=1(PFB3 ))
25: FE2 ← ReLU(Conv2D64,5×1,s=1(FE1))
26: FE3 ← ReLU(Conv2D96,1×5,s=1(FE2))
27: FE4 ← ReLU(Conv2D96,1×1,s=2×1(FE3))
28: FE5 ← ReLU(Conv2D96,3×3,s=1(FE4))
29: PFE5 ← MaxPool3×3(FE5)
30: Concatenate: F4 ← Concat(PFE5, F3)
31: P3 ← MaxPool3×3(F4)
32: Flatten the pooled feature map: Ff ← Flatten(P3)
33:  Fully  connected  layer  1:  h1  ←  ReLU(W1Ff  +  b1),

then apply Dropout (p = 0.4)
34:  Fully  connected  layer  2:  h2  ←  ReLU(W2h1  +  b2),

then apply Dropout (p = 0.4)
35: Final output: yˆ← Softmax(W3h2+ b3)
36: Predicted class: y ← Argmax(yˆ)

The algorithm is run on an MRI dataset with 32 images
per batch during 100 training rounds. We use labeled MRI
images  to  train  our  model  and  validate  performance  by
checking  results  with  the  validation  data.  The  MPFAN
model achieves good results while also running efficiently
for brain tumour diagnosis tasks.

2.4. Dataset Description

The  Brain  Tumour  MRI  Dataset  provides  a
comprehensive collection of  MRI scans for  brain tumour
classification [52, 53]. It includes four tumour categories:
Gliomas  (300  images),  Meningiomas  (306  images),
Pituitary  Tumours  (300  images),  and  No  Tumours  (405
images).  This  dataset  is  well-suited  for  deep  learning
applications  focused  on  automatic  tumour  detection  and
classification.

FC =  f(Wfc ⋅ Fflat + bfc)

P(yi) =  
ezi

∑ ezj
𝑗
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Table 2. Performance analysis of the proposed method for different epochs.

Epoch TA TL TP TR TF VA VL VP VR VF

20 0.956 0.092 0.958 0.956 0.951 0.961 0.082 0.962 0.961 0.957
40 0.975 0.069 0.976 0.974 0.971 0.975 0.064 0.975 0.975 0.973
60 0.983 0.055 0.983 0.982 0.98 0.986 0.057 0.987 0.984 0.98
80 0.984 0.055 0.985 0.984 0.983 0.964 0.078 0.966 0.964 0.958
100 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974
Note: *T=Training, V=Validation, A=Accuracy, L=Loss, P=Precision,
R=Recall, F=F1-Measure.

Table 3. Comparative analysis of proposed approach for different optimizers.

Optimizer TA TL TP TR TF VA VL VP VR VF

RMS Prop 0.922 0.129 0.93 0.919 0.918 0.887 0.195 0.894 0.878 0.869
Ada-Delta 0.99 0.042 0.991 0.99 0.989 0.972 0.071 0.977 0.972 0.97
Adam 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974
SGD 0.987 0.05 0.988 0.987 0.986 0.958 0.113 0.959 0.958 0.953
AdaGrad 0.98 0.058 0.98 0.979 0.975 0.964 0.078 0.966 0.963 0.96

Given  the  challenges  of  low-quality  imaging  and
undersampled  data,  our  MPFAN  model  addresses  these
issues  by  extracting  multiscale  features  and  processing
them in parallel. The dataset is used for both training and
performance  evaluation  of  the  MPFAN  model,  with  key
aspects including multiscale feature extraction to capture
tumour characteristics at different spatial levels, parallel
processing  for  improved  feature  representation,  and
classification accuracy, efficiency, and feature robustness
as the primary performance metrics.

3. RESULTS AND DISCUSSION
The comparative analysis of different epochs indicates

a  consistent  improvement  in  performance  metrics  over
time,  as  shown  in  Table  2.  Validation  and  training
accuracy  increase  as  the  model  trains  from  20  to  100
epochs. At epoch 100, the validation accuracy hits 0.974
while training accuracy reaches 0.985. As the model trains
over  time,  its  optimization  improves,  resulting  in  lower
training (0.053) and validation loss (0.072). The changes in
TR and TF results ensure better model performance, while
TP gains show steady progress in reliability.  Our results
show signs of overfitting from validation metrics in later
epoch updates.  Our findings show that increasing model
training time produces better results yet requires manual
optimization to maintain prediction reliability.

The analysis finds that Ada-Delta is the most effective
optimizer  because  it  delivers  top  accuracy  (0.990)  and
validation  accuracy  (0.972)  across  all  performance
measures. In Table 3, Adam’s superior performance shows
that this optimizer produces 0.985 top accuracy and 0.974
validation  accuracy.  Gradient  Descent  proves  itself
through a Test Accuracy (0.987) that is slightly lower than
its  Validation  Accuracy  (0.958).  In  performance  testing,
AdaGrad  generates  acceptable  results  with  accuracy
scores of 0.980 for training and 0.964 for validation. RMS

Prop  ranks  lowest  among  tested  optimizers  because  it
achieves  a  TA  of  0.922  and  a  VA  of  0.887  compared  to
other optimization methods.

As illustrated in Fig. (3), the trade-off curves capturing
the  model's  learning  dynamics  on  brain  tumor
classification showcase the trade-offs  between accuracy,
loss,  precision,  recall,  and  F1-score.  Inaccuracy
measurement  subsection  (Fig.  3a),  training  accuracy
appears  to  improve  throughout  epochs  and  levels  off  at
around 98.5% while validation accuracy plateaus slightly
below  at  about  97.4%.  This  indicates  strong  model
generalization with negligible overfitting issues. Validation
loss  presented  in  slice  (Fig.  3b)  demonstrates  trends
linking  cross-entropy  losses  for  both  datasets,  whereby
training loss decreases to a value of 0.053 and validation
loss  settles  just  under  0.072,  confirming  effective
convergence without underfitting issues persisting. These
observations  support  claims regarding high optimisation
efficiency  provided  by  applying  the  Adam  algorithm,  as
well  as  confirming  that  the  model  acquires  proper
representations  during the  training phase,  unexposed to
excessive  overfitting  or  underfitting  during  alternating
training  and  validating  stages.

The  model's  classification  performance  is  further
analyzed and highlighted in training and validation using
precision, recall, and F1-score curves shown in subfigures
(Fig.  3c-e).  The  training  precision  peaks  at  98.5% while
validation  precision  stabilizes  around 97.7%,  reinforcing
the claim that  false  positives  are  minimized.  Also,  recall
values, which indicate a model's sensitivity, hit 98.5% for
training and 97.4% for validation, which means almost all
true tumor cases are captured. The F1-score captures both
precision and recall, achieving 98.3% on the training set
while validation yields 97.4%. Having strong results across
the board reflects the classification ability of the model.
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Fig. (3). Trade-off curves between training and validation (a) Accuracies, (b) Loss, (c) Precision, (d) Recall, (e) F1-Score

     
       (a)                                                                          (b) 

     
 (c)                                                                       (d) 

 
    (e) 
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Fig. (4). Comparison with Existing Methods.

The  close  distance  of  these  metrics  across  training  and
validation illustrates the strength of the model, alongside
its  stability  over  epochs,  suggesting  strong  overall
performance  even  with  multilabel  medical  images  from
diverse  domains  within  healthcare  fields  spanning  many
specialties. All together, these confirm that the accuracy
estimations reached by the proposed model for real-time
detection  of  brain  tumors  in  support  systems  are
trustworthy.

3.1. Comparison with Existing State-of-the-Art
This  study  compares  MPFAN  against  leading  brain

tumour classification techniques that exist today, as found
in  Fig.  (4).  The  MPFAN  system  delivers  outstanding
performance in every metric, with a precision of 0.977 and
outcomes that closely match each other. MPFAN performs
better  than  competing  systems,  which  reported  0.963
accuracy  and  0.960  F1  measure  data.  Our  study  shows
that  breaking up tumour  features  at  multiple  scales  and
then analyzing them together improves detection accuracy

to establish a new classification benchmark.

3.2. Ablation Study
We  have  performed  an  extensive  ablation  study  to

understand  the  contribution  of  each  architectural
component of the proposed MPFAN model. Here, we have
tested the performance impact of removing or modifying
important components such as the multi-branch structure,
feature fusion strategy, dropout regularization, optimizer,
and dense layer configuration. Table 4 presents the results
of  the  comparative  analysis  of  each  architectural
component  of  MPFAN.  The  baseline  MPFAN  model
achieved a classification accuracy of  97.4% on the brain
tumor MRI dataset. Removing one of the parallel branches
(3×3  or  5×5  convolution)  caused  a  drop  in  accuracy  to
93.1%,  underscoring  the  importance  of  extracting
multiscale  features.  Additionally,  using  the  same  kernel
size  in  both  branches,  accuracy  dropped  to  94.5%,
suggesting  that  capturing  rich  spatial  features  requires
multiple receptive fields.

Table 4. Comparative evaluation of MPFAN with different architectural ablation variants.

Description Accuracy (%) Drop in Accuracy w.r.t. MPFAN

Proposed Method (MPFAN) 97.4 -
Remove one parallel branch (use only 3×3 conv) 93.1 ↓ 4.3
Use same kernel size in both branches (3×3 for both) 94.5 ↓ 2.9
Remove feature concatenation (keep outputs separate) 91.8 ↓ 5.6
Remove dropout layers 95.2 ↓ 2.2
Reduce dense layer size (1024 → 256 instead of 2048 → 512) 94.7 ↓ 2.7
Replace Adam with SGD optimizer 95.8 ↓ 1.6
Remove max pooling in branches 92.5 ↓ 4.9
Single-scale CNN (no multiscale branches) 90.4 ↓ 7.0
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Moreover, eliminating the concatenation of features also
resulted in a notable accuracy drop to 91.8%, underscoring
its  vital  role  in  maintaining  multiscale  spatial  quantitative
information. The removal of dropout also reduced accuracy
to  95.2%,  confirming  the  regularization  effect  of  dropout,
which is clearly necessary in avoiding overfitting.

The  accuracy  is  dropped  to  2%  (i.e.,  94.7%)  with  the
modification  changing  dense  layers  from  2048→512  to
1024→256.  This  shows  a  need  for  greater  feature
transformation ability in the classification phase.  Changing
the  optimizer  from  Adam  to  SGD  caused  a  slight  drop  to
95.8%, suggesting better convergence properties of Adam for
this architecture. Also, removing max pooling in the branches
or  using  a  single-scale  CNN  (no  multi-branch  structure)
caused a significant loss in performance, down to 92.5% and
90.4%, respectively. These results support the design choices
made  in  the  MPFAN and  illustrate  the  need  for  multiscale
processing in parallel with hierarchical feature integration to
achieve precise brain tumor classification.

3.3. Constraints of the Study
Results  aside  from  the  strong  performance  of  the

proposed  MPFAN  model  in  brain  tumor  classification,
MPFAN  shows  several  limitations  that  may  most  likely
impact  interpretation  and  generalization.  The  model  is
trained and validated using a single benchmark MRI dataset,
which does not consider the variability present in real-world
clinical  scenarios  with  different  imaging  devices,  patient
demographics,  and  scanning  protocols.

Moreover, the model demonstrated high accuracy across
epochs and optimizers;  however,  signs of  overfitting at  the
later  stages  of  training  indicate  that  there  could  be  a
sensitivity  to  performance  related  to  the  training  duration
and  the  hyperparameter  settings.  Furthermore,  the  fixed
choices  of  parameters,  like  the  optimizer  and  the
architectural  designs  used,  may  pose  barriers  to
reproducibility  and  scalability  without  some  form  of
automated  optimization.  Although  the  ablation  study
validated that every architecture component is important, the
study did not address the robustness of MPFAN under noise
in the data or incomplete information, which tend to be more
prevalent in clinical settings. Such shortcomings need to be
addressed in subsequent work to improve the model’s clinical
relevance and potential for widespread use.

4. CONCLUSION AND FUTURE DIRECTIONS
The  MPFAN  (Multiscale  Parallel  Feature  Aggregation

Network)  model  is  developed  to  improve  brain  tumor
detection  by  parallel  feature  extraction  at  multiple  scales.
MPFAN can capture fine-grained local and global contextual
patterns  in  MRI  brain  scans  with  its  multi-branch
convolutional  architecture  and  hierarchically  integrated
feature fusion approach. MPFAN overcomes challenges like
feature  redundancy,  insufficient  multiscale  pattern
representation,  and  poor  computation  efficiency  in
traditional  CNN models  by  concurrently  processing  image
data  from  varying  receptive  fields,  effectively  integrating
them. This marks a stark difference from our model, which,
while still being resource considerate, enables low-resource
demand environments like clinical settings to leverage the
model in real-time.

As for work to tackle in the future, we intend to optimize
MPFAN  by  adding  an  Attention  Fusion  Network  to
supersede conventional concatenation layers. This will allow
the  network  to  selectively  concentrate  on  the  most
important  feature  maps  during  training  and  inference
processes,  making  the  model  achieve  these  tasks  much
faster, reducing overfitting, and lowering model complexity.
Moreover,  we  plan  to  add  residual  connections  and
bottleneck  structures  to  strengthen  the  gradient  flow  and
improve convergence and generalization performance. For
future  research,  we  want  to  modify  the  architecture  of
MPFAN  for  use  in  multimodal  medical  imaging,  like
combining MRI with PET or CT scans, while also broadening
its use to include the classification of  various neurological
and oncological abnormalities. Moreover, the explainability
modules, such as Grad-CAM or SHAP, may be examined to
enhance clinical trust and provide insight into the network's
reasoning.  With  such  enhancements,  the  MPFAN  can
develop  into  a  strong,  flexible  architecture  for  a  complete
analysis of medical images.
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