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Abstract:
Introduction:  Colorectal  cancer  is  one  of  the  global  health  threats  and  ranks  among  the  deadliest  diseases
worldwide. The recognition and elimination of polyps at a primary, precancerous phase are, therefore, the key to
preventing  CRC.  Most  of  these  polyps  differ  in  size  and  level  of  malignancy,  thus  failing  to  be  detected  by  the
commonly used screening methods.

Methods: In this study, AI-driven tools were designed using deep learning models, such as VGG16, ResNet, and
EfficientNet.  They  were  validated  using  datasets  obtained  from  JSS  Hospital  to  enhance  the  accuracy  of  polyp
recognition and decrease the probability of CRC, thereby improving patient outcomes. Fastai comes with an intuitive
API, where most functions related to data preprocessing, building, and training a model are already built. Logs on
training and validation losses, accuracies, and confidence scores of the performance metrics ensure the rigors of
evaluation across multiple epochs of training.

Results: The results were impressive, with the deep learning models performing almost constantly at an accuracy of
99% in image classification. The robustness of the models is guaranteed because the balance between validation loss
and training loss is attained. Hence, there is no overfitting or underfitting, guaranteeing reliable predictions. An
interactive web platform was developed using Hugging Face with Gradio, and real-time predictions could be made by
allowing users to upload images.

Discussion: The confusion matrix indicated that these models achieved nearly perfect classification performance.
The VGG16 model performed with 99.48% accuracy, 100% precision, 97.95% recall, and an F1 score of 98.96%. The
VGG19 model outperformed the former by a slight margin, displaying an accuracy of 99.69%, precision of 100%,
recall  of  98.76%,  and  an  F1  score  of  98.37%.  ResNet18  and  ResNet50  performed  exceptionally  well,  achieving
99.79% accuracy, 100% precision, 99.17% recall, and 99.58% F1 score. The model with the best performance, with a
solid score, was Efficient Net, scoring an accuracy of 99.9%.

Conclusion: In the study, the effectiveness of deep CNN models was validated for polyp detection to aid in CRC
prevention.  These effectively  and stably  well-performing models,  being provided to  users  by  a  very  user-friendly
platform, set a very good precedent for their broad application in the future.  This milestone success and careful
evaluation have led to an improvement in diagnostic processes and, therefore, health outcomes.

Keywords: Polyps, colon polyps, colonoscopy, Convolution neural network (CNN), polypectomy, Fastai, ImageNet
models, deep learning.
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1. INTRODUCTION
Polyps  can  develop  in  various  parts  of  the  body,  but

they are commonly found in the colon and rectum. A polyp
is  a  discrete  mass  of  tissue  that  can  develop  within  the
space  that  protrudes  into  the  lumen  of  the  bowel.
Colorectal  cancer  (CRC)  constantly  stands  out  as  a
significant  contributor  to  cancer-related  deaths
worldwide.  This  type  of  cancer  imposes  a  substantial
burden on public health, being the fourth most prevalent
cancer in men and the third among women. The likelihood
of developing CRC over a lifetime is estimated at 5%. The
prevalence  of  colon  polyps  in  India  was  found  to  be
10.18%. Central to CRC management is the identification
through screening and removal of colorectal polyps. The
men have higher rates of Advanced Adenomatous Polyps
(AAPs).  The  adenoma  detection  rate  (ADR)  is  a  well-
established  indicator  of  colonoscopy  quality  and  is
inversely  associated  with  the  occurrence  of  interval
colorectal cancer (CRC) and mortality rates [1]. The type
and probability distribution of colorectal polyps in Western
India are gradually becoming similar to those observed in
Western  countries  [2].  In  a  study,  the  overall  polyp
detection  rate  (PDR)  was  calculated  to  be  25.84%,
whereas  the  adenoma  detection  rate  (ADR)  was  initially
estimated to be 20.14% [3].

Polyps vary in tissue, size, and shape characteristics,
with  implications  for  CRC  development.  They  can  range
from  small,  benign  growths  to  larger,  potentially
malignant  lesions.  In  a  recent  prospective  study,  it  was
found  that  the  majority  of  polyps  detected  were  small,
measuring between 1 and 5 millimeters in size. Moreover,
90%  of  the  identified  polyps  were  classified  as  sub-
centimetric,  meaning  they  were  smaller  than  one
centimeter. Furthermore, among them, 90% of the polyps
measured  less  than  5  millimeters  in  diameter  [4].
Observational  research  utilizing  organizational
information  revealed  that  approximately  5%  to  9%  of
individuals  diagnosed  with  colorectal  cancer  (CRC)  had
undergone colonoscopy within the preceding six to thirty-
six months, indicating instances of undetected cancers [5,
6]. Some polyps may be flat or pedunculated, and they can
originate from different layers of the colon's lining. Polyps
can  be  classified  into  adenomatous,  serrated,  or  non-
neoplastic  types,  each  with  distinct  risks  of  malignancy.
While adenomatous polyps pose a higher risk of becoming
cancerous,  non-neoplastic  polyps  are  generally  benign.
Early  detection  and  removal  of  polyps  are  crucial  for
preventing CRC. Screening methods, such as colonoscopy
and  computed  tomographic  colonography  (CTC),  play  a
key  role  in  identifying  and  removing  polyps  before  they
progress to cancer. However, these screening tests have
limitations,  including  the  risk  of  missing  polyps,
particularly flat or small lesions. Missed polyps can lead to
delayed  diagnosis  and  treatment,  increasing  the  risk  of
CRC  development.  The  chance  of  new  adenomas
reappearing within 3 to 5 years after the removal of  the
early lesion is estimated to range between 20% and 50%
[7].

Sidney  Winawer  noted  that  adenomatous  polyps,
commonly  found  during  colorectal  screening,  once

prompted annual follow-up exams; however, studies have
demonstrated that surveillance can be safely deferred for
three  years  after  polypectomy.  Updated  guidelines
recommend colonoscopy as the sole follow-up, stratifying
patients based on risk factors. High-risk individuals, with
specific adenoma characteristics, warrant a 3-year follow-
up, and low-risk patients may wait 5 to 10 years or longer.
These guidelines aim to optimize resource allocation and
enhance screening efficacy,  emphasizing the importance
of  high-quality  baseline  colonoscopies  [8].  This  study
suggests that the stage of liver fibrosis assessed through
histology in patients with non-alcoholic fatty liver disease
(NAFLD)  holds  significant  prognostic  value  and  is
considered a surrogate endpoint in clinical trials for non-
cirrhotic  NAFLD.  Our  objective  was  to  associate  the
predictive  accuracy  of  non-invasive  examinations  with
liver  histology  in  assessing  the  prognosis  of  NAFLD
patients  [9].  To  address  the  limitations  of  traditional
screening  methodology,  researchers  have  developed
computer-aided  detection  and  segmentation  tools  using
deep  learning.  Few  studies  have  shown  improved  polyp
detection  with  AI-backed  colonoscopy  [10].  These  tools
analyze  colonoscopy  videos  in  real-time,  assisting
endoscopists in detecting and characterizing polyps more
accurately.  By  leveraging  advanced  machine  learning
techniques,  these tools  aim to  reduce the risk  of  missed
diagnoses  and  advance  the  overall  effectiveness  of  CRC
screening programs.

AI  applications  have  made  significant  strides  in
colonoscopy,  prompting  global  randomized  controlled
trials (RCTs) to assess the usefulness of AI-backed polyp
detection  tools.  Previous  meta-analyses  have  already
confirmed the clinical potential of AI-supported adenoma
discovery, with recent research conducted by Hassan and
colleagues  further  supporting  these  findings  [11].  Guo
addressed the challenge of automatic polyp segmentation,
which  is  hindered  by  limited  annotated  datasets  and
imbalanced  data  distribution.  They  proposed
ThresholdNet, coupled with CGMMix data augmentation,
to  address  these  challenges.  CGMMix  employs  manifold
mixups  at  multiple  levels  to  augment  data  and  balance
sensitivity and specificity. Additionally, MFMC and MCMC
losses  ensure  robust  training.  ThresholdNet  integrates
segmentation  and  threshold  learning,  with  each
influencing  the  other  throughout  training.  Experimental
results on two polyp partition databases demonstrate the
method's dominance over existing approaches. Moreover,
while  designed  for  polyp  segmentation,  the  approach  is
adaptable  to  various  medical  image  segmentation  tasks
[12]. Sushma and others explained that colonoscopy is an
endoscopic procedure used to detect abnormalities in the
colon  and  rectum.  During  the  procedure,  a  thin,  elastic
tube with a camera is inserted into the colon to allow for
direct  visualization,  allowing  for  early  detection  and
removal  of  polyps.  However,  identifying  small  polyps  in
colonoscopy videos is challenging for physicians. If polyps
are detected, it can lead to colorectal cancer and related
fatalities. To address this issue, the researchers propose a
new approach using the UNET architecture with a spatial
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attention layer. This method aims to improve the accuracy
of  segregating  polyp  areas  in  colonoscopy  videos.  To
overcome  this  limitation,  the  researchers  suggest  using
the  focal  Tversky  loss.  This  promising  approach  has  the
potential to magnify the precision of polyp segmentation
and contribute to better medical outcomes in colonoscopy
screenings [13].

Yixuan  suggested  a  two-step  method  for  automating
precise  polyp  identification  in  colonoscopy  images  using
deep  convolutional  neural  networks.  Manual  review  by
gastroenterologists is prone to errors and requires focused
attention. PLP-Net improves recognition accuracy by first
predicting the location of polyps through a proposal stage,
followed by pixel-wise segmentation. In the first stage, a
modified,  quicker  R-CNN  acts  as  a  section-level  polyp
indicator.  The  second  stage  involves  a  completely
convolutional network for segregation, utilizing a feature
distribution policy to transmit learned semantics from the
proposal  stage.  Skip  schemes  enrich  feature  scales  for
detailed  segmentation  predictions.  Progressive  residual
nets  and  feature  pyramids  are  employed  for  deeper
semantic understanding. The training follows a two-stage
framework,  and  during  inference,  the  model  efficiently
outputs  polyp  masks  through  a  single-stream  network.
These enhancements make PLP-Net superior to previous
methods,  offering  an  automated  and  pixel-accurate
solution  for  early  colorectal  cancer  detection  in
colonoscopy  images  [14].  Jiaxing  suggested  that  the
accurate  classification  of  colorectal  polyps,  especially
distinguishing between malignant and benign ones, has a
crucial  scientific  impact  on  the  initial  discovery  and
determining  the  ideal  course  of  action  for  colorectal
cancer. This study investigated how convolutional neural
networks  (CNNs)  can  utilize  information,  and  findings
suggest that CNNs show promise in effectively discerning
between malignant and benign polyps, even when data is
limited [15]. Xiao Jia introduced an advanced and efficient
two-stage  approach  named  PLP-Net  for  automated  and
precise  polyp  identification  in  colonoscopy  images.
Accurate  detection  of  polyps  is  vital  for  the  early
identification  and  treatment  of  colorectal  cancer.  The
current evaluation process requires the full attention of a
gastroenterologist and is prone to diagnostic errors [16].

Ye  Gao  stated  that  esophageal  squamous  cell
carcinoma  and  adenocarcinoma  of  the  oesophagogastric
junction have poor survival rates, making early detection
crucial  for  tumor  humanity.  Unfortunately,  primary
recognition  heavily  relies  on  higher  gastrointestinal
endoscopy,  which  is  not  practical  for  widespread
implementation.  To  address  this  issue,  our  goal  was  to
create  and authenticate  a  mechanism based on machine
learning. This tool integrates a wiper cytology exam and
relevant  epidemiological  menace  aspects,  allowing  for
screening of these cancers before resorting to endoscopy
[17]. Bilal stated that the loss of function mutations in the
CDH1  gene  is  the  primary  cause  of  hereditary  diffuse
gastric cancer. Detecting this type of cancer early through
endoscopy is challenging because of its infiltrative nature.
However,  there are microscopic  foci  of  malignant  signet

ring  cells  characteristic  of  CDH1  mutation  that  appear
before  the  development  of  advanced  gastrointestinal
cancer. A study was conducted to evaluate the protection
and efficacy of using endoscopy for growth interruption in
patients  with  germline  CDH1  mutations,  particularly  in
cases  where  patients  chose  not  to  undergo  prophylactic
total  gastrectomy  [18].  The  role  of  eosinophils  in  the
development of eosinophilic gastrointestinal diseases and
the impact of eosinophil  exhaustion on patient outcomes
remains uncertain. A potential solution to address this is
bevacizumab,  a  monoclonal  antibody  that  targets  the
interleukin-5  receptor  α  and  depletes  eosinophils.  It  is
believed  that  bevacizumab  may  help  eliminate  gastric
tissue  eosinophils,  potentially  leading  to  improved
outcomes  in  patients  with  eosinophilic  gastritis.  A  study
was conducted to evaluate the effectiveness and safety of
bevacizumab  in  treating  patients  with  eosinophilic
gastritis  [19,  20].

Katrin stated that the advanced oesophageal squamous
cell carcinoma is an important therapeutic hurdle, mainly
due  to  the  limited  number  of  established  treatment
choices  and  the  high  incidence  of  comorbid  conditions.
Systemic  spread  of  the  disease  has  traditionally  been
addressed  through  cytotoxic  chemotherapy,  which,  in
certain cases, has demonstrated the ability to slow disease
progression  and  extend  life.  Additionally,  palliative
measures  like  radiotherapy  are  suitable  for  alleviating
symptoms, especially for managing dysphagia [21]. Florian
stated that in high-revenue nations in Europe and North
America,  adenocarcinoma  has  become  the  prevailing
histological subtype of oesophageal cancer. Over the past
few decades, patient outcomes have improved, largely due
to  the  centralization  of  surgical  procedures  and  the
adoption  of  multimodality  therapy.  Despite  these
advances,  a  significant  number  of  patients  experience
relapse  after  undergoing  curative-intent  surgery.  As  a
result,  there  is  a  pressing  need  for  more  efficient
perioperative treatment alternatives to address this issue
[22].  Eric  carried  out  research  aimed  at  recognizing
collective  genetic  options  related  to  alcohol-associated
hepatocellular  carcinoma  (HCC),  which  is  a  frequent
consequence  of  alcohol-related  liver  disease.  A  genome-
wide  association  study  (GWAS)  was  conducted  in  two
stages using a detection cohort of 2107 European patients
with  alcohol-related  liver  disease,  of  which  775  had
alcohol-related  HCC,  and  1332  were  controls  without
HCC. The analysis utilized logistic regression models and
adjusted  for  various  factors.  From  the  vast  number  of
variants  assessed,  the  study  identified  three  genetic
variants significantly associated with alcohol-related HCC
risk: WNT3A-WNT9A (rs708113), TM6SF2 (rs58542926),
and  PNPLA3  (rs738409).  These  associations  were
supported  by  previous  research,  and  the  findings  were
validated in an autonomous cohort of 874 cases with HCC
and  1059  controls.  A  meta-analysis  of  both  cohorts
confirmed the significance of these three variants relative
to  alcohol-related  HCC  hazards.  The  results  indicated  a
cumulative  effect  of  risk  alleles  on  alcohol-associated
HCC, suggesting that the presence of multiple risk alleles
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may further increase the likelihood of developing HCC in
individuals with alcohol-related liver disease. Overall, this
study  provides  valuable  insights  into  the  genetic  factors
that  contribute  to  alcohol-related  HCC,  which  could
potentially  lead  to  better  risk  assessment  and  targeted
interventions for at-risk individuals [23].

Schoen  introduced  a  novel  software  designed  to
address  the  challenge  of  capturing  and  analyzing
endoscopic  images  in  real  time  during  colonoscopy
procedures.  It  also  efficiently  filtered  out  non-relevant
frames between procedures.  The software  was  validated
on  a  large  dataset  of  live  video  from  endoscopy  units,
demonstrating  high  sensitivity  (99.90%)  and  specificity
(99.97%)  in  identifying  important  frames.  These  results
indicated  a  significant  improvement  over  previous
methods,  making  the  system  robust  and  suitable  for
routine  use  in  medical  practice  [24].  The  GLOBOCAN
series by the International Agency for Research on Cancer
provides  global  estimates  of  cancer  incidence  and
mortality, with data available for 2002. With 10.9 million
cases,  6.7  million  deaths,  and  24.6  million  survivors,
breast,  lung,  and  colorectal  cancers  were  the  most
prevalent, while lung, stomach, and liver cancers were the
leading  causes  of  cancer-related  mortality.  Geographic
variations  highlight  the  influence  of  lifestyle  and
environmental factors, posing a challenge for prevention
strategies  [25].  A  retrospective  study  analyzed  845
colonoscopies  from  GCS  Medical  College,  Hospital,  and
Research  Center  in  Ahmedabad,  assessing  the  polyp
detection rate (PDR) and polyp characteristics.  PDR was
34.31%, which was higher in men (54.1%) than in women
(31.2%).  Colorectal  cancer  (CRC)  was  found  in  5.4%  of
men and 3.05% of women, with polyps more prevalent in
patients over 60 years. Particularly, dysplasia was found to
be  correlated  with  large  tubulovillous  polyps  in  the  left
colon [26].

A nationwide prospective study in France investigated
the  role  of  colonoscopy  in  preventing  deaths  from
colorectal  cancer  (CRC)  through  primary  analysis  or
resection  of  colonic  adenomas  [27].  Huang  and  Shen
stated  that  with  the  increasing  use  of  AI-assisted
diagnosis,  it  is  vital  to  assess  its  effectiveness  in  early
detection  of  colorectal  cancer,  a  disease  responsible  for
over  1.8  million  occurrences  and  881,000  deaths
worldwide  in  2018.  AI-assisted  colonoscopy  (AIC)  offers
several  advantages,  including  improved  adenoma
detection rates and enhanced polyp characterization. This
systematic review compared the effectiveness of AIC with
conventional  colonoscopy  in  the  early  diagnosis  of  CRC
[28].  AI-based  polyp  detection  systems  are  used  during
colonoscopies to enhance lesion detection and elevate the
overall quality of the procedure [29]. Sagar Shah reported
that  several  computer-aided  approaches  employing
artificial intelligence (AI) aim to enhance polyp detection
during colonoscopy, potentially reducing colorectal cancer
incidence.  Adenoma  detection  rates  (ADRs)  and  polyp
detection  rates  (PDRs)  serve  as  key  quality  indicators;
adenoma miss rates (AMRs) offer a more precise measure
of  overlooked  lesions,  which  may  lead  to  interval

colorectal  cancer.  This  systematic  review  and  meta-
analysis aimed to evaluate the effectiveness of computer-
aided colonoscopy (CAC) in randomized controlled trials,
focusing on AMRs, ADRs, and PDRs [30].

Mark has authored a book on gastrointestinal and liver
disease  that  has  become  a  trusted  resource  for
gastroenterology and hepatology professionals worldwide.
The  fully  revised  11th  Edition,  authored  by  hundreds  of
experts,  offers  comprehensive  coverage  of  the  latest
techniques, technologies, and treatments. With over 1,100
full-color  illustrations  and  user-friendly  algorithms,  it
provides  quick  access  to  essential  information  for
addressing  clinical  challenges  in  gastroenterology  and
hepatology  [31].  Jaroslaw  Regula  stated  that  colorectal
cancer screening recommendations focus primarily on age
and family history of cancer, without considering gender
as  a  factor  [32].  Revised  recommendations  advocate  for
colonoscopy  as  the  exclusive  follow-up  method,  with
patient monitoring intervals determined by individual risk
profiles.  The  purpose  of  these  guidelines  is  to  improve
screening  efficiency  and  ensure  effective  use  of  medical
resources,  highlighting  the  critical  role  of  high-quality
initial  colonoscopic  examinations  [33].  The  experimental
capacity  of  AI-supported  adenoma  recognition  has  been
previously  established  in  earlier  investigations.  The
methodology of this study involved creating and evaluating
deep  learning  models  for  the  real-time  detection  of
colorectal  polyps.  Both  standard  datasets  and  hospital-
specific  data  were  used  to  train  and  test  multiple  CNN
models.  By  incorporating  diverse  datasets,  the  study
aimed  to  address  challenges  related  to  variations  in
endoscopic equipment and settings, ultimately improving
the performance of the models.  The eventual aim of this
investigation was to develop more accurate and efficient
tools  for  detecting  colorectal  polyps,  thereby  enhancing
primary  intervention  efforts  for  CRC  prevention.  By
leveraging  advancements  in  deep  learning  and  artificial
intelligence, researchers aim to enhance the accuracy of
polyp detection, reduce missed diagnoses, and ultimately
save  lives  through  the  early  detection  and  treatment  of
CRC.

In  summary,  colorectal  cancer  holds  a  significant
global health burden, but advancements in technology and
research  offer  hope  for  improved  prevention  and  early
detection.  Through  the  assessment  of  deep  learning
models,  researchers  aim  to  enrich  the  accuracy  and
effectiveness  of  colorectal  polyp  recognition,  ultimately
improving outcomes for individuals at risk of CRC.

The main objective of the above work is to:
•  Utilize  different  methods  that  are  involved  in

analyzing  the  polyp  and  its  recognition,
• Test the outcomes of it using different models, such

as  VGG16,  VGG19,  ResNet-18,  ResNet-50,  and
EfficientNet,

• Validate using different data sets provided by the JSS
hospital, and

•  Use  an  optimized  Fastai  algorithm  for  faster
outcomes  and  better  results.
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2. MATERIALS AND METHODS

2.1. Convolutional Neural Network
The  convolutional  neural  network  is  a  type  of  deep

learning  neural  network  architecture  commonly  used  in
computer vision tasks, which is applied in the field of AI,
helping to decode, understand, and interpret visual data.

A  brief  discussion  about  CNN  is  presented  in  this
section. Factors that are responsible for the amplified use
of CNN are given below:

• It eliminates the need for a manual feature extraction
process, saving time and work.

• CNN works similarly to a human intellect, learning
from the given input image instances on its own.

•  CNN  produces  excellent  identification  output  with
better accuracy and enactment.

•  It  can  be  re-educated  for  other  identification
responsibilities,  which  helps  build  on  existing  networks.

Fundamental components of a CNN are convolutional
layers, pooling layers, Rectified Linear Unit (ReLU) layers,
and fully connected layers (Fig. 1). The layers perform the
operations  and  alter  the  data  to  learn  features  from
specific  datasets.  CNN  has  different  filters  to  ensure
pattern recognition, ranging from a modest, obscure level
to an automated image feature extraction.

1.  The  convolutional  layer  conducts  convolution
operations  on  input  data,  facilitating  neuron  activation.

With  three-dimensional  structures  attributed  to  RGB
channels,  it  establishes  neuron  connections  based  on
receptive  fields.  This  layer  is  instrumental  in  computing
fundamental  image characteristics  like  lines,  edges,  and
corners.

2.  The pooling layer decreases the dimensions of  the
input  while  retaining  the  same  depth.  This  downsizing
helps prevent overfitting and also reduces computational
overhead. This reduction in size helps increase the sum of
layers  in  the  network,  making  computations  more
efficient. Pooling helps retain essential information while
discarding  less  relevant  details,  leading  to  a  more
streamlined and effective  model  that  generalizes  well  to
new data.

3.  The  rectified  Linear  Unit  layer  (ReLu)  uses  the
function max (0,  x).  In  this  case,  negative  standards  are
filtered from the images and replaced with zero.

4.  The  fully  connected  layer  is  used  to  multiply  the
input  by  the  weight  matrix  value,  and  then  the  value  is
added to the basis vector value. This, in turn, is connected
to multiple layers of similar neural networks.

In  this  research  work,  Deep  Convolutional  Neural
Network (CNN) models, including VGG16, VGG19, ResNet
18, ResNet 50, and EfficientNet, are used to address the
challenges of real-time polyp recognition. The end-to-end
DenseNet  models,  in  which  each  layer  is  connected  to
every preceding layer in a feed-forward manner, were first
introduced in DenseNet.

Fig. (1). Overview of a convolutional neural network.

Fig. (2). ReLU activation function.
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2.1.1. Activation Layer
The addition of the activation layer helps in analyzing

the  output  for  a  given  input.  The  activation  function
compares the input value against a threshold, and neurons
are  activated  if  the  input  exceeds  this  threshold,  as
illustrated  in  Fig.  (2).  ReLU  (Rectified  Linear  Unit)  is
chosen  as  the  activation  function  in  VGG16,  VGG19,
ResNet, and EfficientNet models because it helps address
a common problem encountered in deep neural networks
known as the vanishing gradient problem. The issue arises
when  gradients  become  very  small  as  they  propagate
through multiple layers during training, resulting in slow
or stalled learning. By using ReLU, this issue is mitigated
as it allows for faster convergence by preventing gradients
from  becoming  too  small.  Additionally,  ReLU  introduces
sparsity in the network, which encourages the learning of
diverse  features  and  improves  the  model's  ability  to
generalize  to  unseen  data.

ReLU is selected for polyp detection because it helps
prevent  problems  with  gradient  vanishing,  which  are
important  in  deep  networks.  It  encourages  the  model  to
learn a variety of features, thereby improving its ability to
distinguish  polyps  from  healthy  tissue.  Therefore,  using
ReLU improves the model's accuracy by making training
more  efficient  and  enabling  it  to  represent  features
effectively in medical images. The mathematical formula is
typically inscribed as Equation (1).

RELU = Max(0,z) (1)
Fig.  (3)  demonstrates  the  block  illustration  of  the

present work. This section provides a detailed description
of the methodology being implemented.

2.1.1.1. Input Data
This  contains  the  preprocessed  data,  which  will  be

passed  through  the  Fastai  algorithm.  The  data  contains
both  polyp  and  non-polyp  data,  which  have  been
preprocessed  and  augmented.

2.1.1.2. Confidence Score
The  probability  of  the  image  being  detected  by  the

Fastai algorithm.

2.1.1.3. Epochs
This  term  represents  the  number  of  times  the  data

must  undergo  iterations,  during  which  the  repetitive
training,  testing,  and  validation  process  occurs.

2.1.1.4. Performance Evaluation
In  this  part,  the  analysis  of  the  model  is  conducted,

which is used to monitor and assess how well  the model
performs at the specific task.

2.1.1.5. Fastai
Fastai  is  an  excellent  open-source  library  developed

with  the  support  of  PyTorch,  aiming  to  provide  better
access  to  AI  models  and  libraries.  Its  focus  on  user-
friendliness  is  evident  through  its  high-level  API  and
convenient pre-built functions, which cleverly handle the

intricacies  of  deep learning.  With  Fastai,  users  can gain
access to various tools for tasks like data preprocessing,
model creation, training, and interpretation, all  of which
are made straightforward.

2.1.1.6. Training Loss
The  loss  calculated  after  training  the  model.  It

indicates the level of error or inefficiency during training.

2.1.1.7. Validation Loss
The  loss  calculated  using  the  validation  dataset.  It

reflects  the  model's  inefficiency  on  unseen  data.

2.1.1.8. Training Accuracy
The  accuracy  achieved  by  the  model  on  the  training

data, indicating how well it learned from the training set.

2.1.1.9. Validation Accuracy
The accuracy achieved by the model on the validation

dataset, indicating how well it generalizes to new data.

2.2. Dataset Details
In this study, two sets of data are employed within the

framework  of  the  validation  study  for  polyp  recognition.
The data sets are sourced from RobFlow, which is an open
online  platform  (https://docs.roboflow.com).  The  other
data sets included are from JSS Hospital for the real-time
cross-verification/validation of the model. Table 1 presents
the dataset details for each model.  In this work, the JSS
Hospital data is mixed with the RobFlow dataset. For this
purpose,  a  cleaned  dataset  and  Fastai  are  used  for
preprocessing.  In  this  work,  80% of  the data  is  used for
testing, 10% of the dataset is used for training, and 10% of
the dataset is used for validation.

2.3. DEEP Convolutional Neural Network Models
The following deep learning models are used in Fastai.
• VGG16
• VGG19
• ResNet18
• ResNet50
• EfficientNet

2.3.1. VGG16
is a pre-trained architecture model that is used in CNN

Deep  learning  work.  The  model  has  only  16  layers  (16
convolutional layers + 3 max-pooling coats) with trainable
weights.  It  has  less  reliability  with  a  large  number  of
hyperparameter  changes,  as  shown  in  Fig.  (4).  It  is
considered one of the best vision models developed. The
layer names, types, kernel sizes, and filters of the VGG16
model are listed in Table 2.

2.3.2. VGG19
is  a  pre-trained  architecture  model  that  is  used  in

CNN-based  deep  learning  tasks.  The  model  consists  of
only  19  layers  (16  convolutional  layers,  5  max-pooling
layers,  and  a  softmax  layer)  with  trainable  weights.  It
exhibits  less  reliability  for  a  large  number  of  hyper-

https://docs.roboflow.com
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Fig. (3). Block Diagram

Table 1. Dataset description.

Model Training Testing Validation Total

VGG16 7800 975 975 9750
VGG19 4496 562 562 5620

ResNet50 7272 909 909 9090
ResNet18 7272 909 909 9090

EfficientNet 7800 975 975 9750

Table 2. Summary of VGG16 model.

Block Layer (name) Layer (type) Kernel Size Filters

1 CONV 1-1
CONV 1-2

MAX-pooling

CONVOLUTION CONVOLUTION POOLING 3*3
3*3

64
64

2 CONV 2-1
CONV 2-2

MAX-pooling

CONVOLUTION CONVOLUTION POOLING 3*3
3*3

-

128
128

-
3 CONV 3-1 CONVOLUTION 3*3 256

CONV 3-2 CONVOLUTION 3*3 256
CONV 3-3 CONVOLUTION 3*3 256

MAX-pooling POOLING - -
4 CONV 4-1 CONVOLUTION 3*3 512

CONV 4-2 CONVOLUTION 3*3 512
CONV 4-3 CONVOLUTION 3*3 512

MAX-pooling POOLING - -
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Block Layer (name) Layer (type) Kernel Size Filters

5 CONV 5-1 CONVOLUTION 3*3 512
CONV 5-2 CONVOLUTION 3*3 512
CONV 5-3 CONVOLUTION 3*3 512

MAX-pooling POOLING - -
6 FC6 DENSE
7 FC7 DENSE

Fig. (4). Architecture of the VGG16 model.

parameter changes, as shown in Fig. (5). It is considered
one of the best vision models developed. The layer names,
types,  kernel  sizes,  and  filters  of  the  VGG19  model  are
listed in Table 3.

2.3.3. VGG Loss
VGG  Loss  is  the  Euclidean  distance  between  the

feature representation of a reconstructed image GθG  (ILR)

and the reference image IHR and is given in Equation (2).

(2)

Where,  Wi,j  and  Hi  represent  the  dimensions  with
respective  feature  maps  of  the  VGG  network.

Convolution over an image f(x, y) uses a filter w(x, y)
that can be calculated using Equation (3). The activation
function  used in  the  hidden layers  is  the  rectified  linear
unit (ReLU) activation function, as given by Equation (4).

(3)

(4)

2.3.4. Residual Neural Network
(ResNet18)  is  a  CNN  deep  learning  model  used  for

computer vision applications (Fig. 6). It is a convolutional
neural  network  designed  to  support  hundreds  of  neural
networks;  previously,  neural  networks  were  limited  to  a
small number of layers. Now, neural networks can have a
large  number  of  layers  and  can  be  trained  for  a  longer
period. ResNet18 is an 18-layer convolution network with
17 convolution layers and a max pooling layer, as shown in
Fig. (7).

2.3.4. Residual Neural Network (ResNet50)
ResNet-50  is  a  convolutional  neural  network  (CNN)

design  with  50  layers  (48  convolutional  coats,  one  max
pooling coat,  and one normal  pooling coat),  as  shown in
Fig.  (8).  It  employs  residual  connections  to  ease  the
training  of  deep  networks  and  overcome  the  vanishing
gradient  problem.  ResNet50  is  well-suited  for  computer
vision  tasks,  extracting  hierarchical  features  from  input
images to  achieve good performance in tasks like image
classification and object detection.

Convolution  is  a  process  that  typically  reduces  the
spatial resolution of an image. In the context of residual
neural networks, the uniqueness mapping is enhanced by
a  linear  projection  W.  This  multiplication  expands  the
network  of  the  shortcut  to  contest  the  residual,  which
allows the input x and F(x) to be combined as input for the
subsequent layers. This combination is given by Equation
(5).

(5)

(Table 2) contd.....
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Table 3. Summary of the VGG19 model.

Block Layer (Name) Layer (Type) Parameters Filters

1 CONV 1-1
CONV 1-2

MAX-pooling

CONVOLUTION CONVOLUTION POOLING 1.7K
36K

64
64

2 CONV 2-1
CONV 2-2

MAX-pooling

CONVOLUTION CONVOLUTION POOLING 73K
147K

128
128

-
3 CONV 3-1 CONVOLUTION 300k 256

CONV 3-2 CONVOLUTION 600k 256
CONV 3-3 CONVOLUTION 600k 256
CONV 3-4 POOLING 600k 256

MAX-pooling -
4 CONV 4-1 CONVOLUTION 1.1M 512

CONV 4-2 CONVOLUTION 2.3M 512
CONV 4-3 CONVOLUTION 2.3M 515
CONV 4-4 POOLING 2.3M 512

MAX-pooling -
5 CONV 5-1 CONVOLUTION 2.3M 512

CONV 5-2 CONVOLUTION 2.3M 512
CONV 5-3 CONVOLUTION 2.3M 512
CONV 5-4 POOLING 2.3M 512

MAX-pooling -
6 FC6 DENSE 103M -
7 FC7 DENSE 17M

Output 4M

Fig. (5). Architecture of the VGG19 model

Fig. (6). Architecture of the ResNet18 model.
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Fig. (7). Model ResNet block.

Fig. (8). Architecture of the ResNet50 model.

2.3.5. Efficient Net
It is a convolutional neural network construction and

scaling technique that consistently scales all proportions
of depth/width/resolution using compound coefficients, as
shown in Fig. (9). Unlike the normal practice of arbitrarily
scaling  these  factors,  the  EfficientNet  scaling  method
uniformly scales the network width, depth, and resolution
using a set of fixed scaling coefficients (Table 4). Through
the output of the neural network, we calculate the overall
model's  performance.  This  analysis  is  conducted  using
specific equations accordingly. Firstly, we plot a confusion
matrix, which provides us with the required parameters as
outcomes.

The  performance  of  the  CNN  network  is  measured
using precision (Equation 6), recall (Equation 7), F1 score
(Equation  8),  and  accuracy  (Equation  9),  which  are
computed  using  the  following  metrics:

(6)

(7)

(8)

(9)



Advancing Colonoscopy Diagnosis for Polyp Recognition 11

Fig. (9). Architecture of the EfficientNet model.

Table 4. EfficientNet.

Stage Operator Resolution Layers

Conv 3*3 224*224 32 1
MB Conv1,k3*3 112*112 16 1
MB Conv6,k3*3 112*112 24 2
MB Conv6,k5*5 56*56 40 2
MB Conv6,k3*3 28*28 80 3
MB Conv6,k5*5 14*14 112 3
MB Conv6,k5*5 7*7 192 4
MB Conv3,k3*3 7*7 320 1

Conv1*1 & Pooling &FC 7*7 1280 1

3. RESULTS AND DISCUSSION
The analysis involved using various models for image

classification,  and  all  of  them  achieved  an  impressive
accuracy of approximately 99% under different conditions.
Both  the  validation  loss  and  the  training  loss  were
comparable,  indicating  that  the  models  were  neither
underfitting  nor  overfitting,  striking  a  good  balance.

To demonstrate the results, an interactive website was
developed using Hugging Faces and Gradio. This website
permits  operators  to  input  images  and  receive  real-time
forecasts from the trained models. The confusion matrix,
which showcases the efficiency of the models in classifying
different  images,  indicates  that  the  classification  was
nearly  perfect.

Overall,  the  success  of  the  models  in  achieving  high
accuracy  demonstrates  their  effectiveness  in  performing
image classification tasks. The website's interactivity
provides an intuitive way for users to witness the models'
capabilities in action, making it easy to comprehend their
performance. The project's outcome showcases the power
of  deep  learning  models  in  addressing  complex  image
classification  challenges  with  remarkable  precision.

3.1. Result of VGG16
Table  5  shows  the  epochs  loaded.  Training  loss

indicates how well the model fits the training data, while
validation  loss  indicates  how  well  it  generalizes  to  new
data.  The  train/validation  loss  is  shown in  Fig.  (10),  the
confusion matrix in Fig. (11), and the image classification
of  polyps  and  non-polyps  using  VGG16  is  shown  in  Fig.
(12).

We achieved an accuracy of 99.8% as early as the 4th

epoch. The training loss and validation loss for the VGG16
model are shown in Fig. (10).

The confusion matrix for the above result is shown in
Fig. (11).

The  output  of  the  image  classification  model  using
Fastai  is  shown  in  Fig.  (12).

Upon  validating  the  dataset,  the  VGG16  model
displayed  promising  performance  metrics,  as  shown  in
Table 6. It achieved an accuracy of 99.48%, indicating that
it  accurately  predicted  the  outcome  for  the  majority  of
samples. Moreover, the precision of 100% underscores the
model's ability to accurately recognize positive instances
among those it labels as positive. In terms of recall, the
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Table 5. Epochs Loading of VGG16.

Epoch Train_loss Valid_loss Error_rate accuracy

0 0.093112 0.026708 0.001026 0.998974

1 0.066340 0.018183 0.001026 0.998974

2 0.037638 0.015811 0.001026 0.998974

3 0.029509 0.015824 0.001026 0.998974

Fig. (10). Train/Valid Loss of VGG16.

Fig. (11). Confusion matrix of VGG16.
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Fig. (12). Image Classification of VGG16.

Table 6. Results of VGG16.

Metric Value

Accuracy 0.994872
Precision 1

Recall 0.979592
F1 score 0.989691

model successfully captured 97.95% of the actual positive
samples in the dataset, demonstrating its effectiveness in
identifying relevant cases. Balancing precision and recall,
the  F1  score  stood  at  98.96%,  affirming  the  model's
overall  robustness  in  handling  classification  tasks.

3.2. Result of VGG19
Table  7  shows  the  epochs  loaded.  Training  loss

indicates how well the model fits the training data, while
validation  loss  shows  how well  the  model  generalizes  to
new data. The train/validation loss is shown in Fig. (13),
the  confusion  matrix  in  Fig.  (14),  and  the  image
classification  of  polyps  and  non-polyps  using  VGG19  is
shown  in  Fig.  (15).

Validation loss and training loss for the above VGG19
model are shown in Fig. (13).

The confusion matrix for the above result is shown in
Fig. (14).

The  output  of  the  image  classification  model  using
Fastai  is  shown  in  Fig.  (15).

Upon  validating  the  dataset,  the  VGG19  model  also
displayed  promising  performance  metrics,  as  shown  in
Table 8. It achieved an accuracy of 99.69%, indicating that
it  accurately  predicted  the  outcome  for  the  majority  of
samples. Moreover, the precision of 100% underscores the
model's  ability  to  accurately  identify  positive  instances
among those it  labels  as  positive.  In  terms of  recall,  the
model managed to capture 98.76% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing  the  relevant  cases.  Balancing  precision  and
recall, the F1 score stood at 98.37%, affirming the model's
overall robustness in handling classification tasks.

3.3. Result of ResNet50
Table 9 presents the epochs loaded. The training loss

indicates how well the model fits the training data, and the
validation loss indicates how well the model fits the new
data. The training and validation losses are shown in Figs.
(16 and 17). (Fig. 17) illustrates the confusion matrix, and
Fig. (18) shows the image classification of polyps and non-
polyps using ResNet50.
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Table 7. Epochs loading of VGG19.

Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.291896 0.049745 0.012456 0.987544
Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.045615 0.032361 0.007117 0.992883
1 0.023675 0.012731 0.007117 0.992883
2 0.023675 0.012731 0.007117 0.992883
3 0.015191 0.036830 0.005338 0.994662

Table 8. Results of VGG19.

Metric Value

Accuracy 0.996917
Precision 1

Recall 0.987654
F1 score 0.993789

Fig. (13). Train/valid loss of VGG19.

Fig. (14). Confusion Matrix of VGG19.
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Fig. (15). Image classification of VGG19.

Table 9. Epochs loading of ResNet50.

Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.350024 0.072139 0.011282 0.988718
Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.058512 0.039168 0.007179 0.992821
1 0.033305 0.025222 0.004103 0.995897
2 0.014829 0.039216 0.005128 0.994872
3 0.008637 0.037751 0.005128 0.994872

We achieved an accuracy of 99.4% as early as the 4th

epoch.  The  training  loss  and  validation  loss  for  the
ResNet50  model  are  shown  in  Fig.  (16).

The confusion matrix for the above result is shown in
Fig. (17).

The  output  of  the  image  classification  model  using
Fastai  is  shown  in  Fig.  (18).

Upon validating the dataset, the ResNet50 model also
displayed  promising  performance  metrics,  as  shown  in
Table  10.  It  achieved  an  accuracy  of  99.79%,  indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's  ability  to  correctly  identify  positive  instances

among  those  labeled  as  positive.  In  terms  of  recall,  the
model managed to capture 99.17% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing  the  relevant  cases.  Balancing  precision  and
recall, the F1 score stood at 99.58%, affirming the model's
overall robustness in handling classification tasks.

3.4. Result of ResNet18
Table  11  shows  the  epochs  loaded.  Training  loss

indicates how well the model fits the training data, while
validation loss shows how well it generalizes to new data.
The  train/validation  loss  is  shown  in  Fig.  (19),  the
confusion matrix in Fig. (20), and the image classification
of polyps and non-polyps using ResNet18 is shown in Fig.
(21).
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Fig. (16). Train/valid loss of ResNet50.

Fig. (17). Confusion matrix of ResNet50.

Fig (18). Image classification of ResNet50.
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Table 10. Classification Report of ResNet50.

Metric Value

Accuracy 0.997942
Precision 1

recall 0.991736
F1 score 0.995851

Table 11. Epochs loading of ResNet18.

Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.214846 0.040005 0.007117 0.992883
Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.019264 0.142357 0.035587 0.964413
1 0.018980 0.017312 0.007117 0.994413
2 0.010788 0.024240 0.003559 0.996441
3 0.006357 0.023167 0.003559 0.996441

Fig. (19). Train/valid loss of ResNet18.

Fig. (20). Confusion matrix of ResNet18.
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Fig. (21). Image classification of ResNet18.

We achieved an accuracy of 99.6% as early as the 4th

epoch.  The  training  loss  and  validation  loss  for  the
ResNet18  model  are  shown  in  Fig.  (19).

The confusion matrix for the above result is shown in
Fig. (20).

The  output  of  the  image  classification  model  using
Fastai  is  shown  in  Fig.  (21).

Upon  validating  the  dataset,  the  ResNet18  model
displayed  promising  performance  metrics,  as  shown  in
Table  12.  It  achieved  an  accuracy  of  99.79%,  indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's  ability  to  appropriately  recognize  positive
instances among those it labeled as positive. In terms of
recall, the model managed to capture 99.17% of the actual
positive  samples  in  the  dataset,  demonstrating  its
effectiveness in recognizing the relevant cases. Balancing
precision  and  recall,  the  F1  score  stood  at  99.58%,
affirming  the  model's  overall  robustness  in  handling
classification  tasks.

3.5. EfficientNet
Table  13  shows  the  epochs  loaded.  Training  loss

indicates how well the model fits the training data, while
validation loss shows how well it generalizes to new data.
The  train/validation  loss  is  shown  in  Fig.  (22),  the
confusion matrix in Fig. (23), and the image classification
of polyps and non-polyps using EfficientNet is presented in
Fig. (24).

We achieved an accuracy of 99.6% as early as the 4th

epoch. The validation loss and training loss for the above
EfficientNet model are shown in Fig. (22).

The confusion matrix for the above result is shown in
Fig. (23).

The  output  of  the  image  classification  model  using
Fastai  is  presented  in  Fig.  (24).

Upon  validating  the  dataset,  the  EfficientNet  model
displayed  promising  performance  metrics,  as  shown  in
Table  14.  It  achieved  an  accuracy  of  99.89%,  indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's  ability  to  correctly  identify  positive  instances
among  those  labeled  as  positive.  In  terms  of  recall,  the
model managed to capture 99.58% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing  the  relevant  cases.  Balancing  precision  and
recall, the F1 score stood at 99.79%, affirming the model's
overall robustness in handling classification tasks. Finally,
we  can  conclude  the  results  by  comparing  the  above
results  and  plotting  the  graphs  of  all  the  models.  The
training loss and training/validation loss of all the models
are shown in Figs. (25 and 26), respectively.

The  comparative  accuracy  plots  of  the  proposed
models are given in Fig. (27). From this, the accuracies of
VGG16, VGG19, ResNet18, ResNet50, and EfficientNet are
99.89%,  99.46%,  99.48,  99.64%,  and  99.64%.  From  the
above results, we can conclude that VGG16 has the best
accuracy.
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Table 12. Classification report of ResNet18.

Metric Value

Accuracy 0.997942
Precision 1

recall 0.991736
F1 score 0.995851

Table 13. Epochs loading of the EfficientNet.

Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.328127 0.042765 0.010676 0.989324
Epoch Train_loss Valid_loss Error_rate Accuracy

0 0.063772 0.19374 0.003559 0.996441
1 0.032788 0.008242 0.003559 0.996441
2 0.018444 0.015641 0.003559 0.996441
3 0.011566 0.011150 0.003559 0.996441

Fig. (22). Train/valid loss of EfficientNet .

Fig. (23). Confusion matrix of EfficientNet.
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Fig. (24). Image classification of EfficientNet.

Table 14. Classification report of EfficientNet.

Metric Value

Accuracy 0.99897
Precision 1

Recall 0.995851
F1 score 0.997921

Fig. (25). Training loss of all models.



Advancing Colonoscopy Diagnosis for Polyp Recognition 21

Fig. (26). Train/valid loss of all models.

Fig. (27). Accuracy of all models.

CONCLUSION
This  work  investigated  various  deep  CNN  learning

models,  analyzing  their  functionalities  and  comparing
their performance. After rigorous evaluation, we identified
the most efficient models, which were then subjected to a
detailed  examination  of  their  accuracy,  confusion
matrices,  and  probability  predictions  for  all  possible
scenarios.  To  ensure  the  robustness  of  our  findings,  we
utilized  a  substantial  dataset  of  around  10,000  samples,
allowing us to train our models comprehensively. To make
our  models  easily  accessible  and  user-friendly,  we
developed a web-based platform using Hugging Face and
Gradio libraries. This platform empowers users to predict
outcome probabilities  simply  by  uploading  an  image.  Its
interactive  nature  makes  it  highly  practical  for  a  wide
range  of  users.  Our  efforts  culminated  in  remarkable
results,  as  our  models  achieved  an  impressive  99%
accuracy  in  their  predictions.  Notably,  we  carefully
monitored the risk of overfitting throughout our study and

found  that  our  models  demonstrated  no  signs  of
overfitting.  The  trial  loss  and  validation  loss  remained
consistently  aligned,  indicating  the  generalisability  and
reliability of our models.

We  have  successfully  leveraged  cutting-edge
technologies,  meticulous  model  selection,  and
comprehensive  evaluations  to  deliver  a  powerful
predictive  tool.  Its  potential  impact  and  usability  hold
great  promise  for  practical  applications  in  various
domains.

LIST OF ABBREVIATIONS

CRC = Colorectal Cancer
CNN - = Convolutional Neural Network
ADR = Adenoma Detection Rate
PDR = Polyp Detection Rate
CTC = Computed Tomographic Colonography
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RCTs = Randomized Controlled Trials
MFMC = Markov Factorization Monte Carlo
MCMC = Markov Chain Monte Carlo
NAFLD = Non-Alcoholic Fatty Liver Disease
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MSI = Microsatellite Instability
AIC = AI-Assisted Colonoscopy
AMR = Adenoma Miss Rates
CAC = Computer-Aided Colonoscopy
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ReLU = Rectified Linear Unit
VGG = Visual Geometry Group
ResNet = Residual Neural Network
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