The Open Bioinformatics Journal ISSN: 1875-0362
DOI: 10.2174/0118750362408384250928155137, 2025, 18, e18750362408384 1

RESEARCH ARTICLE OPEN ACCESS

Advancing Colonoscopy Diagnosis for Polyp &
Recognition Using Fastai and EfficientNet Deep J;’ §
Learning

Shashidhar R.", Suveer Udayashankara', Vinayakumar Ravi®’, Aradya H.V.?, Vinod Kumar L.?
and Vikram Patil®

'Department of Electronics and Communication Engineering, JSS Science and Technology University, Mysuru,
Karnataka, India

?JSS Medical College, JSS Academy of Higher Education, Mysuru, Karnataka, India

’Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia

Abstract:

Introduction: Colorectal cancer is one of the global health threats and ranks among the deadliest diseases
worldwide. The recognition and elimination of polyps at a primary, precancerous phase are, therefore, the key to
preventing CRC. Most of these polyps differ in size and level of malignancy, thus failing to be detected by the
commonly used screening methods.

Methods: In this study, Al-driven tools were designed using deep learning models, such as VGG16, ResNet, and
EfficientNet. They were validated using datasets obtained from JSS Hospital to enhance the accuracy of polyp
recognition and decrease the probability of CRC, thereby improving patient outcomes. Fastai comes with an intuitive
API, where most functions related to data preprocessing, building, and training a model are already built. Logs on
training and validation losses, accuracies, and confidence scores of the performance metrics ensure the rigors of
evaluation across multiple epochs of training.

Results: The results were impressive, with the deep learning models performing almost constantly at an accuracy of
99% in image classification. The robustness of the models is guaranteed because the balance between validation loss
and training loss is attained. Hence, there is no overfitting or underfitting, guaranteeing reliable predictions. An
interactive web platform was developed using Hugging Face with Gradio, and real-time predictions could be made by
allowing users to upload images.

Discussion: The confusion matrix indicated that these models achieved nearly perfect classification performance.
The VGG16 model performed with 99.48% accuracy, 100% precision, 97.95% recall, and an F1 score of 98.96%. The
VGG19 model outperformed the former by a slight margin, displaying an accuracy of 99.69%, precision of 100%,
recall of 98.76%, and an F1 score of 98.37%. ResNet18 and ResNet50 performed exceptionally well, achieving
99.79% accuracy, 100% precision, 99.17% recall, and 99.58% F1 score. The model with the best performance, with a
solid score, was Efficient Net, scoring an accuracy of 99.9%.

Conclusion: In the study, the effectiveness of deep CNN models was validated for polyp detection to aid in CRC
prevention. These effectively and stably well-performing models, being provided to users by a very user-friendly
platform, set a very good precedent for their broad application in the future. This milestone success and careful
evaluation have led to an improvement in diagnostic processes and, therefore, health outcomes.

Keywords: Polyps, colon polyps, colonoscopy, Convolution neural network (CNN), polypectomy, Fastai, ImageNet
models, deep learning.
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1. INTRODUCTION

Polyps can develop in various parts of the body, but
they are commonly found in the colon and rectum. A polyp
is a discrete mass of tissue that can develop within the
space that protrudes into the lumen of the bowel.
Colorectal cancer (CRC) constantly stands out as a
significant contributor to cancer-related deaths
worldwide. This type of cancer imposes a substantial
burden on public health, being the fourth most prevalent
cancer in men and the third among women. The likelihood
of developing CRC over a lifetime is estimated at 5%. The
prevalence of colon polyps in India was found to be
10.18%. Central to CRC management is the identification
through screening and removal of colorectal polyps. The
men have higher rates of Advanced Adenomatous Polyps
(AAPs). The adenoma detection rate (ADR) is a well-
established indicator of colonoscopy quality and is
inversely associated with the occurrence of interval
colorectal cancer (CRC) and mortality rates [1]. The type
and probability distribution of colorectal polyps in Western
India are gradually becoming similar to those observed in
Western countries [2]. In a study, the overall polyp
detection rate (PDR) was calculated to be 25.84%,
whereas the adenoma detection rate (ADR) was initially
estimated to be 20.14% [3].

Polyps vary in tissue, size, and shape characteristics,
with implications for CRC development. They can range
from small, benign growths to larger, potentially
malignant lesions. In a recent prospective study, it was
found that the majority of polyps detected were small,
measuring between 1 and 5 millimeters in size. Moreover,
90% of the identified polyps were classified as sub-
centimetric, meaning they were smaller than one
centimeter. Furthermore, among them, 90% of the polyps
measured less than 5 millimeters in diameter [4].
Observational research utilizing organizational
information revealed that approximately 5% to 9% of
individuals diagnosed with colorectal cancer (CRC) had
undergone colonoscopy within the preceding six to thirty-
six months, indicating instances of undetected cancers [5,
6]. Some polyps may be flat or pedunculated, and they can
originate from different layers of the colon's lining. Polyps
can be classified into adenomatous, serrated, or non-
neoplastic types, each with distinct risks of malignancy.
While adenomatous polyps pose a higher risk of becoming
cancerous, non-neoplastic polyps are generally benign.
Early detection and removal of polyps are crucial for
preventing CRC. Screening methods, such as colonoscopy
and computed tomographic colonography (CTC), play a
key role in identifying and removing polyps before they
progress to cancer. However, these screening tests have
limitations, including the risk of missing polyps,
particularly flat or small lesions. Missed polyps can lead to
delayed diagnosis and treatment, increasing the risk of
CRC development. The chance of new adenomas
reappearing within 3 to 5 years after the removal of the
early lesion is estimated to range between 20% and 50%
[7].

Sidney Winawer noted that adenomatous polyps,
commonly found during colorectal screening, once
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prompted annual follow-up exams; however, studies have
demonstrated that surveillance can be safely deferred for
three years after polypectomy. Updated guidelines
recommend colonoscopy as the sole follow-up, stratifying
patients based on risk factors. High-risk individuals, with
specific adenoma characteristics, warrant a 3-year follow-
up, and low-risk patients may wait 5 to 10 years or longer.
These guidelines aim to optimize resource allocation and
enhance screening efficacy, emphasizing the importance
of high-quality baseline colonoscopies [8]. This study
suggests that the stage of liver fibrosis assessed through
histology in patients with non-alcoholic fatty liver disease
(NAFLD) holds significant prognostic value and is
considered a surrogate endpoint in clinical trials for non-
cirrhotic NAFLD. Our objective was to associate the
predictive accuracy of non-invasive examinations with
liver histology in assessing the prognosis of NAFLD
patients [9]. To address the limitations of traditional
screening methodology, researchers have developed
computer-aided detection and segmentation tools using
deep learning. Few studies have shown improved polyp
detection with Al-backed colonoscopy [10]. These tools
analyze colonoscopy videos in real-time, assisting
endoscopists in detecting and characterizing polyps more
accurately. By leveraging advanced machine learning
techniques, these tools aim to reduce the risk of missed
diagnoses and advance the overall effectiveness of CRC
screening programs.

Al applications have made significant strides in
colonoscopy, prompting global randomized controlled
trials (RCTs) to assess the usefulness of Al-backed polyp
detection tools. Previous meta-analyses have already
confirmed the clinical potential of Al-supported adenoma
discovery, with recent research conducted by Hassan and
colleagues further supporting these findings [11]. Guo
addressed the challenge of automatic polyp segmentation,
which is hindered by limited annotated datasets and
imbalanced  data  distribution. @ They  proposed
ThresholdNet, coupled with CGMMix data augmentation,
to address these challenges. CGMMix employs manifold
mixups at multiple levels to augment data and balance
sensitivity and specificity. Additionally, MFMC and MCMC
losses ensure robust training. ThresholdNet integrates
segmentation and threshold learning, with each
influencing the other throughout training. Experimental
results on two polyp partition databases demonstrate the
method's dominance over existing approaches. Moreover,
while designed for polyp segmentation, the approach is
adaptable to various medical image segmentation tasks
[12]. Sushma and others explained that colonoscopy is an
endoscopic procedure used to detect abnormalities in the
colon and rectum. During the procedure, a thin, elastic
tube with a camera is inserted into the colon to allow for
direct visualization, allowing for early detection and
removal of polyps. However, identifying small polyps in
colonoscopy videos is challenging for physicians. If polyps
are detected, it can lead to colorectal cancer and related
fatalities. To address this issue, the researchers propose a
new approach using the UNET architecture with a spatial
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attention layer. This method aims to improve the accuracy
of segregating polyp areas in colonoscopy videos. To
overcome this limitation, the researchers suggest using
the focal Tversky loss. This promising approach has the
potential to magnify the precision of polyp segmentation
and contribute to better medical outcomes in colonoscopy
screenings [13].

Yixuan suggested a two-step method for automating
precise polyp identification in colonoscopy images using
deep convolutional neural networks. Manual review by
gastroenterologists is prone to errors and requires focused
attention. PLP-Net improves recognition accuracy by first
predicting the location of polyps through a proposal stage,
followed by pixel-wise segmentation. In the first stage, a
modified, quicker R-CNN acts as a section-level polyp
indicator. The second stage involves a completely
convolutional network for segregation, utilizing a feature
distribution policy to transmit learned semantics from the
proposal stage. Skip schemes enrich feature scales for
detailed segmentation predictions. Progressive residual
nets and feature pyramids are employed for deeper
semantic understanding. The training follows a two-stage
framework, and during inference, the model efficiently
outputs polyp masks through a single-stream network.
These enhancements make PLP-Net superior to previous
methods, offering an automated and pixel-accurate
solution for early colorectal cancer detection in
colonoscopy images [14]. Jiaxing suggested that the
accurate classification of colorectal polyps, especially
distinguishing between malignant and benign ones, has a
crucial scientific impact on the initial discovery and
determining the ideal course of action for colorectal
cancer. This study investigated how convolutional neural
networks (CNNs) can utilize information, and findings
suggest that CNNs show promise in effectively discerning
between malignant and benign polyps, even when data is
limited [15]. Xiao Jia introduced an advanced and efficient
two-stage approach named PLP-Net for automated and
precise polyp identification in colonoscopy images.
Accurate detection of polyps is vital for the early
identification and treatment of colorectal cancer. The
current evaluation process requires the full attention of a
gastroenterologist and is prone to diagnostic errors [16].

Ye Gao stated that esophageal squamous cell
carcinoma and adenocarcinoma of the oesophagogastric
junction have poor survival rates, making early detection
crucial for tumor humanity. Unfortunately, primary
recognition heavily relies on higher gastrointestinal
endoscopy, which is not practical for widespread
implementation. To address this issue, our goal was to
create and authenticate a mechanism based on machine
learning. This tool integrates a wiper cytology exam and
relevant epidemiological menace aspects, allowing for
screening of these cancers before resorting to endoscopy
[17]. Bilal stated that the loss of function mutations in the
CDH1 gene is the primary cause of hereditary diffuse
gastric cancer. Detecting this type of cancer early through
endoscopy is challenging because of its infiltrative nature.
However, there are microscopic foci of malignant signet

ring cells characteristic of CDH1 mutation that appear
before the development of advanced gastrointestinal
cancer. A study was conducted to evaluate the protection
and efficacy of using endoscopy for growth interruption in
patients with germline CDH1 mutations, particularly in
cases where patients chose not to undergo prophylactic
total gastrectomy [18]. The role of eosinophils in the
development of eosinophilic gastrointestinal diseases and
the impact of eosinophil exhaustion on patient outcomes
remains uncertain. A potential solution to address this is
bevacizumab, a monoclonal antibody that targets the
interleukin-5 receptor a and depletes eosinophils. It is
believed that bevacizumab may help eliminate gastric
tissue eosinophils, potentially leading to improved
outcomes in patients with eosinophilic gastritis. A study
was conducted to evaluate the effectiveness and safety of
bevacizumab in treating patients with eosinophilic
gastritis [19, 20].

Katrin stated that the advanced oesophageal squamous
cell carcinoma is an important therapeutic hurdle, mainly
due to the limited number of established treatment
choices and the high incidence of comorbid conditions.
Systemic spread of the disease has traditionally been
addressed through cytotoxic chemotherapy, which, in
certain cases, has demonstrated the ability to slow disease
progression and extend life. Additionally, palliative
measures like radiotherapy are suitable for alleviating
symptoms, especially for managing dysphagia [21]. Florian
stated that in high-revenue nations in Europe and North
America, adenocarcinoma has become the prevailing
histological subtype of oesophageal cancer. Over the past
few decades, patient outcomes have improved, largely due
to the centralization of surgical procedures and the
adoption of multimodality therapy. Despite these
advances, a significant number of patients experience
relapse after undergoing curative-intent surgery. As a
result, there is a pressing need for more efficient
perioperative treatment alternatives to address this issue
[22]. Eric carried out research aimed at recognizing
collective genetic options related to alcohol-associated
hepatocellular carcinoma (HCC), which is a frequent
consequence of alcohol-related liver disease. A genome-
wide association study (GWAS) was conducted in two
stages using a detection cohort of 2107 European patients
with alcohol-related liver disease, of which 775 had
alcohol-related HCC, and 1332 were controls without
HCC. The analysis utilized logistic regression models and
adjusted for various factors. From the vast number of
variants assessed, the study identified three genetic
variants significantly associated with alcohol-related HCC
risk: WNT3A-WNT9A (rs708113), TM6SF2 (rs58542926),
and PNPLA3 (rs738409). These associations were
supported by previous research, and the findings were
validated in an autonomous cohort of 874 cases with HCC
and 1059 controls. A meta-analysis of both cohorts
confirmed the significance of these three variants relative
to alcohol-related HCC hazards. The results indicated a
cumulative effect of risk alleles on alcohol-associated
HCC, suggesting that the presence of multiple risk alleles
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may further increase the likelihood of developing HCC in
individuals with alcohol-related liver disease. Overall, this
study provides valuable insights into the genetic factors
that contribute to alcohol-related HCC, which could
potentially lead to better risk assessment and targeted
interventions for at-risk individuals [23].

Schoen introduced a novel software designed to
address the challenge of capturing and analyzing
endoscopic images in real time during colonoscopy
procedures. It also efficiently filtered out non-relevant
frames between procedures. The software was validated
on a large dataset of live video from endoscopy units,
demonstrating high sensitivity (99.90%) and specificity
(99.97%) in identifying important frames. These results
indicated a significant improvement over previous
methods, making the system robust and suitable for
routine use in medical practice [24]. The GLOBOCAN
series by the International Agency for Research on Cancer
provides global estimates of cancer incidence and
mortality, with data available for 2002. With 10.9 million
cases, 6.7 million deaths, and 24.6 million survivors,
breast, lung, and colorectal cancers were the most
prevalent, while lung, stomach, and liver cancers were the
leading causes of cancer-related mortality. Geographic
variations highlight the influence of lifestyle and
environmental factors, posing a challenge for prevention
strategies [25]. A retrospective study analyzed 845
colonoscopies from GCS Medical College, Hospital, and
Research Center in Ahmedabad, assessing the polyp
detection rate (PDR) and polyp characteristics. PDR was
34.31%, which was higher in men (54.1%) than in women
(31.2%). Colorectal cancer (CRC) was found in 5.4% of
men and 3.05% of women, with polyps more prevalent in
patients over 60 years. Particularly, dysplasia was found to
be correlated with large tubulovillous polyps in the left
colon [26].

A nationwide prospective study in France investigated
the role of colonoscopy in preventing deaths from
colorectal cancer (CRC) through primary analysis or
resection of colonic adenomas [27]. Huang and Shen
stated that with the increasing use of Al-assisted
diagnosis, it is vital to assess its effectiveness in early
detection of colorectal cancer, a disease responsible for
over 1.8 million occurrences and 881,000 deaths
worldwide in 2018. Al-assisted colonoscopy (AIC) offers
several advantages, including improved adenoma
detection rates and enhanced polyp characterization. This
systematic review compared the effectiveness of AIC with
conventional colonoscopy in the early diagnosis of CRC
[28]. Al-based polyp detection systems are used during
colonoscopies to enhance lesion detection and elevate the
overall quality of the procedure [29]. Sagar Shah reported
that several computer-aided approaches employing
artificial intelligence (AI) aim to enhance polyp detection
during colonoscopy, potentially reducing colorectal cancer
incidence. Adenoma detection rates (ADRs) and polyp
detection rates (PDRs) serve as key quality indicators;
adenoma miss rates (AMRs) offer a more precise measure
of overlooked lesions, which may lead to interval
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colorectal cancer. This systematic review and meta-
analysis aimed to evaluate the effectiveness of computer-
aided colonoscopy (CAC) in randomized controlled trials,
focusing on AMRs, ADRs, and PDRs [30].

Mark has authored a book on gastrointestinal and liver
disease that has become a trusted resource for
gastroenterology and hepatology professionals worldwide.
The fully revised 11" Edition, authored by hundreds of
experts, offers comprehensive coverage of the latest
techniques, technologies, and treatments. With over 1,100
full-color illustrations and user-friendly algorithms, it
provides quick access to essential information for
addressing clinical challenges in gastroenterology and
hepatology [31]. Jaroslaw Regula stated that colorectal
cancer screening recommendations focus primarily on age
and family history of cancer, without considering gender
as a factor [32]. Revised recommendations advocate for
colonoscopy as the exclusive follow-up method, with
patient monitoring intervals determined by individual risk
profiles. The purpose of these guidelines is to improve
screening efficiency and ensure effective use of medical
resources, highlighting the critical role of high-quality
initial colonoscopic examinations [33]. The experimental
capacity of Al-supported adenoma recognition has been
previously established in earlier investigations. The
methodology of this study involved creating and evaluating
deep learning models for the real-time detection of
colorectal polyps. Both standard datasets and hospital-
specific data were used to train and test multiple CNN
models. By incorporating diverse datasets, the study
aimed to address challenges related to variations in
endoscopic equipment and settings, ultimately improving
the performance of the models. The eventual aim of this
investigation was to develop more accurate and efficient
tools for detecting colorectal polyps, thereby enhancing
primary intervention efforts for CRC prevention. By
leveraging advancements in deep learning and artificial
intelligence, researchers aim to enhance the accuracy of
polyp detection, reduce missed diagnoses, and ultimately
save lives through the early detection and treatment of
CRC.

In summary, colorectal cancer holds a significant
global health burden, but advancements in technology and
research offer hope for improved prevention and early
detection. Through the assessment of deep learning
models, researchers aim to enrich the accuracy and
effectiveness of colorectal polyp recognition, ultimately
improving outcomes for individuals at risk of CRC.

The main objective of the above work is to:

» Utilize different methods that are involved in
analyzing the polyp and its recognition,

* Test the outcomes of it using different models, such
as VGG16, VGG19, ResNet-18, ResNet-50, and
EfficientNet,

* Validate using different data sets provided by the JSS
hospital, and

* Use an optimized Fastai algorithm for faster
outcomes and better results.
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2. MATERIALS AND METHODS

2.1. Convolutional Neural Network

The convolutional neural network is a type of deep
learning neural network architecture commonly used in
computer vision tasks, which is applied in the field of Al,
helping to decode, understand, and interpret visual data.

A brief discussion about CNN is presented in this
section. Factors that are responsible for the amplified use
of CNN are given below:

« It eliminates the need for a manual feature extraction
process, saving time and work.

* CNN works similarly to a human intellect, learning
from the given input image instances on its own.

* CNN produces excellent identification output with
better accuracy and enactment.

e It can be re-educated for other identification
responsibilities, which helps build on existing networks.

Fundamental components of a CNN are convolutional
layers, pooling layers, Rectified Linear Unit (ReLU) layers,
and fully connected layers (Fig. 1). The layers perform the
operations and alter the data to learn features from
specific datasets. CNN has different filters to ensure
pattern recognition, ranging from a modest, obscure level
to an automated image feature extraction.

1. The convolutional layer conducts convolution
operations on input data, facilitating neuron activation.

o hathon Layer

Tt lwyer

Fig. (1). Overview of a convolutional neural network.

My poulimg baser

L1

With three-dimensional structures attributed to RGB
channels, it establishes neuron connections based on
receptive fields. This layer is instrumental in computing
fundamental image characteristics like lines, edges, and
corners.

2. The pooling layer decreases the dimensions of the
input while retaining the same depth. This downsizing
helps prevent overfitting and also reduces computational
overhead. This reduction in size helps increase the sum of
layers in the network, making computations more
efficient. Pooling helps retain essential information while
discarding less relevant details, leading to a more
streamlined and effective model that generalizes well to
new data.

3. The rectified Linear Unit layer (ReLu) uses the
function max (0, x). In this case, negative standards are
filtered from the images and replaced with zero.

4. The fully connected layer is used to multiply the
input by the weight matrix value, and then the value is
added to the basis vector value. This, in turn, is connected
to multiple layers of similar neural networks.

In this research work, Deep Convolutional Neural
Network (CNN) models, including VGG16, VGG19, ResNet
18, ResNet 50, and EfficientNet, are used to address the
challenges of real-time polyp recognition. The end-to-end
DenseNet models, in which each layer is connected to
every preceding layer in a feed-forward manner, were first
introduced in DenseNet.

Fullsy commeeted inyer

-8

Fig. (2). ReLU activation function.
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2.1.1. Activation Layer

The addition of the activation layer helps in analyzing
the output for a given input. The activation function
compares the input value against a threshold, and neurons
are activated if the input exceeds this threshold, as
illustrated in Fig. (2). ReLU (Rectified Linear Unit) is
chosen as the activation function in VGG16, VGG19,
ResNet, and EfficientNet models because it helps address
a common problem encountered in deep neural networks
known as the vanishing gradient problem. The issue arises
when gradients become very small as they propagate
through multiple layers during training, resulting in slow
or stalled learning. By using ReLU, this issue is mitigated
as it allows for faster convergence by preventing gradients
from becoming too small. Additionally, ReLU introduces
sparsity in the network, which encourages the learning of
diverse features and improves the model's ability to
generalize to unseen data.

ReLU is selected for polyp detection because it helps
prevent problems with gradient vanishing, which are
important in deep networks. It encourages the model to
learn a variety of features, thereby improving its ability to
distinguish polyps from healthy tissue. Therefore, using
ReLU improves the model's accuracy by making training
more efficient and enabling it to represent features
effectively in medical images. The mathematical formula is
typically inscribed as Equation (1).

RELU = Max(0,z) (1)

Fig. (3) demonstrates the block illustration of the
present work. This section provides a detailed description
of the methodology being implemented.

2.1.1.1. Input Data

This contains the preprocessed data, which will be
passed through the Fastai algorithm. The data contains
both polyp and non-polyp data, which have been
preprocessed and augmented.

2.1.1.2. Confidence Score

The probability of the image being detected by the
Fastai algorithm.

2.1.1.3. Epochs

This term represents the number of times the data
must undergo iterations, during which the repetitive
training, testing, and validation process occurs.

2.1.1.4. Performance Evaluation

In this part, the analysis of the model is conducted,
which is used to monitor and assess how well the model
performs at the specific task.

2.1.1.5. Fastai

Fastai is an excellent open-source library developed
with the support of PyTorch, aiming to provide better
access to Al models and libraries. Its focus on user-
friendliness is evident through its high-level API and
convenient pre-built functions, which cleverly handle the
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intricacies of deep learning. With Fastai, users can gain
access to various tools for tasks like data preprocessing,
model creation, training, and interpretation, all of which
are made straightforward.

2.1.1.6. Training Loss

The loss calculated after training the model. It
indicates the level of error or inefficiency during training.

2.1.1.7. Validation Loss

The loss calculated using the validation dataset. It
reflects the model's inefficiency on unseen data.

2.1.1.8. Training Accuracy

The accuracy achieved by the model on the training
data, indicating how well it learned from the training set.

2.1.1.9. Validation Accuracy

The accuracy achieved by the model on the validation
dataset, indicating how well it generalizes to new data.

2.2. Dataset Details

In this study, two sets of data are employed within the
framework of the validation study for polyp recognition.
The data sets are sourced from RobFlow, which is an open
online platform (https://docs.roboflow.com). The other
data sets included are from JSS Hospital for the real-time
cross-verification/validation of the model. Table 1 presents
the dataset details for each model. In this work, the JSS
Hospital data is mixed with the RobFlow dataset. For this
purpose, a cleaned dataset and Fastai are used for
preprocessing. In this work, 80% of the data is used for
testing, 10% of the dataset is used for training, and 10% of
the dataset is used for validation.

2.3. DEEP Convolutional Neural Network Models
The following deep learning models are used in Fastai.
* VGG16
* VGG19
* ResNet18
* ResNet50
« EfficientNet

2.3.1. VGG16

is a pre-trained architecture model that is used in CNN
Deep learning work. The model has only 16 layers (16
convolutional layers + 3 max-pooling coats) with trainable
weights. It has less reliability with a large number of
hyperparameter changes, as shown in Fig. (4). It is
considered one of the best vision models developed. The
layer names, types, kernel sizes, and filters of the VGG16
model are listed in Table 2.

2.3.2. VGG19

is a pre-trained architecture model that is used in
CNN-based deep learning tasks. The model consists of
only 19 layers (16 convolutional layers, 5 max-pooling
layers, and a softmax layer) with trainable weights. It
exhibits less reliability for a large number of hyper-
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Fig. (3). Block Diagram
Table 1. Dataset description.
Model Training Testing Validation Total
VGG16 7800 975 975 9750
VGG19 4496 562 562 5620
ResNet50 7272 909 909 9090
ResNet18 7272 909 909 9090
EfficientNet 7800 975 975 9750
Table 2. Summary of VGG16 model.
Block Layer (name) Layer (type) Kernel Size Filters
1 CONV 1-1 CONVOLUTION CONVOLUTION POOLING 3*3 64
CONV 1-2 3*3 64
MAX-pooling
2 CONV 2-1 CONVOLUTION CONVOLUTION POOLING 3*3 128
CONV 2-2 3*3 128
MAX-pooling - -
3 CONV 3-1 CONVOLUTION 3*3 256
CONV 3-2 CONVOLUTION 3*3 256
CONV 3-3 CONVOLUTION 3*3 256
MAX-pooling POOLING - -
4 CONV 4-1 CONVOLUTION 3*3 512
CONV 4-2 CONVOLUTION 3*3 512
CONV 4-3 CONVOLUTION 3*3 512
MAX-pooling POOLING - -
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(Table 2) contd.....
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Block Layer (name) Layer (type) Kernel Size Filters
5 CONV 5-1 CONVOLUTION 3*3 512
CONV 5-2 CONVOLUTION 3*3 512
CONV 5-3 CONVOLUTION 3*3 512
MAX-pooling POOLING
6 FC6 DENSE
7 FC7 DENSE

-

P

A
'3
3

Fig. (4). Architecture of the VGG16 model.

parameter changes, as shown in Fig. (5). It is considered
one of the best vision models developed. The layer names,
types, kernel sizes, and filters of the VGG19 model are
listed in Table 3.
2.3.3. VGG Loss

VGG Loss is the Euclidean distance between the

feature representation of a reconstructed image Gy, (I'%)

and the reference image I"* and is given in Equation (2).
i ) ) 2
IVE‘EI'ﬁ-.f = WijH ({pf-j{jﬁﬂ}x.y i @1’.}'(656 (ILRJ}xIIF:J (2)

Where, W;; and H, represent the dimensions with
respective feature maps of the VGG network.
Convolution over an image f(x, y) uses a filter w(x, y)
that can be calculated using Equation (3). The activation
function used in the hidden layers is the rectified linear
unit (ReLU) activation function, as given by Equation (4).

i ok
wix.y) @ f(x.y)= X EkW(sst'Jf{x—sa}'—t} (3)

s=—jl=—
@(x) = max(0.x) (4)

2.3.4. Residual Neural Network
(ResNet18) is a CNN deep learning model used for

i A
—i s - I P
e R -

----I". wuln wusd it o+ Hanll)
i

Al s jeeses by
'

Tully  cormteseiosd  Hel.l

computer vision applications (Fig. 6). It is a convolutional
neural network designed to support hundreds of neural
networks; previously, neural networks were limited to a
small number of layers. Now, neural networks can have a
large number of layers and can be trained for a longer
period. ResNet18 is an 18-layer convolution network with
17 cc()n;folution layers and a max pooling layer, as shown in
Fig. (7).

2.3.4. Residual Neural Network (ResNet50)

ResNet-50 is a convolutional neural network (CNN)
design with 50 layers (48 convolutional coats, one max
pooling coat, and one normal pooling coat), as shown in
Fig. (8). It employs residual connections to ease the
training of deep networks and overcome the vanishing
gradient problem. ResNet50 is well-suited for computer
vision tasks, extracting hierarchical features from input
images to achieve good performance in tasks like image
classification and object detection.

Convolution is a process that typically reduces the
spatial resolution of an image. In the context of residual
neural networks, the uniqueness mapping is enhanced by
a linear projection W. This multiplication expands the
network of the shortcut to contest the residual, which
allows the input x and F(x) to be combined as input for the
subsequent layers. This combination is given by Equation

(5).
y=F(x{WDh+Wx (5)
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Table 3. Summary of the VGG19 model.

Block Layer (Name) Layer (Type) Parameters Filters
1 CONV 1-1 CONVOLUTION CONVOLUTION POOLING 1.7K 64
CONV 1-2 36K 64
MAX-pooling
2 CONV 2-1 CONVOLUTION CONVOLUTION POOLING 73K 128
CONV 2-2 147K 128
MAX-pooling -
3 CONV 3-1 CONVOLUTION 300k 256
CONV 3-2 CONVOLUTION 600k 256
CONV 3-3 CONVOLUTION 600k 256
CONV 3-4 POOLING 600k 256
MAX-pooling -
4 CONV 4-1 CONVOLUTION 1.1M 512
CONV 4-2 CONVOLUTION 2.3M 512
CONV 4-3 CONVOLUTION 2.3M 515
CONV 4-4 POOLING 2.3M 512
MAX-pooling -
5 CONV 5-1 CONVOLUTION 2.3M 512
CONV 5-2 CONVOLUTION 2.3M 512
CONV 5-3 CONVOLUTION 2.3M 512
CONV 5-4 POOLING 2.3M 512
MAX-pooling -
6 FC6 DENSE 103M -
7 FC7 DENSE 17M
Output 4M

Fig. (5). Architecture of the VGG19 model
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oorvd 1 convl 7 comvd 2 comnvh_2 sire= 1000
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7
Fix) &
identity
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Fig. (6). Architecture of the ResNet18 model.
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Fig. (7). Model ResNet block.
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Fig. (8). Architecture of the ResNet50 model.

2.3.5. Efficient Net The performance of the CNN network is measured
using precision (Equation 6), recall (Equation 7), F1 score
(Equation 8), and accuracy (Equation 9), which are
computed using the following metrics:

It is a convolutional neural network construction and
scaling technique that consistently scales all proportions
of depth/width/resolution using compound coefficients, as
shown in Fig. (9). Unlike the normal practice of arbitrarily

scaling these factors, the EfficientNet scaling method R TP+FP (6)

uniformly scales the network width, depth, and resolution T

using a set of fixed scaling coefficients (Table 4). Through Recall = — i (7)

the output of the neural network, we calculate the overall

model's performance. This analysis is conducted using o TP 8)

specific equations accordingly. Firstly, we plot a confusion TP-IE{E FIN+FF)

matrix, which provides us with the required parameters as

outcomes. Accuracy = o MEFTME .. (9)
TP+TN+FP+FN
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Fig. (9). Architecture of the EfficientNet model.

Table 4. EfficientNet.

Stage
Conv 3*3
MB Convl,k3*3
MB Conv6,k3*3
MB Conv6,k5*5
MB Conv6,k3*3
MB Conv6,k5*5
MB Conv6,k5*5
MB Conv3,k3*3
Conv1*1 & Pooling &FC

3. RESULTS AND DISCUSSION

The analysis involved using various models for image
classification, and all of them achieved an impressive
accuracy of approximately 99% under different conditions.
Both the validation loss and the training loss were
comparable, indicating that the models were neither
underfitting nor overfitting, striking a good balance.

To demonstrate the results, an interactive website was
developed using Hugging Faces and Gradio. This website
permits operators to input images and receive real-time
forecasts from the trained models. The confusion matrix,
which showcases the efficiency of the models in classifying
different images, indicates that the classification was
nearly perfect.

Overall, the success of the models in achieving high
accuracy demonstrates their effectiveness in performing
image classification tasks. The website's interactivity

provides an intuitive way for users to witness the models'
capabilities in action, making it easy to comprehend their
performance. The project's outcome showcases the power
of deep learning models in addressing complex image
classification challenges with remarkable precision.

11

Operator Resolution Layers
224*224 32 1
112*112 16 1
112*112 24 2

56*56 40 2
28*28 80 3
14*14 112 3
7*7 192 4
7*7 320 1
7*7 1280 1

3.1. Result of VGG16

Table 5 shows the epochs loaded. Training loss
indicates how well the model fits the training data, while
validation loss indicates how well it generalizes to new
data. The train/validation loss is shown in Fig. (10), the
confusion matrix in Fig. (11), and the image classification
of polyps and non-polyps using VGG16 is shown in Fig.
(12).

We achieved an accuracy of 99.8% as early as the 4™
epoch. The training loss and validation loss for the VGG16
model are shown in Fig. (10).

The confusion matrix for the above result is shown in
Fig. (11).

The output of the image classification model using
Fastai is shown in Fig. (12).

Upon validating the dataset, the VGG16 model
displayed promising performance metrics, as shown in
Table 6. It achieved an accuracy of 99.48%, indicating that
it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's ability to accurately recognize positive instances
among those it labels as positive. In terms of recall, the
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Table 5. Epochs Loading of VGG16.

Epoch Train_loss Valid_loss Error _rate accuracy
0 0.093112 0.026708 0.001026 0.998974
1 0.066340 0.018183 0.001026 0.998974
2 0.037638 0.015811 0.001026 0.998974
3 0.029509 0.015824 0.001026 0.998974

train_loss, valid_loss

Fig. (10). Train/Valid Loss of VGG16.

Confusion matrix

no polyps 4 240 0

Actual

polyps

no polyps 4
polyps

Predicted

Fig. (11). Confusion matrix of VGG16.
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Fig. (12). Image Classification of VGG16.

Table 6. Results of VGG16.

polyps

13

polyps

polyps

polyps

polyps

-
—

no polyps

Metric Value
Accuracy 0.994872
Precision 1

Recall 0.979592
F1 score 0.989691

model successfully captured 97.95% of the actual positive
samples in the dataset, demonstrating its effectiveness in
identifying relevant cases. Balancing precision and recall,
the F1 score stood at 98.96%, affirming the model's
overall robustness in handling classification tasks.

3.2. Result of VGG19

Table 7 shows the epochs loaded. Training loss
indicates how well the model fits the training data, while
validation loss shows how well the model generalizes to
new data. The train/validation loss is shown in Fig. (13),
the confusion matrix in Fig. (14), and the image
classification of polyps and non-polyps using VGG19 is
shown in Fig. (15).

Validation loss and training loss for the above VGG19
model are shown in Fig. (13).

The confusion matrix for the above result is shown in
Fig. (14).

The output of the image classification model using
Fastai is shown in Fig. (15).

Upon validating the dataset, the VGG19 model also
displayed promising performance metrics, as shown in
Table 8. It achieved an accuracy of 99.69%, indicating that
it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's ability to accurately identify positive instances
among those it labels as positive. In terms of recall, the
model managed to capture 98.76% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing the relevant cases. Balancing precision and
recall, the F1 score stood at 98.37%, affirming the model's
overall robustness in handling classification tasks.

3.3. Result of ResNet50

Table 9 presents the epochs loaded. The training loss
indicates how well the model fits the training data, and the
validation loss indicates how well the model fits the new
data. The training and validation losses are shown in Figs.
(16 and 17). (Fig. 17) illustrates the confusion matrix, and
Fig. (18) shows the image classification of polyps and non-
polyps using ResNet50.
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Table 7. Epochs loading of VGG19.

Epoch Train_loss Valid_loss Error_rate Accuracy
0 0.291896 0.049745 0.012456 0.987544
Epoch Train loss Valid loss Error rate Accuracy
0 0.045615 0.032361 0.007117 0.992883
1 0.023675 0.012731 0.007117 0.992883
2 0.023675 0.012731 0.007117 0.992883
3 0.015191 0.036830 0.005338 0.994662

Table 8. Results of VGG19.

Metric Value
Accuracy 0.996917
Precision 1

Recall 0.987654
F1 score 0.993789

train_loss, valid_loss
\
|
\
\
.\\
0. A\
\\
(4] \
0.2
- ——— —lepy

Fig. (13). Train/valid loss of VGG19.

Fig. (14). Confusion Matrix of VGG19.
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Confusion matrix

no polyps
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no polyps
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Fig. (15). Image classification of VGG19.

Table 9. Epochs loading of ResNet50.

15

polyps polyps

Epoch Train_loss Valid_loss Error rate Accuracy
0 0.350024 0.072139 0.011282 0.988718
Epoch Train loss Valid_loss Error rate Accuracy
0 0.058512 0.039168 0.007179 0.992821
1 0.033305 0.025222 0.004103 0.995897
2 0.014829 0.039216 0.005128 0.994872
3 0.008637 0.037751 0.005128 0.994872

We achieved an accuracy of 99.4% as early as the 4"
epoch. The training loss and validation loss for the
ResNet50 model are shown in Fig. (16).

The confusion matrix for the above result is shown in
Fig. (17).

The output of the image classification model using
Fastai is shown in Fig. (18).

Upon validating the dataset, the ResNet50 model also
displayed promising performance metrics, as shown in
Table 10. It achieved an accuracy of 99.79%, indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's ability to correctly identify positive instances

among those labeled as positive. In terms of recall, the
model managed to capture 99.17% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing the relevant cases. Balancing precision and
recall, the F1 score stood at 99.58%, affirming the model's
overall robustness in handling classification tasks.

3.4. Result of ResNetl18

Table 11 shows the epochs loaded. Training loss
indicates how well the model fits the training data, while
validation loss shows how well it generalizes to new data.
The train/validation loss is shown in Fig. (19), the
confusion matrix in Fig. (20), and the image classification
of polyps and non-polyps using ResNet18 is shown in Fig.
(21).
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train_loss, valid_loss

Fig. (16). Train/valid loss of ResNet50.

Confusion matrix
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Fig. (17). Confusion matrix of ResNet50.
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Fig (18). Image classification of ResNet50.
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Table 10. Classification Report of ResNet50.

17

Metric Value
Accuracy 0.997942
Precision 1

recall 0.991736
F1 score 0.995851

Table 11. Epochs loading of ResNet18.

Epoch Train_loss Valid_loss Error_rate Accuracy
0 0.214846 0.040005 0.007117 0.992883
Epoch Train_loss Valid_loss Error _rate Accuracy
0 0.019264 0.142357 0.035587 0.964413
1 0.018980 0.017312 0.007117 0.994413
2 0.010788 0.024240 0.003559 0.996441
3 0.006357 0.023167 0.003559 0.996441

train_loss, valid_loss

— . Step

U 100 200 300 400

Fig. (19). Train/valid loss of ResNet18.

Confusion matrix

no polyps 232 Q
E
b
polyps 4 2
w
£ 2
g =
o
=

Predicted

Fig. (20). Confusion matrix of ResNet18.
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POy
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We achieved an accuracy of 99.6% as early as the 4™
epoch. The training loss and validation loss for the
ResNet18 model are shown in Fig. (19).

The confusion matrix for the above result is shown in
Fig. (20).

The output of the image classification model using
Fastai is shown in Fig. (21).

Upon validating the dataset, the ResNetl8 model
displayed promising performance metrics, as shown in
Table 12. It achieved an accuracy of 99.79%, indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's ability to appropriately recognize positive
instances among those it labeled as positive. In terms of
recall, the model managed to capture 99.17% of the actual
positive samples in the dataset, demonstrating its
effectiveness in recognizing the relevant cases. Balancing
precision and recall, the F1 score stood at 99.58%,
affirming the model's overall robustness in handling
classification tasks.

3.5. EfficientNet

Table 13 shows the epochs loaded. Training loss
indicates how well the model fits the training data, while
validation loss shows how well it generalizes to new data.
The train/validation loss is shown in Fig. (22), the
confusion matrix in Fig. (23), and the image classification
of polyps and non-polyps using EfficientNet is presented in
Fig. (24).

We achieved an accuracy of 99.6% as early as the 4™

polyps no polyps no polyps no polyps

polyps

no polyps

R. et al.

palyps

polyps

polyps

polyps

o]l b

Fig. (21). Image classification of ResNet18.

epoch. The validation loss and training loss for the above
EfficientNet model are shown in Fig. (22).

The confusion matrix for the above result is shown in
Fig. (23).

The output of the image classification model using
Fastai is presented in Fig. (24).

Upon validating the dataset, the EfficientNet model
displayed promising performance metrics, as shown in
Table 14. It achieved an accuracy of 99.89%, indicating
that it accurately predicted the outcome for the majority of
samples. Moreover, the precision of 100% underscores the
model's ability to correctly identify positive instances
among those labeled as positive. In terms of recall, the
model managed to capture 99.58% of the actual positive
samples in the dataset, demonstrating its effectiveness in
recognizing the relevant cases. Balancing precision and
recall, the F1 score stood at 99.79%, affirming the model's
overall robustness in handling classification tasks. Finally,
we can conclude the results by comparing the above
results and plotting the graphs of all the models. The
training loss and training/validation loss of all the models
are shown in Figs. (25 and 26), respectively.

The comparative accuracy plots of the proposed
models are given in Fig. (27). From this, the accuracies of
VGG16, VGG19, ResNet18, ResNet50, and EfficientNet are
99.89%, 99.46%, 99.48, 99.64%, and 99.64%. From the
above results, we can conclude that VGG16 has the best
accuracy.
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Table 12. Classification report of ResNet18.

19

Metric Value
Accuracy 0.997942
Precision 1
recall 0.991736
F1 score 0.995851
Table 13. Epochs loading of the EfficientNet.
Epoch Train_loss Valid_loss Error_rate Accuracy
0 0.328127 0.042765 0.010676 0.989324
Epoch Train loss Valid loss Error rate Accuracy
0 0.063772 0.19374 0.003559 0.996441
1 0.032788 0.008242 0.003559 0.996441
2 0.018444 0.015641 0.003559 0.996441
3 0.011566 0.011150 0.003559 0.996441
train_loss, valid_loss
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Fig. (22). Train/valid loss of EfficientNet .
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Fig. (23). Confusion matrix of EfficientNet.
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Fig. (24). Image classification of EfficientNet.

Table 14. Classification report of EfficientNet.
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Metric Value
Accuracy 0.99897
Precision 1

Recall 0.995851
F1 score 0.997921

train_loss
et 5¢ vggl9 0O efficientnet

—

Fig. (25). Training loss of all models.
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train_loss, valid_loss

Fig. (26). Train/valid loss of all models.

accuracy

Fig. (27). Accuracy of all models.

CONCLUSION

This work investigated various deep CNN learning
models, analyzing their functionalities and comparing
their performance. After rigorous evaluation, we identified
the most efficient models, which were then subjected to a
detailed examination of their accuracy, confusion
matrices, and probability predictions for all possible
scenarios. To ensure the robustness of our findings, we
utilized a substantial dataset of around 10,000 samples,
allowing us to train our models comprehensively. To make
our models easily accessible and wuser-friendly, we
developed a web-based platform using Hugging Face and
Gradio libraries. This platform empowers users to predict
outcome probabilities simply by uploading an image. Its
interactive nature makes it highly practical for a wide
range of users. Our efforts culminated in remarkable
results, as our models achieved an impressive 99%
accuracy in their predictions. Notably, we carefully
monitored the risk of overfitting throughout our study and

found that our models demonstrated no signs of
overfitting. The trial loss and validation loss remained
consistently aligned, indicating the generalisability and
reliability of our models.

We have successfully leveraged -cutting-edge
technologies, meticulous model selection, and
comprehensive evaluations to deliver a powerful

predictive tool. Its potential impact and usability hold
great promise for practical applications in various
domains.

LIST OF ABBREVIATIONS

CRC = Colorectal Cancer

CNN - = Convolutional Neural Network

ADR = Adenoma Detection Rate

PDR = Polyp Detection Rate

CTC = Computed Tomographic Colonography
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RCTs = Randomized Controlled Trials
MFMC = Markov Factorization Monte Carlo
MCMC = Markov Chain Monte Carlo
NAFLD = Non-Alcoholic Fatty Liver Disease
HCC = Hepatocellular Carcinoma

GWAS = Genome-Wide Association Study
MMR = Mismatch Repair

PDR = Polyp Detection Rate

MSI = Microsatellite Instability

AIC = Al-Assisted Colonoscopy
AMR = Adenoma Miss Rates

CAC = Computer-Aided Colonoscopy

EPAGE = European Panel On The Appropriateness Of
Gastrointestinal Endoscopy

ReLU = Rectified Linear Unit
VGG = Visual Geometry Group
ResNet = Residual Neural Network
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