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Abstract:

Introduction: Accurate classification of brain tumours using MRI scans is vital for early diagnosis and treatment.
However, conventional deep learning models often require complete MRI sequences, which can prolong scan times
and lead to patient discomfort or motion-related image degradation. Thus, enhancing diagnostic accuracy under
faster scanning conditions is a critical research need. Therefore, this research aims to show how our proposed
mechanism, namely Multiscale Parallel Feature Aggregation Network (MPFAN), accurately improves the diagnosis of
classifying brain tumours while maintaining Magnetic Resonance Imaging (MRI) quality in fast MRI scanning.

Methods: This article proposed an MPFAN architecture that utilizes parallel branches to extract image features from
different scales, using independent pathways with varied filters and movement steps. Feature combination blocks,
feedback prevention mechanisms, and strict training constraints enhance system reliability.

Results: MPFAN achieved an accuracy of 97.4%, outperforming many existing brain tumour classification models.
Performance improved steadily over training epochs, and optimizer comparisons showed Adam and Ada-Delta yielded
the best results. Ablation studies confirmed that multiscale feature extraction, dropout regularization, and feature
fusion significantly contribute to classification accuracy.

Discussion: The MPFAN model demonstrates superior performance due to its ability to effectively extract and
integrate multiscale features. Its dual-branch architecture enables deeper contextual understanding, and its high
accuracy validates its clinical potential. However, the model’s reliance on a single dataset and potential overfitting in
later training epochs indicate the need for broader validation and optimization in real-world clinical environments.

Conclusion: The proposed MPFAN architecture enhances brain tumour classification by improving image processing
efficiency and decision-making speed, making it a reliable and effective diagnostic tool.

Keywords: Brain tumour classification, Multiscale feature aggregation, Deep neural network, Medical image
processing, Computer-aided diagnosis, MRI, MPFAN.
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1. INTRODUCTION

Brain tumours are extremely dangerous and fatal
cancers, which cause loss of life. Ageing or damaged brain
cells that fail to regenerate properly may create extra
tissue, leading to tumour formation [1]. Brain tumours
exist in two forms: cancerous growths that spread and
non-cancerous growths that do not. Fast detection and
treatment of malignant brain tumours have become
essential since they spread rapidly into nearby brain
tissues to increase the chances of survival [2].

Doctors often choose MRI scans to discover brain
tumours because these devices create precise brain
images through magnets instead of radiation exposure.
Brain tumours are generally categorized into three types
based on their location: meningiomas, pituitary tumours,
and gliomas [3]. There are two main brain tumour image
classification strategies using MRI scans: traditional
manual feature analysis and deep learning techniques.
Doctors must select image features by hand before feeding
them into standard classifiers, including Support Vector
Machine (SVM) and K-Nearest Neighbour (KNN). These
methods work well but take a long time to process data
and require a lot of effort [4-7]. Convolutional Neural
Networks (CNNs) enable deep learning systems to
automatically identify and organize features while
addressing challenges related to improper data and slow
processing.

Standard deep learning approaches need all the
information within the MRI images to perform
classification. Extended MRI procedures make patients
uncomfortable and result in damaged MRI images when
patients move. Deep learning methods for fast MRI
scanning must improve their ability to preserve image
quality to achieve better brain tumour classification
results [8, 9].

Our proposed MPFAN architecture combines CNN
features from different scales through parallel networks to
boost brain tumour classification results. MPFAN uses
parallel branches to extract detailed image features both
near and far. The system uses two independent pathways
to examine input images using different filters and
movement steps to produce different feature sets.
Integrating separate feature combination blocks, feedback
prevention tools, and strict training limits helps the system
perform more reliably. The proposed method combines
efficient brain tumour classification with powerful
diagnostic results through better processing and quicker
decision-making. The main contribution of the paper is as
follows:

e We present a state-of-the-art method to classify brain
tumours from MRI images.

e We present a Multiscale Parallel Feature Aggregation
Network (MPFAN) to detect tumours efficiently from
medical images.

e We experimentally explore this network for different
parameters.

Ahmad et al.

1.1. Related Work

The current literature on glioma grading and brain
tumour classification predominantly relies on CNN-based
methods due to their ability to learn local features.
However, these methods struggle with modelling long-
range dependencies and global context, which may limit
classification accuracy. The machine learning-based
approach discussed by Wang et al. demonstrates
satisfactory accuracy but provides limited insights into
general performance across various tumour classes [10].

Attention mechanisms have increased the emphasis on
features, yet convolutional operations still dominate,
making capturing objects such as blurred edges or
intensity variations challenging. On the other hand,
previous approaches achieve high accuracy; further
enhancements are needed to develop more general and
multiscale classifiers. Rasheed et al. employed an efficient
CNN method to categorize three different types of brain
tumors [11]. Abd El-Wahab et al. proposed a deep learning
model called BTC-FCNN to enhance classification
accuracy while reducing the computational overhead of
MRI-based classifiers [12].

Ozkaraca et al. utilized Dense CNN to improve brain
tumour classification in MRI imaging [13]. Similarly,
Muezzinoglu and Others introduced PatchResNet, a
framework leveraging multi-sized patch-based feature
fusion to achieve high classification accuracy [14]. Their
approach incorporates KNN classification and iterative
hard voting, which are crucial for boosting accuracy.
Mijwil et al. employed MobileNetV1l to classify brain
tumors in MRI images, demonstrating an accurate and
efficient model for medical imaging systems [15]. Saurav
et al. introduced a simple attention-guided convolutional
neural network (AG-CNN) architecture that utilizes
channel attention and global average pooling (GAP) as its
feature extraction mechanism [16].

Sekhar et al. adopted the GoogLeNet model and
employed SVM and KNN classifiers to differentiate
gliomas, meningiomas, and pituitary tumors [4].
Athisayamani et al. utilized ResNet152 to enhance feature
extraction and reduce dimensionality, improving
classification performance [17]. Shahin et al. designed
MBTFCN, which classifies tumors across multiple
categories using three key techniques, including feature
extraction with residual connections and attention
mechanisms [18].

In their research, Aloraini et al. integrated
Transformer and CNN elements into a single model, while
Zulfiqar et al. leveraged EfficientNets for brain tumor
image classification [19, 20]. Mehnatkesh et al. [21]
applied an improved ant colony algorithm to optimize MRI
tumor classification using ResNet. Singh and Agarwal
developed a CNN-based approach specifically designed for
T1WCE MRI images [22].

Isunuri and Kakarla utilized a neural network based on
separable convolution to maximize computational speed in
tumor classification [23]. Raza et al. extended GoogLeNet
into a 15-layer deep network to enhance expressive
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capabilities [24]. Aamir et al. employed EfficientNet-BO for
feature extraction after grouping and segmenting images,
enhancing image contrast using nonlinear techniques [25].

A new approach, referred to as full-stack learning
(FSL), was proposed by Wang et al., where sampling,
reconstruction, and segmentation are co-performed due to
task dependencies and improve MRI workflow [26]. Ling
et al. proposed a new multitask attention network named
MTANet for better segmentation and classification,
together with an attention mechanism [27]. Wang et al.
developed a multi-stage hybrid attention network (MHAN)
model to conduct MRI image super-resolution and
reconstruction, besides having specialized modules
regarding enhanced spatial feature extraction [28]. Sui et
al. applied ConvNext blocks in a multi-task learning
system for liver MRI analysis and found refined details for
higher accuracy [29]. Subsequently, Delannoy et al.
proposed SegSRGAN, which employs the GANs to improve
the resolution in neonatal brain MRI and the segmentation
accuracy [30]. Corona et al. integrated total variation
reconstruction and Chan-Vesed segmentation using
nonconvex Bregman iteration to achieve enhanced output
from both systems [31]. Cipolla et al. also presented a
structure that uses geometric and semantic loss to allow
scene analysis with maximum efficiency in multi-task
learning [32]. Sun et al. developed SegNetMRI as a deep
learning technology that reconstructs and segments MRI
images using compressed sensing techniques [33]. Sui et
al. developed RecSeg to incorporate two U-Net structures,
making MRI reconstruction faster and lesion segmentation
more accurate [34]. Pramanik and Jacob recently
employed Deep-SLR to improve the parallel MRI data
reconstruction and segmentation function [35].

Recent studies also highlight the wuse of
Electroencephalogram (EEG)-based machine learning
models and their application to different neurological
disorders with an unmatched accuracy rate [36]. Tripathi
et al. developed a Weka-based ensemble framework that

integrated EEG, Electrocardiogram (ECG), and
Electromyography (EMG) signals working with the
PhysioNet sleep-bruxism dataset [37]. They reported up to
99% accuracy in detecting sleep bruxism. M.B. Bin Heyat
et al. [38], which used a Decision Tree classifier with
C4-P4 and C4-A1 EEG channels for sleep bruxism
detection [39-41]. Wang et al. proved that single-channel
EEG (C4-P4) and some fine decision tree classifiers could
achieve 97.84% accuracy using a small REM-sleep dataset
for bruxism detection [42]. In the Attention Deficit
Hyperactivity Disorder (ADHD) diagnosis, Saini et al.
suggested a model to predict ADHD using EEG signals and
machine learning methods [43]. This method tested
different types of classifiers to improve the accuracy and
reliability of the diagnosis of ADHD. The proposed method
showed how EEG-based automated systems can help in
early identification and can be useful for clinical use.
Regarding epilepsy detection, Alalaya et al. suggested a
method to detect epilepsy using EEG signals [44]. This
method used DWT to extract features and then used PCA
or t-SNE to reduce the complexity of the data. Several
classifiers, such as RF, XGBoost, and MLP, were tested to
see which one works best. This method achieved an
accuracy of up to 98.98%, which is better than the
accuracy reported in previous research.

Table 1 presents a comparative analysis of various
deep learning models (CNNs, CNNs with Attention, and
Transformers) for classifying Computed Tomography (CT)
scans as belonging to a brain tumour [45-50]. It proved
that CNNs can be more accurate when used, but they have
a variety of limitations, such as capturing the global
context or the long-range dependencies. The incorporation
of attention-based models enhances feature focus but, at
the same time, presents problems such as blurred
boundaries and marginal classification errors. Thus,
although transformer models seem to be accurate in many
tasks, limited data exists comparing them to other

Table 1. A review of deep learning approaches for brain tumour classification.

Author(s) Methodology Key Features

Rasheed et al. [11] CNN

Abd El-Wahab et al.
[12]

Ozkaraca et al. [13]

BTC-FCNN Fast CNN for MRI

Dense CNN Dense connections

Muezzinoglu et al.

Three-class classification

techniques for glioma grading or multi-class
categorization.
Strengths Remarks
Efficient feature learning E:ﬁglﬁ?@ CNN; lacks advanced context
High accuracy, low computation Ssri*étggimtiszes speed; suited for real-time
Enhanced feature propagation ? ;S%?l%giac;ure reuse, but risk of

Creative patchwise fusion with

[14] PatchResNet + KNN Patch-based deep fusion Multi-size patch learning classical ML
Mijwil et al. [15] MobileNetV1 Lightweight CNN Efficient, mobile-friendly Suitable for edge deployment

. . Emphasizes spatial attention for
Saurav et al. [16] AG-CNN Attention + GAP Emphasizes relevant features classification
Sekhar et al. [4] GoogLeNet + SVM/KNN Hybrid deep + classical ML Effective multi-class separation g)crﬁlgllgs: Sdeep and traditional
Athisayamani et al. . . . : Deep architecture with reduced
[17] ResNet152 Feature extraction + reduction |Strong residual learning overfitting
Shahin et al. [18] MBTFCN Residual + attention Modular, scalable design gggﬁ?;l framework with strong

. . . Captures long-range Innovative mix of CNN and

Aloraini et al. [19] Transformer + CNN Hybrid deep learning dependencies Transformer
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(Table 1) contd.....
Author(s) Methodology Key Features Strengths Remarks
Zulfiqar et al. [20] EfficientNet Efficient CNN model High accuracy, low parameters |Balanced accuracy and efficiency
ResNet + Ant Colony RIS Intelligent hyperparameter T A
Mehnatkesh et al. [21] Optimization Feature optimization tuning Uses bio-inspired tuning; novel combo

Singh & Agarwal [22]

CNN for TIWCE

Tailored to specific MRI type

Better domain-specific accuracy

Specialized approach for TITWCE
modality

Isunuri & Kakarla [23]

Separable Conv Net

Faster computation

Optimized inference speed

Prioritizes speed with separable
convolutions

Raza et al. [24] Deep GoogLeNet (15-layer) |Extended depth Richer feature extraction Deep stack model for richer features
. EfficientNet-B0O + Image Contrast enhancement + . . . - Strong results with preprocessing
Aamir et al. [25] Segmentation segmentation High classification precision boost

Wang et al. [26]

Full-stack Al

Joint sampling, segmentation

Streamlined MRI workflow

Holistic pipeline from input to
diagnosis

Ling et al. [27]

MTANet

Multi-task with attention

Strong joint segmentation &
classification

Multi-task enhances robustness

Wang et al. [28]

MHAN

Multi-stage hybrid attention

Effective feature refinement

Layered attention improves accuracy

Sui et al. [29]

ConvNext + multi-task

MRI liver analysis

High accuracy in multi-task
setting

Great potential, but for liver MRI

Delannoy et al. [30]

SegSRGAN

GAN for segmentation + SR

High-resolution segmentation

Combines SR with accurate
segmentation

Corona et al. [31]

Nonconvex Bregman
Iteration

Joint reconstruction +
segmentation

Strong theoretical foundation

Mathematical rigor, practical
challenge

Cipolla et al. [32]

Multi-task + uncertainty
loss

Loss weighting via uncertainty

Efficient scene understanding

Smart uncertainty-based multitasking

Sun et al. [33] SegNetMRI Unified DL for MRI Effective joint learning Specific to compressed sensing
: Fast MRI + lesion : : Redundant dual net improves
Sui et al. [34] RecSeg (dual U-Net) segmentation Robust to noise, high accuracy segmentation
Pramanik & Jacob [35]|Deep-SLR Image domain deep learning  |Better parallel MRI handling Deep learning for fast, quality MRI

Tripathi et al. [37]

Ensemble learning using
Weka with EEG, ECG, EMG
fusion

Power spectral density (EEG),
multi-signal fusion, PhysioNet
dataset

strong multi-modal approach

Combining EEG with ECG/EMG
greatly enhances bruxism detection
accuracy

Wang et al. [42]

Fine decision tree classifier
on single-channel EEG

Time-frequency, nonlinear
features, bipolar channels
(e.g., C4-P4)

simplicity of single-channel use

Single EEG channel (C4-P4) sufficient
for accurate bruxism classification

Saini et al. [43]

Applied Naive Bayes, K-NN,
and Logistic Regression on
EEG dataset for ADHD
prediction

Dataset of 157 children (77
ADHD, 80 healthy), behavioral
symptom analysis

K-NN achieved highest accuracy
(89%), better than Naive Bayes
and Logistic Regression

Useful for ADHD diagnosis in children

Alalayah et al. [44]

DWT for feature extraction,
PCA and t-SNE for
dimensionality reduction,
classifiers: RF, XGBoost, K-
NN, DT, MLP

EEG signals, DWT features,
PCA + t-SNE, K-means
clustering

Achieved 98.98% accuracy using
MLP with PCA + K-means, high
precision and F1-score

Effective for early epilepsy detection

2. PROPOSED METHODOLOGY

Fig. (1) shows the method to classify brain tumours
using Magnetic Resonance Imaging scans. Before analysis
begins, researchers resize images and eliminate noise by
applying a Wiener filter followed by a smoothing process.
The Wiener filter enhances image quality by responding to
local variations and fighting noise to keep vital edge and
texture information that doctors need to diagnose
correctly. We normalize and prepare input data before
deep learning models perform their processing tasks.

The pre-processed images enter the MPFAN model to
dig out functional image content. MPFAN uses multiple
processing pathways to examine different kinds of image
features at various levels of detail, while attention
techniques highlight the most important image areas. The
model classifies the images into four categories: The
system reacts to MR image input by labelling results into
four tumour groups, which include “No Tumour,”

“Glioma,” “Pituitary,” and “Meningioma.” The system
combines improved processing steps with MPFAN’s
focused analysis to help doctors make accurate tumour-
type detections.

2.1. Image Preprocessing

Using Wiener filtering enhances medical images
accurately, especially when performing vital tasks in
medical imaging research [51]. This method lowers image
noise to boost overall quality without harming distinct
structural and textural parts. Wiener filtering helps
prepare MRI images for brain tumour classification before
deep learning models can analyze them. The Wiener filter
adjusts to image areas to find noise power and then
applies ideal smoothing to each region. Compared to
standard filters, the Wiener filter keeps vital medical
image information intact. It does so by considering both
the signal-to-noise ratio and the local variance within the
image (Eq. 1), reducing noise selectively without
compromising sharpness.
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Image
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2
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Fig. (1). Workflow of the proposed MPFAN-based brain tumour classification

H = (u,v
( ;n(uv)F(u,v) (1)
Huwv)|? + —
|H(u, v)| Ly

G(u,v) =

Where G(u,v) is the restored image, H(u,v) represents
degradation functions, and F(u,v) is a degraded image in
the frequency domain. Here, the power spectral density is
represented by S,,,, and S;,,, for noise and the original
image, respectively.

Processing MRI images initially helps remove
acquisition noise and environmental interference that may
interfere with tumour observation. Wiener filtering both
boosts visual contrast and corrects distorted input data to
make the results clearer and of better quality. Our deep
learning model achieves better detection precision by
operating on images that retain natural structure and
shape details. The processing system can accurately
recognize brain tumours through MRI scans thanks to the
Wiener filtering application.

2.2, Proposed Algorithm: Multiscale Parallel Feature
Aggregation Network (MPFAN)

A multi-branch convolutional neural network (CNN)
architecture incorporating a multiscale feature extraction
architecture is proposed to learn multiscale features
effectively and achieve robust performance, as shown in
Fig. (2). It has an input layer of image shape 120 x 120 x
3. The input is processed independently in two parallel
branches using convolutional layers (convl and conv2)
with different kernel sizes and strides. By this

configuration, the network can extract different features
of the input images. Egs. 2 and 3) represent the
convolution and max pooling operations that are applied to
the images.

X' = f(W * X + b) @)
X' = maxjerX (i, )) @3)

Where W, X, and b are kernel, input, and bias,
respectively, followed by activation function f(.).

Each branch consists of a series of convolutional
blocks, which are then finished with maxpooling layers to
decrease spatial measurements while keeping significant
hierarchical information. One of the key features of the
architecture is the use of concatenation layers, which
combine feature maps of different branches. The same is
shown in Eq. (4), which allows the network to retain and
integrate information from multiple scales, preserving
global and local spatial patterns.

Fnat = Concat(features ...) (€))

To take advantage of the higher accuracy of Thompson
sampling on stochastic bandit problems, we propose a
multi-branch approach that allows for more complex input
data by combining empirical value estimates with
Thompson sampling. After the feature extraction process,
the network transitions to fully connected layers for high-
dimensional transformation and classification. The first
step is to flatten the feature maps, transforming the 3D
tensors into 1D feature vectors.
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Fig. (2). Architecture of the proposed Multiscale Parallel Feature Aggregation Network (MPFAN).
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In the first dense layer, we set the number of neurons
to 2048 to learn complex patterns (beyond simple lines
and planes) in the data. These learned features are passed
through a second dense layer with 512 neurons for further
refinement. To prevent the model from overfitting,
dropout layers with well-chosen rates are applied after
each dense layer to ensure that the model generalizes well
to unseen data. Depending on whether the task is binary
classification, the final dense layer consists of a single
neuron with either a linear or sigmoid activation function.
Eq. (5) shows the functionality of a fully connected layer,
and softmax classification is represented by Eq. (6).

FC = f(ch ' l:flat + bfc) 5)
e%i
P(Yi) = Z_j eZj (6)

With its multi-branch design, layered structure, feature
concatenation, and regularization techniques, the network
is naturally suited for tasks that require high-dimensional
input processing and precise feature extraction and
classification.

2.3. Pseudo Code for MPFAN

Our MPFAN model implementation starts by defining
the size of the MRI image inputs. The input layer
processes the images and passes them through two
separate convolutional branches: one with a smaller filter
size. Our design uses one convolutional branch with 3 x 3
filters and another with 5 x 5 filters. These layers shrink
feature maps by taking their maximum values during each
subsampling step. The model merges scale feature maps
from each input branch to build its overall representation.

A layer of 2048 neurons with ReLU activation builds
complex features that reduce the dropout layer with 0.4
probability to prevent overfitting. After processing
through 512 neurons, the layer refines another step-in
feature extraction before traditional dropout protection.
The model’s final layer consists of one neuron with a
sigmoid activation to provide tumour malignancy
likelihood. The model trains best using Adam optimization
and binary cross-entropy loss to achieve proper results.
The same has been presented as an algorithm in Algorithm
1 for the proposed MPFAN model.

Algorithm 1: Multiscale Parallel Feature Aggregation
Network (MPFAN)

1: Input: MRI brain image [€R120x120%3
2: Output: Tumour classification
y€{Glioma,Meningioma,Pituitary,No Tumour}

3: Load MRI brain tumour image of size 120 x 120 x
3.

4: F,; « ReLU(Conv2Dy; 5,5,-,(1))
5: F,, « ReLU(Conv2Dy, 5,561 (Fa1))
6: F,3 = ReLU(Conv2Dy, 5,31 (Fy,))

7: PA - MaXP0013X3(FA3)
8: P, < ReLU(COHV2D54,3x3,s:2(FA3))

9: Concatenate: F, < Concat(P,, P,.)
10: F;; <« ReLU(Conv2Dg, 1, ¢-1(F}))
11: F, « ReLU(Conv2Dg, 5.1 6-1(Fc1))
12: Foy « ReLU(Conv2Dg, 1 5,6-1(Fc,))
13: Fg, < ReLU(Conv2Dyg 5,5,6-1(Fc3))
14: F), « ReLU(Conv2Dg, 5,3-1(F}))
15: Fp, « ReLU(Conv2Dgg 5,5 -1 (Fp1))
16: Concatenate: F, < Concat(F,,, Fy,)
17: Py, < MaxPool,,,(F,)

18: Fy; « ReLU(Conv2Dyg 3,5,6-1(F>))
19: Concatenate: F; «— Concat(Py,, Fg;)
20: F, « ReLU(Conv2Dyg, 4 ,-,(I))

21: Fy, « ReLU(Conv2Dyg, 5,1 o-1(F5;))
22: Fg3 < ReLU(Conv2Dyg, 3 -1(F5))
23: Pgp; — MaxPool,,;(Fy,)

24: Fy, < ReLU(Conv2Dyg, 1, ¢=1(Ppss )
25: F, « ReLU(Conv2Dg, 5,1 ¢-1(Fg1))
26: Fp; « ReLU(Conv2Dyg 5 -1 (Fr,))
27: Fg, < ReLU(Conv2Dyg ;5 go3x1(Fr3))
28: Fz; « ReLU(Conv2Dyg 5,5 -1(Fry))
29: Pgp; — MaxPool,, ;(Fgs)

30: Concatenate: F, < Concat(Pgg;, F;)
31: P, « MaxPool,,.(F,)

32: Flatten the pooled feature map: F; < Flatten(P,)

33: Fully connected layer 1: h, « ReLU(W,F; + b)),
then apply Dropout (p = 0.4)
34: Fully connected layer 2: h, « ReLU(W,h, + b,),

then apply Dropout (p = 0.4)
35: Final output: y"« Softmax(W,h,+ b,)

36: Predicted class: y < Argmax(y")

The algorithm is run on an MRI dataset with 32 images
per batch during 100 training rounds. We use labeled MRI
images to train our model and validate performance by
checking results with the validation data. The MPFAN
model achieves good results while also running efficiently
for brain tumour diagnosis tasks.

2.4. Dataset Description

The Brain Tumour MRI Dataset provides a
comprehensive collection of MRI scans for brain tumour
classification [52, 53]. It includes four tumour categories:
Gliomas (300 images), Meningiomas (306 images),
Pituitary Tumours (300 images), and No Tumours (405
images). This dataset is well-suited for deep learning
applications focused on automatic tumour detection and
classification.
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Table 2. Performance analysis of the proposed method for different epochs.

Epoch TA TL TP TR TF VA VL VP VR VF
20 0.956 0.092 0.958 0.956 0.951 0.961 0.082 0.962 0.961 0.957
40 0.975 0.069 0.976 0.974 0.971 0.975 0.064 0.975 0.975 0.973
60 0.983 0.055 0.983 0.982 0.98 0.986 0.057 0.987 0.984 0.98
80 0.984 0.055 0.985 0.984 0.983 0.964 0.078 0.966 0.964 0.958
100 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974

Note: *T=Training, V=Validation, A=Accuracy, L=Loss, P=Precision,
R=Recall, F=F1-Measure.

Table 3. Comparative analysis of proposed approach for different optimizers.

Optimizer TA TL TP TR TF VA VL VP VR VF
RMS Prop 0.922 0.129 0.93 0.919 0.918 0.887 0.195 0.894 0.878 0.869
Ada-Delta 0.99 0.042 0.991 0.99 0.989 0.972 0.071 0.977 0.972 0.97
Adam 0.985 0.053 0.985 0.985 0.983 0.974 0.072 0.977 0.974 0.974
SGD 0.987 0.05 0.988 0.987 0.986 0.958 0.113 0.959 0.958 0.953
AdaGrad 0.98 0.058 0.98 0.979 0.975 0.964 0.078 0.966 0.963 0.96

Given the challenges of low-quality imaging and Prop ranks lowest among tested optimizers because it

undersampled data, our MPFAN model addresses these
issues by extracting multiscale features and processing
them in parallel. The dataset is used for both training and
performance evaluation of the MPFAN model, with key
aspects including multiscale feature extraction to capture
tumour characteristics at different spatial levels, parallel
processing for improved feature representation, and
classification accuracy, efficiency, and feature robustness
as the primary performance metrics.

3. RESULTS AND DISCUSSION

The comparative analysis of different epochs indicates
a consistent improvement in performance metrics over
time, as shown in Table 2. Validation and training
accuracy increase as the model trains from 20 to 100
epochs. At epoch 100, the validation accuracy hits 0.974
while training accuracy reaches 0.985. As the model trains
over time, its optimization improves, resulting in lower
training (0.053) and validation loss (0.072). The changes in
TR and TF results ensure better model performance, while
TP gains show steady progress in reliability. Our results
show signs of overfitting from validation metrics in later
epoch updates. Our findings show that increasing model
training time produces better results yet requires manual
optimization to maintain prediction reliability.

The analysis finds that Ada-Delta is the most effective
optimizer because it delivers top accuracy (0.990) and
validation accuracy (0.972) across all performance
measures. In Table 3, Adam’s superior performance shows
that this optimizer produces 0.985 top accuracy and 0.974
validation accuracy. Gradient Descent proves itself
through a Test Accuracy (0.987) that is slightly lower than
its Validation Accuracy (0.958). In performance testing,
AdaGrad generates acceptable results with accuracy
scores of 0.980 for training and 0.964 for validation. RMS

achieves a TA of 0.922 and a VA of 0.887 compared to
other optimization methods.

As illustrated in Fig. (3), the trade-off curves capturing
the model's learning dynamics on brain tumor
classification showcase the trade-offs between accuracy,
loss, precision, recall, and Fl-score. Inaccuracy
measurement subsection (Fig. 3a), training accuracy
appears to improve throughout epochs and levels off at
around 98.5% while validation accuracy plateaus slightly
below at about 97.4%. This indicates strong model
generalization with negligible overfitting issues. Validation
loss presented in slice (Fig. 3b) demonstrates trends
linking cross-entropy losses for both datasets, whereby
training loss decreases to a value of 0.053 and validation
loss settles just under 0.072, confirming effective
convergence without underfitting issues persisting. These
observations support claims regarding high optimisation
efficiency provided by applying the Adam algorithm, as
well as confirming that the model acquires proper
representations during the training phase, unexposed to
excessive overfitting or underfitting during alternating
training and validating stages.

The model's classification performance is further
analyzed and highlighted in training and validation using
precision, recall, and F1-score curves shown in subfigures
(Fig. 3c-e). The training precision peaks at 98.5% while
validation precision stabilizes around 97.7%, reinforcing
the claim that false positives are minimized. Also, recall
values, which indicate a model's sensitivity, hit 98.5% for
training and 97.4% for validation, which means almost all
true tumor cases are captured. The F1-score captures both
precision and recall, achieving 98.3% on the training set
while validation yields 97.4%. Having strong results across
the board reflects the classification ability of the model.
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Fig. (4). Comparison with Existing Methods.

The close distance of these metrics across training and
validation illustrates the strength of the model, alongside
its stability over epochs, suggesting strong overall
performance even with multilabel medical images from
diverse domains within healthcare fields spanning many
specialties. All together, these confirm that the accuracy
estimations reached by the proposed model for real-time
detection of brain tumors in support systems are
trustworthy.

3.1. Comparison with Existing State-of-the-Art

This study compares MPFAN against leading brain
tumour classification techniques that exist today, as found
in Fig. (4). The MPFAN system delivers outstanding
performance in every metric, with a precision of 0.977 and
outcomes that closely match each other. MPFAN performs
better than competing systems, which reported 0.963
accuracy and 0.960 F1 measure data. Our study shows
that breaking up tumour features at multiple scales and
then analyzing them together improves detection accuracy

Ahmad et al.

1]

[6]
[39]
[38]
MPFAN

to establish a new classification benchmark.

3.2. Ablation Study

We have performed an extensive ablation study to
understand the contribution of each architectural
component of the proposed MPFAN model. Here, we have
tested the performance impact of removing or modifying
important components such as the multi-branch structure,
feature fusion strategy, dropout regularization, optimizer,
and dense layer configuration. Table 4 presents the results
of the comparative analysis of each architectural
component of MPFAN. The baseline MPFAN model
achieved a classification accuracy of 97.4% on the brain
tumor MRI dataset. Removing one of the parallel branches
(3x3 or 5x5 convolution) caused a drop in accuracy to
93.1%, underscoring the importance of extracting
multiscale features. Additionally, using the same kernel
size in both branches, accuracy dropped to 94.5%,
suggesting that capturing rich spatial features requires
multiple receptive fields.

Table 4. Comparative evaluation of MPFAN with different architectural ablation variants.

Description Accuracy (%) | Drop in Accuracy w.r.t. MPFAN
Proposed Method (MPFAN) 97.4 -

Remove one parallel branch (use only 3x3 conv) 93.1 1 4.3

Use same kernel size in both branches (3x3 for both) 94.5 129

Remove feature concatenation (keep outputs separate) 91.8 156

Remove dropout layers 95.2 122

Reduce dense layer size (1024 — 256 instead of 2048 - 512)|94.7 1 2.7

Replace Adam with SGD optimizer 95.8 11.6

Remove max pooling in branches 92.5 149

Single-scale CNN (no multiscale branches) 90.4

170
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Moreover, eliminating the concatenation of features also
resulted in a notable accuracy drop to 91.8%, underscoring
its vital role in maintaining multiscale spatial quantitative
information. The removal of dropout also reduced accuracy
to 95.2%, confirming the regularization effect of dropout,
which is clearly necessary in avoiding overfitting.

The accuracy is dropped to 2% (i.e., 94.7%) with the
modification changing dense layers from 2048-512 to
1024-256. This shows a need for greater feature
transformation ability in the classification phase. Changing
the optimizer from Adam to SGD caused a slight drop to
95.8%, suggesting better convergence properties of Adam for
this architecture. Also, removing max pooling in the branches
or using a single-scale CNN (no multi-branch structure)
caused a significant loss in performance, down to 92.5% and
90.4%, respectively. These results support the design choices
made in the MPFAN and illustrate the need for multiscale
processing in parallel with hierarchical feature integration to
achieve precise brain tumor classification.

3.3. Constraints of the Study

Results aside from the strong performance of the
proposed MPFAN model in brain tumor -classification,
MPFAN shows several limitations that may most likely
impact interpretation and generalization. The model is
trained and validated using a single benchmark MRI dataset,
which does not consider the variability present in real-world
clinical scenarios with different imaging devices, patient
demographics, and scanning protocols.

Moreover, the model demonstrated high accuracy across
epochs and optimizers; however, signs of overfitting at the
later stages of training indicate that there could be a
sensitivity to performance related to the training duration
and the hyperparameter settings. Furthermore, the fixed
choices of parameters, like the optimizer and the
architectural designs used, may pose barriers to
reproducibility and scalability without some form of
automated optimization. Although the ablation study
validated that every architecture component is important, the
study did not address the robustness of MPFAN under noise
in the data or incomplete information, which tend to be more
prevalent in clinical settings. Such shortcomings need to be
addressed in subsequent work to improve the model’s clinical
relevance and potential for widespread use.

4. CONCLUSION AND FUTURE DIRECTIONS

The MPFAN (Multiscale Parallel Feature Aggregation
Network) model is developed to improve brain tumor
detection by parallel feature extraction at multiple scales.
MPFAN can capture fine-grained local and global contextual
patterns in MRI brain scans with its multi-branch
convolutional architecture and hierarchically integrated
feature fusion approach. MPFAN overcomes challenges like
feature redundancy, insufficient multiscale pattern
representation, and poor computation efficiency in
traditional CNN models by concurrently processing image
data from varying receptive fields, effectively integrating
them. This marks a stark difference from our model, which,
while still being resource considerate, enables low-resource
demand environments like clinical settings to leverage the
model in real-time.
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As for work to tackle in the future, we intend to optimize
MPFAN by adding an Attention Fusion Network to
supersede conventional concatenation layers. This will allow
the network to selectively concentrate on the most
important feature maps during training and inference
processes, making the model achieve these tasks much
faster, reducing overfitting, and lowering model complexity.
Moreover, we plan to add residual connections and
bottleneck structures to strengthen the gradient flow and
improve convergence and generalization performance. For
future research, we want to modify the architecture of
MPFAN for use in multimodal medical imaging, like
combining MRI with PET or CT scans, while also broadening
its use to include the classification of various neurological
and oncological abnormalities. Moreover, the explainability
modules, such as Grad-CAM or SHAP, may be examined to
enhance clinical trust and provide insight into the network's
reasoning. With such enhancements, the MPFAN can
develop into a strong, flexible architecture for a complete
analysis of medical images.
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