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Abstract:
Introduction: Nasopharyngeal carcinoma (NPC) is a malignant tumor with distinct molecular features, underscoring
the need for reliable biomarkers to improve diagnosis, prognosis, and therapeutic strategies.

Methods: We analyzed transcriptomic data from GEO datasets (GSE12452, GSE53819, and GSE102349) to identify
diagnostic and prognostic biomarkers. Differential expression analysis was performed to detect potential markers,
while survival analysis was conducted using Cox proportional hazards (Cox-PH) modeling and log-rank tests. Elastic
Net regression was used to refine the gene signature. RNA-protein expression concordance was validated using the
Cancer Cell Line Encyclopedia (CCLE) dataset.

Results:  Differential  expression  analysis  revealed  591  genes  as  potential  diagnostic  markers.  Survival  analysis
identified 54 genes with dual diagnostic and prognostic relevance. Elastic Net regression refined this to an 11-gene
signature, which stratified patients into high- and low-risk groups, significantly predicting progression-free survival
(log-rank  p  =  0.0035).  Five  genes  (BUB1B,  GAS2L3,  NFE2L3,  OIP5,  and  PDGFRL)  were  identified  as  potential
oncogenic drivers, while six (CD1D, CYP4B1, IL33, KLF2, NAPSB, and VILL) were implicated as tumor suppressors.
Six genes (BUB1B, GAS2L3, IL33, OIP5, PDGFRL, and VILL) showed strong RNA-protein expression concordance in
the CCLE dataset.

Discussion: This study reveals previously unreported cancer-associated genes (NAPSB, GAS2L3, NFE2L3, PDGFRL,
CD1D,  CYP4B1,  KLF2)  in  NPC while  validating  established  biomarkers  (BUB1B,  OIP5,  IL33,  VILL).  Our  findings
expand NPC molecular characterization but require further clinical validation.

Conclusion: This study presents a robust gene signature for NPC, offering valuable insights into tumor progression
and providing a foundation for advancing diagnostic strategies, improving prognostic stratification, and developing
targeted therapies.
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1. INTRODUCTION
NPC  is  a  relatively  rare  malignancy;  however,  its

incidence is disproportionately high in specific geographic
regions,  including  Southeast  Asia  and  North  Africa.  In
Indonesia,  NPC  was  the  fourth  most  prevalent  cancer
among  males  in  2022,  with  a  total  of  14,497  newly
diagnosed cases reported across all age groups [1]. Due to
its  nonspecific  symptoms,  NPC  is  often  diagnosed  at
advanced  stages,  highlighting  the  critical  need  for
molecular  diagnostic  tools  to  facilitate  early  detection,
guide  treatment  decisions,  monitor  disease  progression,
and predict prognosis [2].

Biomarkers for NPC can be broadly categorized into two
groups:  Epstein-Barr  virus  (EBV)-related  biomarkers  and
cellular  biomarkers.  EBV-related  biomarkers,  such  as  EBV
DNA,  EBNA1,  LMP1/2,  EBER  1/2,  and  miRNA  BART,  have
been  extensively  studied  and  are  widely  used  for  NPC
diagnosis  and  monitoring  [2].  However,  these  biomarkers
have limitations,  as not all  NPC patients exhibit  detectable
EBV  reactivation  [3,  4].  This  highlights  the  need  for
complementary cellular biomarkers that reflect the intrinsic
molecular characteristics of NPC.

Transcriptomic analysis has emerged as a powerful tool
for  biomarker  discovery,  enabling  the  identification  of
comprehensive  gene  expression  patterns  associated  with
tumorigenesis,  progression,  and  therapeutic  responses  [5].
By  leveraging  high-throughput  sequencing  technologies,
transcriptomics  provides  a  global  view of  gene  expression,
uncovering  molecular  signatures  that  serve  as  diagnostic,
prognostic, and predictive biomarkers. This approach allows
for  the  identification  of  unique  gene  expression  patterns
specific  to  tumors,  offering  deeper  insights  into  disease
pathogenesis  and  potential  therapeutic  targets  [6].  Recent
studies have leveraged transcriptomic data to identify novel
biomarkers for NPC. For instance, bioinformatics analysis of
transcriptomic  datasets  has  identified  RASGRP2,  TTC9,
CD37, DPM3, and ARHGAP4 as potential prognostic markers
[7].

Unlike  previous  studies  that  primarily  focused  on
prognostic  biomarkers,  this  study  aims  to  identify  both
diagnostic  and  prognostic  biomarkers  for  NPC  through
integrated  bioinformatics  analysis  of  publicly  available
transcriptomic datasets. By focusing on cellular biomarkers,
we seek to complement existing EBV-based approaches and
provide  a  more  comprehensive  understanding  of  NPC
biology.  Our  findings  are  expected  to  contribute  to  the
development  of  improved  diagnostic  and  prognostic  tools,
ultimately enhancing patient outcomes in NPC management.

2. MATERIALS AND METHODS

2.1. Study Design
This research is a quantitative, analytical observational

study  aimed  at  identifying  diagnostic  and  prognostic
biomarkers  for  nasopharyngeal  carcinoma  (NPC)  using
publicly  available  transcriptomic  datasets.  The  study
employed  a  secondary  data  analysis  approach,  using
datasets  obtained  from  the  Gene  Expression  Omnibus
(GEO),  specifically  GSE12452,  GSE53819,  and  GSE10
2349.

2.2. Study Population and Data Collection
Datasets for diagnostic gene screening were selected

based  on  the  following  criteria:  (1)  inclusion  of  both
normal nasopharyngeal  tissue and NPC tissue,  and (2)  a
minimum  of  10  samples  per  group.  Exclusion  criteria
included: (1) datasets lacking raw expression data, or (2)
datasets  without  clinical  annotations  or  normal-tumor
classification  information.  Sample  sizes  and  clinical
annotations  varied  across  datasets  and  were  obtained
directly  from  the  GEO  database.

2.3. Variables and Measures
The  primary  variables  were  gene  expression  levels

across samples. The main outcomes were differential gene
expression (NPC vs. control) and progression-free survival,
where survival data were available.

2.4. Dataset Acquisition and Preprocessing
Gene  expression  datasets  for  nasopharyngeal

carcinoma (NPC) were obtained from the Gene Expression
Omnibus  (GEO)  database  (https://www.ncbi.nlm.nih.gov/
gds)  using  the  search  criteria:  “(nasopharyngeal
carcinoma) AND “Homo sapiens”[porgn:__txid9606]”. This
search identified a total of 20 datasets. Each dataset was
manually reviewed based on predefined inclusion criteria.
The  datasets  screened  for  this  study  were  provided  in
Table  S1.  Following  this  filtering  process,  two  datasets
(accession  numbers:  GSE12452,  comprising  10  normal
and 31 NPC tissue samples [8] and GSE53819, consisting
of 18 normal and 18 NPC samples [9]) were selected for
further  analysis.  Samples  were  classified  into  “Normal”
and “Cancer” groups based on clinical annotations. Data
were retrieved using the GEOquery package in R version
4.4.2  and  RStudio.  Raw  expression  matrices  were
normalized,  log2-transformed,  and  filtered  to  remove
missing  values  and  transcripts  without  gene  symbols.
Principal Component Analysis (PCA) was performed using
the PCAtools package [10] on log2-transformed expression
matrices after filtering out the bottom 10% of low-variance
genes,  to  assess  global  expression  patterns  and  to
evaluate  whether  normal  and  tumor  samples  exhibit
distinct  clustering  based  on  transcriptomic  profiles.

2.5. Identification of Differentially Expressed Genes
(DEGs)

Differential  expression  analysis  was  performed using
the limma package in R [11]. A linear model was fitted to
the expression data, and empirical Bayes moderation was
applied to compute log2 fold changes (logFC) and adjusted
p-values.  Genes  with  an  absolute  logFC  >  1  and  an
adjusted  p-value  <  0.05  were  considered  statistically
significant  DEGs.  Genes  without  valid  gene  symbols  or
duplicate  entries  were  removed  by  retaining  the  entry
with  the  smallest  p-value  per  gene.  The  top  25
upregulated  and  top  25  downregulated  DEGs  were
selected  based  on  fold  change  magnitude.  Expression
values  of  these  50  genes  were  extracted  from  the
normalized  expression  matrix,  log-transformed,  and
converted  to  Z-scores  by  row-wise  standardization.  A

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
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heatmap  was  generated  using  the  ComplexHeatmap
package in R [12], applying a diverging color scale for Z-
scores  and  annotating  columns  based  on  sample  groups
(normal vs. cancer).

2.6. Survival Analysis
Among  the  20  datasets  previously  filtered,  only

GSE102349  contained  prognostic  data.  This  dataset,
comprising  113  NPC  samples,  was  used  to  identify
prognostic  biomarkers  based  on  RNA-seq  expression
profiles.  For  each  gene,  expression  levels  were
dichotomized  into  “High”  and  “Low”  groups  using  the
median  expression  value  as  the  cutoff.  Survival  analysis
was  performed  using  the  Kaplan-Meier  method  and  Cox
proportional  hazards  (Cox-PH)  models.  The  lower
expression group was used as the reference. Genes with a
p-value  <  0.05  in  the  Cox-PH  model  were  considered
significant  prognostic  markers.  Kaplan-Meier  survival
curves  were generated for  each gene,  and hazard ratios
(HR) with 95% confidence intervals (CI) were calculated.

2.7.  Functional  Annotation  and  Integration  of
Prognostic-Diagnostic Markers

Prognostic  and  diagnostic  roles  of  genes  were
classified as “Oncogenic” or “Tumor Suppressor” based on
two criteria: (1) expression trends in tumor versus normal
tissues, and (2) hazard ratios (HR) from Cox proportional
hazards  (Cox-PH)  models.  Genes  upregulated  in  tumor
tissues  were  classified  as  “Oncogenic,”  while  those
downregulated in tumor tissues were classified as “Tumor
Suppressors.”  Similarly,  genes  with  HR  >  1  in  Cox-PH
analysis were labeled as “Oncogenic,” whereas genes with
HR  <  1  were  labeled  as  “Tumor  Suppressors.”  Genes
demonstrating  consistent  roles  as  either  oncogenic  or
tumor  suppressors  across  both  diagnostic  (DEGs)  and
prognostic  (Cox-PH)  analyses  were  categorized  as
“Consistent  Prognostic-Diagnostic  Markers.”

2.8. Elastic Net Model Analysis
The Elastic Net model, implemented using the glmnet

package in R, was applied to refine the 54 candidate genes
identified from CoxPH analysis. By combining L1 (LASSO)
and L2 (Ridge) regularization, Elastic Net balances feature
selection  and  multicollinearity  handling,  addressing
limitations  of  CoxPH  in  high-dimensional  data  [13].  A
survival  object  was  created  using  “Time  to  event”  and
“Event”  status,  and  the  predictor  matrix  included
expression  values  of  the  54  candidate  genes.  Ten-fold
cross-validation  determined  the  optimal  regularization
parameter (lambda), and the final model identified genes
with  non-zero  coefficients  as  significant.  This  approach
ensured  a  robust,  interpretable  subset  of  survival-
associated  genes,  reducing  overfitting  and  improving
generalizability.  Similar  machine  learning  approaches,
including  Elastic  Net,  have  been  successfully  applied  in
other  diseases  such  as  Parkinson’s  disease  and  breast
cancer for robust biomarker selection [14, 15], supporting
its use in our study.

2.9.  RNA  and  Protein  Correlation  in  Cancer  Cell
Lines Database

Gene and protein expression data were obtained from
the  CCLE  database  using  the  depmap  R  package  [16],
specifically  version  22Q2  [17]  with  a  snapshot  date  of
2024-10-24.  RNA-seq  expression  data,  measured  in
Transcripts  Per  Million  (TPM),  were  retrieved  using  the
depmap_TPM()  function,  while  protein  expression  levels
were  extracted  using  the  depmap_proteomic()  function.
The  datasets  were  also  available  for  download  from
https://depmap.org/portal.  The  datasets  were  filtered  to
remove missing values and grouped by tissue or  lineage
based  on  cell  line  annotations.  To  assess  RNA-protein
concordance, candidate gene and protein expression data
were integrated by matching cell lines across the datasets.
Pearson  correlation  analysis  was  performed  to  evaluate
the  relationship  between  RNA  and  protein  expression
levels, and the results were visualized using scatter plots
with  regression  trend  lines  to  illustrate  the  degree  of
correlation.

2.10.  Cross-Dataset  Validation  of  Diagnostic  Gene
Signatures

To  validate  the  diagnostic  potential  of  11  candidate
genes  across  independent  datasets,  we  generated  a
comprehensive  heatmap  by  integrating  statistical  test
results  from  multiple  GEO  datasets.  The  datasets
GSE12452 and GSE53819, previously used for diagnostic
gene discovery, served as training sets, while GSE218847,
GSE61218  [18],  GSE40290,  GSE34573  [19],  GSE64634
[20], GSE227541 [21], GSE134886 [22], and GSE118719
[23] were used as validation datasets. Validation datasets
were  manually  curated  based  on  the  inclusion  criterion
that  the  sample  size  ratio  between  cancer  and  normal
groups  did  not  exceed  fivefold,  to  reduce  sample
imbalance  bias.  For  each  gene  in  each  dataset,  a  color
matrix was constructed: red indicated higher expression in
Nasopharyngeal Carcinoma (NPC) samples, blue indicated
higher  expression  in  normal  samples,  and  gray
represented  no  significant  differential  expression  or
unavailable data (e.g., probe not present or other technical
reasons).  A  separate  matrix  overlaid  statistical
significance with symbols. Given the small sample sizes in
some datasets,  these results were interpreted cautiously
and  primarily  served  as  visual  cross-validation  of
consistency  across  datasets.

3. RESULTS

3.1. Identification of Diagnostic Biomarkers
To  identify  diagnostic  biomarkers  distinguishing

normal  nasopharyngeal  tissue  from  NPC,  we  analyzed
microarray data from GSE12452 (10 normal, 31 NPC) and
GSE53819  (18  normal,  18  NPC).  Principal  Component
Analysis (PCA) was conducted using the PCAtools package
to  evaluate  the  global  expression  patterns  and  sample
clustering within each GSE series. In GSE12452, the first
two  principal  components  (PC1  and  PC2)  explained
20.00% and 12.70% of the total variance, respectively. In
GSE53819,  PC1  and  PC2  accounted  for  19.01%  and

https://depmap.org/portal
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12.53% of  the  variance  (Fig.  1A).  In  both  datasets,  PCA
revealed  a  clear  separation  between  normal  and  cancer
groups along the first principal component, indicating that
the primary source of  expression variability corresponds
to the disease state. These findings support the biological
relevance  and  internal  consistency  of  each  dataset,
confirming  their  suitability  for  downstream  differential
expression  analysis.

Differential expression analysis identified 1,332 DEGs
in GSE12452 and 2,444 DEGs in  GSE53819 (adjusted p-
value < 0.05, |logFC| > 1) (Fig. 1B). A heatmap of the top
25  upregulated  and  top  25  downregulated  DEGs  across
the two diagnostic datasets revealed clear and consistent

transcriptomic  separation  between  normal  and  cancer
samples.  These  patterns  highlight  robust  differential
expression  profiles  associated  with  NPC  (Fig.  1C).
Notably, this study emphasizes identifying consistent DEG
patterns for  diagnostic  biomarker discovery,  rather than
investigating the biological mechanisms of the top DEGs.
To  this  end,  a  Venn  diagram  analysis  was  conducted,
revealing  597  overlapping  DEGs  between  the  two
datasets,  with  591  genes  showing  consistent  expression
patterns  (i.e.,  the  same  direction  of  regulation  in  both
datasets) (Fig. 1D).  This consistency across independent
datasets  enhances  the  reliability  of  these  genes  as
potential  diagnostic  biomarkers  for  NPC.

Fig. 1 contd.....
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Fig. (1). Identification of potential diagnostic and prognostic biomarkers for NPC. (A) Principal component analysis highlights
clear differences in gene expression between normal and cancer samples in the GSE12452 and GSE53819 datasets. (B) Volcano plot
showing differentially expressed genes (DEGs) from nasopharyngeal carcinoma microarray datasets (GSE12452 and GSE53819). Yellow
and blue dots  represent significantly  upregulated and downregulated genes,  respectively  (|logFC| > 1,  adjusted p-value < 0.05).  (C)
Heatmap showing the top 25 upregulated and top 25 downregulated differentially expressed genes (DEGs) in GSE12452 and GSE53819
(D)  Analytical  framework  for  identifying  potential  diagnostic  biomarkers  for  NPC.  (E)  Analytical  framework  for  identifying  potential
diagnostic and prognostic biomarkers for NPC.

3.2. Identification of Prognostic Biomarkers
To  identify  prognostic  biomarkers  associated  with

progression-free  survival  (PFS)  in  NPC,  we  performed
survival  analysis  on  RNA-seq  data  from  the  GSE102349
dataset. Gene expression levels were stratified into “High”
and “Low” groups based on median expression values, and
survival  analysis  was  conducted  using  the  log-rank  test
and  Cox  proportional  hazards  (Cox-PH)  model.  An
analytical  framework  for  identifying  potential  diagnostic
and prognostic biomarkers was illustrated in Fig. (1D).

Among the 591 potential diagnostic biomarker genes, a
total  of  74  genes  were  significantly  associated with  PFS
based on the log-rank test (p-value < 0.05). Of these, 63
genes  also  showed  significant  associations  in  the  Cox
proportional  hazards  (Cox-PH)  model  (p-value  <  0.05),
demonstrating  their  robust  prognostic  potential.  These
genes were further classified based on their hazard ratios
(HR):  genes  with  HR  >  1  were  categorized  as
“Oncogenic,” while those with HR < 1 were classified as
“Tumor  Suppressors.”  Additionally,  we  evaluated  the

concordant regulation by comparing HR with expression
differences  between  normal  and  cancer  tissues.  This
analysis  revealed  that  54  out  of  the  63  genes  exhibited
concordant  regulation,  reinforcing  their  dual  diagnostic
and prognostic significance.

Among  the  54  candidate  diagnostic-prognostic
biomarkers, 26 genes were identified as oncogenic. These
genes  were  upregulated  in  NPC  compared  to  normal
nasopharyngeal tissues and were associated with a higher
risk of disease progression. Key oncogenic genes include
KIF14,  NEK2,  DTL,  EXO1,  SPP1,  MAD2L1,  CENPH,
SEMA6A, TTK, NFE2L3, ANLN, PDGFRL, CDCA2, PAPPA,
RCN1,  GAS2L3,  BUB1B,  OIP5,  KIF23,  FANCI,  PRC1,
TOP2A,  PSMC3IP,  KIF18B,  BRIP1,  and  BIRC5.

Conversely,  28  genes  were  identified  as  tumor
suppressors.  These  genes  exhibited  lower  expression  in
NPC tissues compared to normal nasopharyngeal tissues,
and higher expression of these genes was associated with
a lower risk of disease progression. Key tumor suppressor
genes  include  CYP4B1,  FCRL4,  FCRL2,  FCRL1,  CD1D,
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FCRLA, FCMR, CR2, CR1, VILL, DTHD1, STAP1, ADH1B,
BANK1,  IL33,  PAX5,  PTGDS,  MS4A1,  KLRB1,  SLC16A7,
CD19, PLCG2, P2RX5, CD79B, KLF2, CD22, NAPSB, and
VPREB3.  This  functional  classification  provides  valuable
insights  into  the  biological  roles  of  these  prognostic
biomarkers,  enhancing  our  understanding  of  NPC
progression and highlighting their potential as therapeutic
targets.

3.3.  Refinement  of  Candidate  Genes  Using  Elastic
Net

To  enhance  the  selection  of  prognostic  genes,  the
Elastic Net model was applied using the glmnet package
in R, narrowing down the 54 candidate genes derived from
the  Cox  proportional  hazards  (CoxPH)  analysis.  The
Elastic  Net  analysis  identified  11  genes  with  non-zero
coefficients,  indicating  their  potential  association  with
survival  outcomes.  Cross-validation curve  for  the  Elastic
Net model was shown in Fig. (2A). Among these, 5 genes
(e.g., GAS2L3, OIP5, NFE2L3, PDGFRL, BUB1B) exhibited
positive  coefficients,  suggesting  that  higher  expression
levels  are  associated  with  an  increased  risk  of  disease
progression. These genes were previously categorized as
oncogenic.  Conversely,  6  genes  (e.g.,  VILL,  IL33,  KLF2,
NAPSB,  CYP4B1,  CD1D)  showed  negative  coefficients,
implying that higher expression levels may be protective
and associated with better survival outcomes. These genes

were  previously  categorized  as  tumor  suppressors.  The
strongest  positive  association  was  observed  for  GAS2L3
(coefficient  =  0.47),  while  the  strongest  negative
association was found for VILL (coefficient = -0.22). This
refined  subset  of  genes,  derived  from  the  initial  54
candidates,  highlights  their  potential  as  biomarkers  for
survival prediction and demonstrates the utility of Elastic
Net in handling high-dimensional data to identify robust,
interpretable gene signatures.

Patients  were  stratified  into  “High  Risk”  and  “Low
Risk” groups based on the median risk score derived from
the Elastic Net model. The risk score for each patient was
calculated as the weighted sum of the expression values
(in TPM) of the 11 selected genes, using the coefficients
obtained  from  the  final  Elastic  Net  Cox  model.  The
formula  for  the  risk  score  is:  Risk
Score=(−0.0176×CYP4B1)+(−0.0056×CD1D)+(−0.2185×
VILL)+(0.0926×NFE2L3)+(0.0925×PDGFRL)+(−0.0393×
IL33)+(0.4696×GAS2L3)+(0.0329×BUB1B)+(0.1264×OIP
5)+(−0.016×KLF2)+(−0.0527×NAPSB).  Kaplan-Meier
survival  analysis  revealed  a  significant  difference  in
progression-free  survival  between  the  two  groups  (log-
rank  p-value  =  0.0035)  (Fig.  2B).  Patients  in  the  “High
Risk” group exhibited significantly lower progression-free
survival  compared  to  those  in  the  “Low  Risk”  group,
further  validating  the  prognostic  utility  of  the  identified
gene signature.

Fig. (2). Elastic net regression and survival analysis. (A) Cross-validation curve for the Elastic Net model, showing the relationship
between log(lambda) and partial likelihood deviance. The vertical dashed line indicates the optimal lambda value (λmin) selected based on
the minimum cross-validation error. (B) Progression-free survival curves stratified by risk groups (“High Risk” and “Low Risk”) based on
the median risk score derived from the Elastic Net model. The log-rank test p-value (p = 0.0035) indicates a significant difference in
progression-free survival between the two groups. The risk table below the plot displays the number of patients at risk over time.
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3.4.  Exploration  on  the  Potential  11  Candidate
Diagnostic and Prognostic Genes

The expression profiles of the 11 candidate genes were
compared  between  normal  nasopharyngeal  tissue  and
NPC tissue using the GSE12452 and GSE53819 datasets.
All  11  genes  were  significantly  differentially  expressed
between  normal  and  NPC  tissues  (p  <  0.01,  Fig.  3A),
suggesting their potential roles in NPC pathogenesis and
their value as diagnostic markers. Kaplan-Meier survival
analysis revealed that the expression levels of these genes
were  significantly  associated  with  PFS  in  NPC  patients
(log-rank test, p < 0.05, Fig. 3B). Stratification of patients
into  high-  and  low-expression  groups  demonstrated

distinct  survival  outcomes,  further  supporting  the
prognostic  relevance  of  these  genes.

The forest plot (Fig.  3C)  illustrates the hazard ratios
(HRs)  and  95%  confidence  intervals  (CIs)  for  PFS
associated with each candidate gene. Genes with HR > 1,
such  as  BUB1B,  GAS2L3,  NFE2L3,  OIP5,  and  PDGFRL,
were  categorized  as  oncogenic,  as  higher  expression
correlated  with  increased  risk  of  disease  progression.
Conversely, genes with HR < 1, including CD1D, CYP4B1,
IL33,  KLF2,  NAPSB,  and  VILL,  were  identified  as  tumor
suppressors,  with  higher  expression  associated  with
improved  survival  outcomes.  These  findings  underscore
the dual role of the candidate genes in NPC progression
and their potential as prognostic biomarkers.

Fig. 3 contd.....
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B 



Identification of Diagnostic and Prognostic Biomarkers in Nasopharyngeal 9

Fig. (3). Expression profiles and prognostic significance of 11 candidate genes. (A box plot depicting differential gene expression
between  normal  nasopharyngeal  tissue  (N)  and  nasopharyngeal  carcinoma  (NPC)  tissue  in  the  GSE12452  and  GSE53819  datasets.
Statistical significance was assessed using either the t-test or the Wilcoxon rank-sum test. p < 0.001 (***), p < 0.01 (**) (B) Kaplan-Meier
survival curves for progression-free survival (PFS), stratified by high and low expression groups for each gene. Statistical significance was
determined using the log-rank test. (C) Forest plot illustrating Hazard Ratios (HRs) for PFS. The forest plot displays the HRs and 95%
confidence intervals (CIs) for PFS associated with each candidate gene.

3.5.  RNA  and  Protein  Correlation  in  Cancer  Cell
Lines Database

To validate  the candidate biomarker  genes identified
from  transcriptomic  data  (microarray  and  RNA-seq),  we
characterized  their  protein  expression  using  the  Cancer
Cell  Line  Encyclopedia  (CCLE)  database.  Among  the  11
candidate  genes,  10  were  found  in  the  CCLE  RNA
expression  dataset,  while  one  pseudogene  (NAPSB)  was
not identified. Of these, 7 genes were present in the CCLE
proteomic dataset, enabling RNA-protein correlation ana-
lysis. Strikingly, all 7 genes exhibited positive correlations
between  RNA  and  protein  expression,  indicating  con-
cordance  at  the  transcriptomic  and  proteomic  levels.

Six of the seven genes showed significant Pearson cor-

relations  (p  <  0.05),  with  correlation  coefficients  (r)
ranging from 0.398 to 0.829. Notably, IL33 demonstrated
the strongest correlation (r = 0.829, p < 0.001), followed
by GAS2L3 (r = 0.651, p < 0.001) and PDGFRL (r = 0.646,
p  <  0.001),  all  of  which  exhibited  robust  RNA-protein
concordance (r > 0.5). VILL (r = 0.542, p < 0.001), BUB1B
(r  = 0.445, p < 0.001),  and OIP5  (r  = 0.398, p < 0.001)
also  showed  significant  correlations,  albeit  with  slightly
lower coefficients. In contrast, NFE2L3 displayed a weak
and  non-significant  correlation  (r  =  0.142,  p  =  0.274),
suggesting  potential  post-transcriptional  regulation  or
technical variability (Fig. 4). These findings highlight the
strong  RNA-protein  concordance  for  most  candidate
genes, reinforcing their potential as robust biomarkers for
further validation at both the RNA and protein levels.

Fig.  (4).  RNA-Protein  Correlation  of  Candidate  Biomarker  Genes  in  Cancer  Cell  Lines.  Scatter  plots  depict  the  correlation
between RNA expression (TPM) and protein expression levels for candidate biomarker genes in the CCLE database. Pearson correlation
coefficients (r) and corresponding p-values are displayed for each gene. p < 0.001 (***), not-significant (ns).

C 
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Fig.  (5).  Cross-dataset heatmap validation of  11 diagnostic candidate genes across eight independent GEO datasets.  Red
indicates higher expression in NPC, blue in normal tissues, and gray represents non-significant or unavailable data. Asterisks denote
statistical significance. Sample sizes (N = normal; NPC = nasopharyngeal carcinoma) are shown alongside each dataset.

3.6.  Cross-Dataset  Validation  Confirms  Consistent
Diagnostic Gene Expression Patterns

To  assess  the  robustness  of  the  11  diagnostic
candidate  genes  across  independent  cohorts,  we
performed a cross-dataset validation using eight publicly
available  GEO  datasets  that  met  our  inclusion  criteria.
Among  these,  six  datasets:  GSE34573,  GSE218847,
GSE64634,  GSE61218,  GSE118719,  and  GSE40290,
demonstrated a consistent transcriptomic pattern: BUB1B,
GAS2L3,  NFE2L3,  OIP5,  and  PDGFRL  were  generally
upregulated in nasopharyngeal carcinoma (NPC) samples,
while  CD1D,  CYP4B1,  IL33,  KLF2,  NAPSB,  and  VILL
exhibited higher expression in normal tissues (Fig. 5). In
contrast,  two  datasets:  GSE227541  and  GSE134886,
showed  a  reversed  or  partially  reversed  pattern,  which
may be attributed to limited number of samples, technical
variation,  limited  probe  representation,  or  biological
heterogeneity. Detailed statistical results are provided in
Table S2.

It is important to interpret the significance levels with
caution, as several datasets contained limited sample sizes
per  group  (as  indicated  in  Fig.  5),  which  reduces
statistical power. Therefore, instead of relying solely on p-
values, we focused on the directionality and consistency of
gene  expression  trends  across  datasets,  which  offers  a
more  robust  validation  of  their  diagnostic  potential.
Notably, due to the lack of available prognostic data in any
of  the  external  NPC  datasets,  independent  validation  of
the prognostic gene signature could not be performed.

4. DISCUSSION
Our  study  identified  11  candidate  genes  from

transcriptomic  data,  comprising  5  potential  oncogenic
biomarkers  (BUB1B,  GAS2L3,  NFE2L3,  OIP5,  and
PDGFRL)  and  6  potential  tumor  suppressor  biomarkers
(CD1D,  CYP4B1,  IL33,  KLF2,  NAPSB,  and VILL)  in NPC.
Notably,  NAPSB,  a  pseudogene,  has not  been previously
reported  as  a  biomarker  in  NPC.  However,  it  has  been
implicated  in  other  cancers,  such  as  hepatocellular
carcinoma  [24],  acute  myeloid  leukemia  [25],  and
pancreatic adenocarcinoma [26]. In addition, NAPSB were
also found to be upregulated in carcinoma of the uterine
cervix (CACX) [27]. Our findings suggest that NAPSB may
play  a  role  in  NPC  pathogenesis,  warranting  further
investigation  into  its  functional  mechanisms  and  clinical
relevance.

Among  the  oncogenic  candidates,  BUB1B,  encoding
BUB1  mitotic  checkpoint  serine/threonine  kinase  B,  has
been  previously  reported  to  promote  NPC  progression
[28],  a  finding  consistent  with  our  results.  GAS2L3
(Growth  Arrest  Specific  2  Like  3),  which  regulates
cytoskeleton  organization  and  cytokinesis  [29],  has  not
been previously associated with NPC. Our identification of
GAS2L3 as a potential oncogenic biomarker represents a
novel  finding,  highlighting  its  potential  role  in  NPC
progression. Similarly, Nuclear factor erythroid 2 (NF-E2)-
related factor 3 (NFE2L3), a transcription factor involved
in cell differentiation, oxidative stress, and tumor growth,
has been implicated in various cancers such as colorectal,
liver,  thyroid,  pancreatic,  and renal  cancer  [30],  but  not
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NPC.  Our  study  is  the  first  to  report  its  upregulation  in
NPC  and  its  potential  as  a  prognostic  biomarker.  Opa
interacting  protein  5  (OIP5)  was  reported  as  a  tumor
promoter  gene,  highly  expressed  in  NPC,  and  promoted
NPC progression by modulating JAK2/STAT3 [31], aligning
with  our  findings.  Intriguingly,  platelet-derived  growth
factor receptor-like (PDGFRL), which exhibits dual roles as
a tumor suppressor in breast [32] and a tumor promoter in
gastric  cancer  [33],  has  not  been  previously  studied  in
NPC. Our results suggest that PDGFRL may serve as both
a  diagnostic  and  prognostic  biomarker  in  NPC,
underscoring  its  context-dependent  roles  in  cancer
biology.

Among  the  tumor  suppressor  candidates,  CD1D,  a
member  of  the  CD1  glycoprotein  family,  has  been
implicated  in  immune  modulation  within  the  tumor
microenvironment.  While  CD1D  expression  is  associated
with aggressive renal cell carcinoma [34]It also facilitates
tumor  suppression  through antigen  presentation  to  NKT
cells [35]. Our findings support its tumor-suppressive role
in  NPC,  suggesting its  potential  as  a  therapeutic  target.
CYP4B1,  downregulated  in  lung  adenocarcinoma  and
urothelial  carcinoma  [36,  37]  also  exhibited  tumor-
suppressive  characteristics  in  NPC,  with  low  expression
correlating  with  poor  survival.  Interleukin-33  (IL33),  an
alarmin cytokine involved in tissue repair, has been linked
to  poor  progression-free  survival  in  NPC  [38,  39],
consistent  with  our  results.  KLF2,  a  transcription  factor
downregulated in head and neck squamous cell carcinoma
(HNSC) [40], has not been previously studied in NPC. Our
findings  confirm  its  tumor-suppressive  role  in  NPC,
aligning  with  its  function  in  HNSC.  Finally,  VILL,  which
exhibits  specific  methylation  patterns  in  NPC  [41],
emerged as a potential diagnostic and prognostic marker
in  our  study,  further  validating  its  role  in  NPC
pathogenesis.

Collectively,  our  study  highlights  several  candidate
genes  with  potential  diagnostic  and  prognostic  value  in
NPC,  including  NAPSB,  which  has  been  largely
understudied  in  NPC.  While  our  findings  provide  a
transcriptomic  basis  for  their  clinical  relevance,  the
biological functions of NAPSB and other identified genes
in  NPC  pathogenesis  remain  to  be  elucidated.  Further
studies are warranted to explore their  mechanistic  roles
through in vitro and in vivo functional assays, as well as
validation at the protein level. Such efforts will be crucial
to determine their potential utility in clinical applications,
including  as  targets  for  therapy  or  biomarkers  for  early
detection and prognosis.

CONCLUSION
Our study not only corroborates previous findings but

also identifies novel biomarkers with potential diagnostic
and prognostic significance in NPC. The dual roles of some
genes,  such  as  PDGFRL  and  CD1D,  highlight  the
complexity  of  cancer  biology  and  the  importance  of
context-specific  analyses.  Furthermore,  RNA-protein
correlation  analysis  using  the  CCLE  dataset  revealed
significant  concordance  between  RNA  and  protein

expression  for  six  genes  (BUB1B,  GAS2L3,  IL33,  OIP5,
PDGFRL, and VILL). This strong RNA-protein correlation
suggests that these genes could be reliably measured at
either  the  RNA  or  protein  level,  providing  flexibility  in
developing diagnostic assays. Future studies should focus
on elucidating the functional mechanisms of these genes,
particularly  GAS2L3  and  NFE2L3,  which  have  not  been
previously  associated  with  NPC.  Additionally,  the
pseudogene  NAPSB  warrants  further  investigation  to
determine  its  functional  relevance  in  NPC.  Collectively,
our  findings  provide  a  robust  foundation  for  advancing
diagnostic strategies, improving prognostic stratification,
and developing targeted therapies in NPC.

STUDY LIMITATIONS

This study has several limitations. First, the diagnostic
analysis was based on only two datasets, which may limit
the generalizability of the findings, as a larger sample size
from diverse datasets could provide a more comprehensive
view.  For  prognostic  analysis,  only  one  dataset
(GSE102349)  contained  survival  information,  which  may
reduce  the  representativeness  and  robustness  of  the
survival  analysis.  Additionally,  while  RNA-protein
expression  concordance  was  validated  using  the  CCLE
dataset, the observed protein expression patterns may not
fully reflect the expression in human NPC tissues, due to
potential differences in the tumor microenvironment and
experimental conditions. The limited number of available
NPC  transcriptomic  datasets  also  restricts  the  ability  to
confirm the generalizability of the findings. Finally, as an
observational study based on secondary data, the results
should  be  interpreted  cautiously,  and  experimental
validation is needed to confirm the identified biomarkers.
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