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Abstract:

Background:  Genotype  imputation  is  crucial  for  enhancing  genetic  data  from  genotyping  arrays  by  predicting
missing single nucleotide polymorphisms (SNPs). Traditional imputation methods often compromise data privacy or
are  computationally  demanding,  limiting  their  accessibility.  While  newer  deep  learning  methods  offer  a  privacy-
preserving  alternative,  their  large  model  sizes  make them difficult  to  deploy  on  client-side  devices  like  personal
computers or smartphones.

Methods: We developed FastImpute, a workflow for creating lightweight, reference-free imputation models designed
for client-side deployment. As a case study, we trained linear and logistic regression models to impute SNPs for the
breast cancer polygenic risk score, PRS313_BC. We used whole-genome sequencing data from 2,504 individuals in
the 1000 Genomes Project as a training and testing set. The models were trained to predict target PRS SNPs using
input from SNPs on commercial genotyping arrays. Performance was evaluated against true sequencing data and
benchmarked against Beagle.

Results:  The  correlation  (R2)  between  a  PRS  calculated  using  our  simple  linear  regression  model  and  a  PRS
calculated using true sequencing data was 0.86. This significantly outperformed both no imputation and simple minor
allele frequency imputation (R2 = 0.38). Our lightweight models performed comparably to Beagle in identifying high-
risk individuals, correctly classifying 3 (linear) and 4 (logistic) out of 6 individuals in the top 1% of risk, similar to
Beagle (4 out of 6).

Conclusion:  The  FastImpute  pipeline  demonstrates  that  simple,  lightweight  models  can  provide  effective  and
privacy-preserving, and accessible genotype imputation, enabling real-time genetic risk assessment on edge devices.

Availability: Web application: https://aaronge-2020.github.io/FastImpute/
Code: https://github.com/aaronge-2020/FastImpute
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1. INTRODUCTION
Genotype  imputation  enhances  genetic  data  by

predicting missing single nucleotide polymorphisms (SNPs)
using  reference  haplotype  information  [1,  2].  Traditional
methods  leverage  linkage  disequilibrium  (LD),  inferring
untyped single  nucleotide  polymorphism (SNP)  genotypes
by  assuming  similar  LD  structures  between  genotyped
target  sets  and  fully  sequenced  reference  panels  [2].
However, these methods often rely on external services like
the Michigan Imputation Server [3], which can compromise
data  privacy  or  require  downloading  entire  reference
genomes,  which  is  computationally  inefficient.

Recently,  deep  learning-based  methods  [4,  5,  6,  7],
utilizing advanced architectures such as Transformers and
Recurrent Neural Networks, have emerged as a promising
alternative,  representing  the  state-of-the-art  for  raw
imputation  accuracy.  These  methods  predict  missing
genotypes using pre-trained models, enhancing privacy and
accessibility.  This  approach  aligns  with  the  increasing
preference  for  FAIR  computational  solutions  (findable,
accessible, interoperable and reusable) in epidemiology [8,
9]. (We refer to these pre-trained models as “reference-free
methods,” since they do not require end users to download
reference  genomes  locally  or  upload  data  to  an  external
server  housing  reference  genomes.  We  stress,  however,
that  these  models  are  trained  on  a  set  of  reference
genomes,  even if  the reference genomes are not required
for model deployment.)

Despite their promise, previous reference-free methods
face  a  critical  limitation;  however,  the  high  accuracy  of
these state-of-the-art models comes with a significant trade-
off in computational cost. They often target specific genomic
regions,  such  as  the  major  histocompatibility  complex
(MHC) region, due to its high degree of polymorphism and
structural  variation  [10].  Their  large  model  sizes  and
computational intensity make them inefficient or unsuitable
for  client-side  deployment.  Furthermore,  retraining  these
models  for  different  regions  requires  substantial
computational  resources.

The accompanying open-source in-browser application,
FastImpute,  addresses  these  limitations  by  providing  a
baseline for zero-footprint client-side imputation methods.
Our  pipeline  produces  models  that  can  be  implemented
using  web  technologies,  primarily  coded  in  JavaScript,
leveraging advanced computational resources available in
modern web browsers. This approach, including access to
libraries  like  TensorFlow  via  Web  Assembly,  has  been
demonstrated  to  be  feasible  for  estimating  cancer  risk  in
user-facing applications [11, 12].

2. METHODS

2.1. Study Design
This  study  employed  a  quantitative,  observational

study  design  to  develop  and  validate  a  computational
pipeline,  FastImpute.  The  research  involved  gathering
publicly  available  genomic  data,  selecting  relevant  SNP
subsets,  training predictive models,  and evaluating their
performance against  a  gold standard and an established

imputation tool. The primary research goal was to create a
lightweight, client-side imputation method and assess its
accuracy for calculating polygenic risk scores.

2.2. Data Source and Sample Size
The primary dataset was the Whole Genome Sequencing

(WGS)  data  from  the  1000  Genomes  Project  (Phase  3,
GRCh37), which includes 2,504 individuals from 26 diverse
populations. The samples for the 1000 Genomes Project are
anonymous  and  do  not  have  associated  phenotypic  or
medical  data.  More  details  can  be  found  in  the  original
paper [13]. To define the SNP panel for a common direct-to-
consumer  (DTC)  platform,  we  analyzed  119  23andMe  V5
chip  data  files  from users  who  made  their  data  public  on
OpenSNP.org [14]. It is important to note the distinct roles
of  these  datasets:  the  large  and  diverse  1000  Genomes
Project data was used for all model training and validation,
while  the  119  23andMe  files  were  used  solely  for  the
technical purpose of defining a representative list of input
SNPs found on the consumer chip. For model development,
the 1000 Genomes Project  data was randomly split  into a
training set of 2,003 individuals (80%) and a testing set of
501 individuals (20%).

2.3. The FastImpute Pipeline
The FastImpute pipeline provides a complete workflow

for creating the lightweight, reference-free, and privacy-
preserving  imputation  models  that  are  central  to  this
work. This versatile pipeline is designed to predict various
genomic  regions  across  different  genotyping  chips.  To
showcase its application in detail, we used the calculation
of  a  polygenic  risk  score  for  breast  cancer,  PRS313_BC
(PGS  Catalog  entry  PGS000004)  [15],  using  genotyping
data  available  on  a  commercial  genotyping  chip,  the
23andMe  V5  Gene  Panel  [16],  as  a  running  case  study
throughout  the  paper.  PRS313_BC  comprises  313  SNPs
used for breast cancer risk prediction, most of which are
not present on the V5 gene chip and must be imputed from
nearby observed genotypes.

As  shown  in  Fig.  (1),  the  FastImpute  pipeline
comprises  four  key  steps:

Gather Whole Genome Sequencing (WGS) data (e.g., from[1]
the 1000 Genomes Project [13]).
Subset  the  panel  SNPs  from  WGS  data  to  include  only[2]
those  present  on  the  input  genotyping  platform (in  our
example, the 23andMe V5 Gene Panel).
Use LDlink [17] to identify a subset of SNPs in the raw[3]
input that are in LD with the target SNPs (PRS313).
Train  the  model  to  predict  the  target  SNPs  using  the[4]
input SNPs.

To  establish  a  baseline,  we  trained  two  models:  a
logistic  regression  model  on  phased  data  and  a  linear
regression model on unphased data. We deployed the linear
regression  model,  which  processes  unphased  data,  using
web technologies [18, 19] (Web-stack). This approach offers
superior reusability and privacy compared to native appli-
cations,  enhancing  user  data  protection  by  processing  all
information locally within the browser.
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Fig. (1). The FastImpute pipeline illustrated with PRS313_BC as an example. The pipeline comprises four key steps. Step 1:  Gather
Whole Genome Sequencing (WGS) data (e.g., from the 1000 Genomes Project). Step 2: Subset the panel SNPs from WGS data to include
only those present in platforms like 23andMe and AncestryDNA, and a region of interest like PRS313. This subset serves as the raw input
and target (output) for the model. Step 3: Using LDlink, identify a subset of SNPs in the raw input that are in linkage disequilibrium (LD)
with the target SNPs (PRS313). These SNPs in LD with the target SNPs serve as the input for model training. Step 4: Train the model to
predict the target SNPs using the input SNPs.

3. RESULTS
The  implementation  of  FastImpute  will  be  described

here in detail  for  imputing the SNPs of  PRS313_BC [15]
from SNPs available on the 23andMe V5 chip.

3.1.  Preparing the Data:  Determining the 23andMe
SNPs on the V5 SNP Chip

We  filtered  23andMe  files  generated  from  2022
onwards  on  OpenSNP  [14],  ensuring  they  contained
between 600,000 and 700,000 positions and shared at least
60%  of  SNPs  with  a  reference  V5  chip  file.  This  process
yielded 119 23andMe files. Due to quality control measures,
SNPs  sampled  from  the  same  V5  chip  can  vary  slightly,
necessitating  a  method  to  ensure  consistency  across
different datasets. Consequently, as shown in Fig. (2), while
70  out  of  the  total  77  PRS313_BC  SNPs  present  in  the
23andMe chip are found in over 75% of the user data, there
are 7 PRS313_BC SNPs that appear only sporadically.

3.2. Steps 1, 2, and 3: Preparing the Training Dataset
We  downloaded  the  1000  Genomes  Project  Data

GrCh37  (Step  1,  Fig.  1)  and  subsetted  the  PRS313_BC

SNPs and the 23andMe panel SNPs (Step 2, Fig. 1). Using
LDProxy, with all populations of the 1000 Genomes Project
as  the  reference  panel,  we  obtained  LD  data  for  each
PRS313_BC  SNP  (Step  3,  Fig.  1),  focusing  on  23andMe
SNPs with an R2 value greater than 0.01. For multiallelic
SNPs not found in NCI's LD Proxy service, we included all
SNPs within a 500K base pair window, resulting in 17,551
positions used for training and evaluation.

We processed these positions to retrieve allele dosages,
converting multiallelic variants to binary format. We created
two  versions  of  this  data:  one  summing  allele  dosages  to
simulate  unphased  data,  and  another  maintaining  the
phased  data  format.

3.3. Step 4: Model Training
Since the models are designed to capture LD patterns,

inter-chromosomal information is unnecessary for predicting
SNP dosages. Therefore, we split the 23andMe panel data by
chromosome, allowing us to construct separate models for
each chromosome (excluding X and Y, since they are not a
part of PRS313). Hence, we developed 44 models: 22 logistic
regression models for phased data and 22 linear regression
models for unphased data.
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Fig. (2). Distribution of PRS313_BC SNP Presence Across 119 23andMe Files from OpenSNP [14]. The bar chart shows the distribution of
the presence of PRS313_BC SNPs across 119 23andMe V5 chip files. In total, 77 SNPs were found to be present within the 23andMe V5
chip. The x-axis represents the percentage of 23andMe files containing each SNP, divided into five ranges: 0%, 0-25%, 25-50%, 50-75%,
and 75-100%. The y-axis indicates the number of SNPs within each range. A significant number of SNPs (236) are not present in any of the
files (0%), while 70 SNPs are present in 75-100% of the files. The other ranges (0-25%, 25-50%, and 50-75%) contain very few SNPs, with
counts of 2, 3, and 2, respectively. This distribution highlights the variability and inconsistency in SNP presence across different 23andMe
V5 chip datasets.

Each  of  these  models  was  trained  to  impute  all
PRS313_BC  SNPs  on  their  respective  chromosome,
regardless of whether the SNP was present on the V5 chip
or  not.  This  was  done  to  ensure  that  any  23andMe user
could  get  a  PRS  score  regardless  of  which  SNPs  on  the
chip were missing. For each target PRS313_BC SNP on a
given chromosome, we used all the V5 SNPs on that same
chromosome that were in LD (R2 > 0.01 via LDProxy) with
the  target  SNP  as  input  features  to  train  the  prediction
model. Since most of the SNPs in the V5 chip were not in
LD  with  the  PRS313_BC  SNPs,  they  were  not  used  as
input to our model. These models were implemented using
PyTorch  [20]  and  included  L1  regularization  [21]  to
prevent  overfitting.

The logistic regression models output probabilities for
each allele, which were thresholded at 0.5 to assign binary
predictions  (0  or  1)  for  each  chromosome.  These  binary
predictions were then summed to derive discrete genotypes
(0,  1,  or  2).  In  contrast,  the  linear  regression  models
directly predicted continuous dosage values (ranging from 0
to 2), which were rounded to the nearest integer to assign
discrete  genotypes.  For  polygenic  risk  score  (PRS)
calculation, we used the “best-guess” genotypes (rounded
dosages)  rather  than  allele  dosage  (expected  allele  count

based  on  posterior  probabilities).  Both  models  ultimately
converted probabilities or continuous dosages into discrete
genotypes for PRS calculation.

We used an 80/20 simple random data split for training
(n=2003) / testing (n=501) and employed Optuna [22] for
hyperparameter tuning with 10-fold cross-validation across
50 trials for each chromosome.

3.4. Benchmarking Beagle
To benchmark the performance of Beagle 5.4 [23], we

left out the same 501 samples that we used to evaluate our
previously trained models from the 1000 Genome Project to
serve  as  the  test  set.  We  then  ran  Beagle  5.4  on  the  full
23andMe panel data, excluding the overlapping PRS313_BC
SNPs  that  are  already  present  in  the  panel,  using  the
remaining 2003 samples from the 1000 Genomes Project as
the reference genome.

3.5. Deployment
We deployed our linear regression (unphased) model on

GitHub  at  https://aaronge-2020.github.io/FastImpute/,
enabling users to conveniently and privately calculate their
PRS313_BC  scores  on  any  device,  including  smartphones
(Fig. 3).

https://aaronge-2020.github.io/FastImpute/
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Fig. (3). The PRS313_BC Scores Calculator interface. This website displays the results of the PRS calculations for various breast cancer
phenotypes based on user's 23andMe genotype data. Users can upload their 23andMe data file and specify the number of simulation trials
to process their PRS313_BC scores. The results section displays the processing status and the calculated PRS scores for five breast cancer
phenotypes: Overall Breast Cancer, ER-positive, ER-negative, hybrid ER-positive, and hybrid ER-negative. Each phenotype panel includes
statistical  summaries  of  the  PRS  scores,  such  as  mean,  median,  standard  deviation,  minimum,  and  maximum  values,  along  with  a
histogram showing the distribution of PRS scores across the simulation trials. For more information, please see section 2.4.
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To calculate  the  PRS from a  user's  23andMe genotype
data,  we  first  converted  the  data  from genotypes  to  allele
dosages using the 1000 Genomes Project [13] as a reference
for  alleles  at  each  position.  Due  to  varying  missing  data
across  users,  we  imputed  missing  input  array  SNP  values
using simulations, taking independent draws based on minor
allele frequency (MAF) data from the 1000 Genomes project.
This  imputation  of  missing  V5  chip  SNPs  was  performed
before applying the imputation models to ensure complete
input  data.  We  then  calculated  PRS313_BC  risk  scores
across  multiple  simulations,  generating  a  distribution  of
potential  risk  scores.  Users  can  specify  the  number  of
simulations,  balancing  accuracy  and  computational  time.

For each simulation, two random draws were conducted
for  each  allele,  with  the  probability  based  on  the  MAF,  to
determine the dosage. The simulated data was then passed
into the imputation model to impute the PRS313_BC SNPs.
We used the imputed dosages (or actual dosages for already
genotyped locations) to calculate PRS scores. Beta values for
each  SNP,  corresponding  to  different  breast  cancer
phenotypes,  were  retrieved  from an  external  dataset.  PRS
scores were computed by multiplying the imputed dosages
by their respective beta values and summing these products
for each phenotype.

Results  from  these  simulations  were  aggregated,  and
statistical  summaries  (mean,  median,  standard  deviation,

minimum,  and  maximum  values)  were  computed  for  each
phenotype.  Finally,  results  were  visualized  using  binned
histograms  to  display  the  distribution  of  PRS  scores,
providing  a  variance  estimate  for  the  PRS  score.  This
process  typically  takes  less  than  10  seconds  for  1,000
simulations,  though  time  may  vary  based  on  the  user's
machine.

3.6. Evaluation
The  performance  of  different  genotype  imputation

methods  was  evaluated  at  the  SNP  level  using  R2

(coefficient  of  determination)  between  the  imputed  and
actual allele count in the testing data, imputation quality
score  (IQS)  [15],  area  under  the  receiver  operating
characteristic  curve  (AUC),  and  accuracy  to  determine
their effectiveness in genotype imputation and predicting
PRS. R2 was calculated using the Scikit-learn [24] library
to  indicate  the  proportion  of  variance  in  the  true
genotypes  explained  by  the  imputed  dosages.  AUC  was
computed using PyTorch [20] to assess the discriminative
ability of the imputed dosages. Our analysis, presented in
Figs. (4 through 7), has shown that although Beagle [23]
consistently  performed  the  strongest  across  various
metrics  and PRS phenotypes,  the  baseline  linear  models
do not fall significantly behind.

Fig. (4). Median PRS313_BC Imputation Metrics Across 22 Chromosomes for Different Methods. These bar plots display the median
evaluation  metrics  (R2,  IQS,  Accuracy,  and  AUC)  across  22  chromosomal  models  for  three  genotype  imputation  methods:  Linear
Regression trained on unphased data, Logistic Regression trained on phased data, and Beagle using phased data. The metrics for each
chromosome model were first calculated, and then the median values across all 22 chromosomes were determined. Error bars represent
the standard deviation of the metrics across the different chromosomes.
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3.6.1. Evaluation of Genotype Imputation Models
Since  imputing  allele  dosages  is  a  multi-class

classification problem (with allele dosages of 0,  1,  or 2),
we  calculated  the  one-vs-all  AUC  for  each  class  for  the
linear  regression model  trained with unphased data.  We
then  computed  the  mean  AUC  of  the  three  classes.  In
cases where there were no positive classes for a genotype,
resulting  in  an  undefined  AUC  value,  these  undefined
values  were  excluded  when  calculating  the  mean  AUC.

For each chromosome, the model was evaluated on its
corresponding  test  set,  and  performance  metrics  were
calculated  by  aggregating  predictions  across  all  SNPs
(micro-averaged for classification metrics like AUC-ROC).
The  median  values  of  these  chromosome-level  metrics
across  all  22  chromosomes  are  reported  in  Fig.  (4).  As
shown in Fig. (4), Beagle consistently achieves the highest
median values.  When assessed using IQS,  accuracy,  and
AUC, logistic  Regression (phased)  and linear Regression
(unphased)  perform  comparably  to  Beagle.  While  the

Logistic  Regression  (phased)  achieved  a  median  IQS  of
0.888 +/- 0.041 and the Linear Regression (unphased) had
an  IQS  of  0.824  +/-  0.047,  Beagle  has  a  median  IQS  of
0.923 +/- 0.031. However, when assessed using R2, Beagle
performs much stronger than the linear methods, with an
R2  of  0.910  +/-  0.047,  compared  to  0.828  +/-  0.058  of
logistic  regression  and  0.836  +/-  0.058  of  linear
regression.

The R2 of each individual SNP within PRS313_BC was
computed  for  both  the  linear  regression  and  logistic
regression models. The distributions of these R2 values are
plotted  in  Fig.  (5)  and  compared  with  the  R2  values  of
Beagle.  This  distribution  further  illustrates  the  perfor-
mance  differences  between  imputation  methods.  Beagle
exhibits  a  high  proportion  of  SNPs  with  R2  >  0.9,
significantly  outpacing  Linear  Regression  (unphased),
which  only  achieves  this  threshold  for  18.53%  of  SNPs.
Similarly,  logistic  Regression (phased) reaches this  level
for 31.57% of SNPs, highlighting its stronger performance
over the unphased model.

Fig. 5 contd.....
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Fig. (5). R2 Score Distributions for SNP Genotype Imputation Models across Chromosomes. 5A shows the R2 scores of SNPs imputed
using the Linear Regression model trained on unphased data vs. Beagle results imputed using phased data. The violin plots illustrate the
distribution across 22 chromosomes. The Beagle model shows a higher proportion of SNPs with R2 > 0.9 (72.84%) compared to the Linear
Regression model (18.53%). 5B shows the R2 scores of SNPs imputed using the Logistic Regression trained on phased data vs. Beagle
results imputed using phased data. Similar to (A), the Beagle model outperforms the linear method, with 72.84% of SNPs exceeding R2 >
0.9, compared to 31.57% for Logistic Regression.

3.6.2.  Evaluation  of  PRS  Scores  Accuracy  with
Imputed Genotypes

The  R2  values,  depicted  in  Fig.  (6),  compare  PRS
scores calculated using imputed input genotypes to those
calculated  with  real  genotypes.  Beagle  achieves  the
highest R2 values across all phenotypes, with an R2 of 0.95
for overall  breast cancer,  indicating a strong correlation
between  imputed  and  actual  genotypes.  However,  it  is
noteworthy that the baseline models—Logistic Regression
(phased) and Linear Regression (unphased)—also perform
surprisingly  well.  For  instance,  Logistic  Regression
achieves  an  R2  of  0.86  for  overall  breast  cancer,  only
slightly  lower  than  Beagle.  These  models  significantly
outperform the PRS score calculated without imputation
and the Imputation with MAF method, both with an R2 of
0.38.

The  confusion  matrices  in  Fig.  (7)  illustrate  the
agreement  between  true  and  predicted  quantiles  for

overall  breast  cancer  risk  using  PRS313_BC  scores.  As
shown in Fig. (7), out of the six test-set subjects in the top
1% of PRS scores, both the logistic regression model and
Beagle correctly classified 4 out of 6. The linear regression
model correctly classified 3 out of 6, while imputing with
MAF only led to 1 out of 6 being correctly classified. For
the  misclassified  patients  in  the  top  1%  of  PRS  scores,
Beagle,  linear  regression,  and  logistic  regression  placed
all  of  them in  the  next  highest  score  quantile  (1-5%).  In
contrast, imputing with MAF placed 2 out of 6 patients in
the 5-10% quantile and 1 out of 6 in the 10-20% quantile.

The  difference  in  performance  becomes  even  more
apparent in the 1-5% quantile, where imputing with MAF
correctly classified only 4 out of 20 patients, with almost
half  (8  out  of  20)  falling  outside  the  top  20%  quantile.
Beagle  correctly  classified  15  out  of  20,  and  both  linear
and logistic regression models correctly classified 12 out
of  20,  with  misclassified  samples  mostly  found  within
adjacent  quantiles.
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Fig. (6). Comparison of the R2 of the PRS score Across Different Models. The R2 values were calculated by comparing the PRS scores
calculated using imputed genotypes versus  the PRS scores calculated using the real  genotypes obtained from the WGS data.  Due to
quality control measures, although there are 77 SNPs present within the 23andMe genotyping panel, user data may have varying numbers
of PRS313_BC. (A) R2 values when the PRS scores are calculated using all 77 known SNP positions and imputed dosages for the remaining
SNPs. (B) R2 values when the PRS scores are calculated using only imputed dosages (assuming the user data has none of the PRS313_BC
SNPs). The difference between (A) and (B) highlights the impact of the imputation process on the PRS calculation accuracy.
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Fig. (7). Confusion Matrices for Overall Breast Cancer Risk Prediction. The figure shows confusion matrices comparing the performance
of different imputation methods for predicting overall breast cancer risk using PRS313_BC scores. The matrices display the agreement
between true  quantiles  and  predicted  quantiles  across  various  imputation  techniques.  Each  confusion  matrix's  x-axis  represents  the
predicted quantiles, while the y-axis represents the true quantiles. Darker shades indicate a higher number of test-set samples falling into
the respective quantile categories, highlighting the distribution of prediction accuracy across the different methods. Numbers in the
matrix represent the number of test-set samples in each bin.

4. DISCUSSION

4.1. Advantages of The FastImpute Pipeline
Traditional  reference-based  genotype  imputation

methods  offer  high  accuracy  but  are  computationally
intensive and limited by reference panel accessibility. The
size  of  the  GRCh37  1000  Genome  Project  files  can  be
prohibitive for many researchers, necessitating reliance on
services  like  the  Michigan  Impute  Server  [3].  These
services  lack  real-time  genotype  imputation  capabilities
and  can  cause  delays  in  research  and  clinical  decision-

making  due  to  server  downtimes  and  long  queue  times.
Additionally,  these  methods  may  underperform  when
target  sets  differ  from discovery  panels  [25].  This  could
explain  the  variability  in  Beagle's  R2  in  our  results,
particularly  at  a  few  specific  PRS313_BC  SNPs.  This
variability  could  lead  to  inconsistent  genetic  risk
assessments  in  underrepresented  patient  populations.
Reference-free  approaches  [4,  5,  6,  7,  26]  have  been
developed  to  address  these  issues.  However,  they  are
often too large for browser-based imputation and require
computationally  expensive  retraining  for  imputing  on
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different  regions,  limiting  their  practical  clinical
application.

This  study  introduces  a  lightweight,  client-sided
genotype imputation model that enhances both the accuracy
and accessibility of polygenic risk score calculations through
a  serverless  architecture  -  the  first  of  its  kind.  A  central
pillar  of  this  contribution  is  its  open-source  nature;  the
entire  FastImpute  ecosystem  is  publicly  available
(Application:  https://aaronge-2020.github.io/FastImpute/,
Code:  https://github.com/aaronge-2020/FastImpute).  This
commitment  to  open-source  ensures  full  transparency  and
reproducibility, enhances user privacy by processing all data
locally  on  the  user's  device,  and  democratizes  access  to
genetic  risk  assessment  by  removing  computational  and
financial barriers. Our approach addresses key challenges in
existing imputation methods by implementing a simple yet
effective  baseline  linear  regression  model  that  balances
performance,  computational  efficiency,  and  privacy.  With
significantly lower retraining costs compared to deep neural
networks,  the  model's  adaptability  suits  various  genomic
regions  and  pipelines  while  enabling  real-time  data
processing on edge devices like smartphones, representing a
significant advancement in point-of-care genetic testing and
personalized medicine.

4.2. Clinical Significance
FastImpute  offers  a  novel  approach  to  genetic  risk

assessment  with  its  efficient,  client-side  processing,
demonstrating particular potential in the realm of direct-to-
consumer (DTC) genetic data. The increasing popularity of
DTC  genetic  testing  has  resulted  in  a  wealth  of  readily
available data. However, this data is often underutilized in
terms of comprehensive risk assessment. While established
clinical workflows often utilize targeted sequencing or other
methods,  FastImpute  provides  a  valuable  alternative  for
analyzing  existing  DTC  array  data,  making  it  possible  to
extract further insights from this readily available resource.
As demonstrated by our PRS313_BC case study for breast
cancer  risk  assessment,  FastImpute  can  empower
individuals  to  explore  their  genetic  predispositions  using
their  DTC  data  and  may  facilitate  more  informed
discussions  about  personalized  risk  with  healthcare
providers.

The  baseline  models  trained  using  the  FastImpute
pipeline  performed  comparably  in  identifying  high-risk
individuals  to  more  complex  methods  like  Beagle  when
applied to  23andMe data.  This  is  particularly  relevant  for
breast  cancer  risk  stratification,  where  Mavaddat  et  al.
(2019) showed that women in the top 1% of the PRS313_BC
distribution have a predicted risk approximately four times
larger than those in the middle quintile, aligning with the
UK NICE definition of high risk for breast cancer [15]. Our
logistic  regression  model  using  phased  data  performed
similarly to Beagle in identifying these high-risk individuals,
with  the  linear  regression  model  misclassifying  only  one
additional patient (Fig. 7).

Moreover, FastImpute's ability to perform genetic risk
assessments  on  edge  devices  such  as  smartphones
enhances accessibility. Individuals can leverage their DTC
data  to  gain  insights  into  their  risk  profiles,  potentially

leading  to  more  proactive  discussions  with  healthcare
providers.  While  not  a  replacement  for  comprehensive
clinical evaluations, FastImpute serves as a valuable tool
for  individuals  to  better  understand  their  genetic  pre-
dispositions  and  seek  further  guidance  if  needed.

Furthermore,  by  processing  data  on  edge  devices,
FastImpute  addresses  some  of  the  computational  and
privacy  barriers  associated  with  traditional  imputation
methods. This approach could potentially extend genetic
risk assessment to areas where computational resources
and  infrastructure  are  limited,  or  where  individuals  are
hesitant to share their data with external servers.

While  this  on-device  approach  is  a  major  step  for
individual access and privacy, bridging the gap to formal
clinical utility requires overcoming several hurdles. There
is  a  need  for  standardized  guidelines  to  interpret  PRS
results  and  a  clear  path  for  integrating  such  tools  into
established clinical workflows. Critically, this process must
involve  genetic  counselors  to  help  patients  navigate  the
probabilistic  nature  of  PRS,  ensuring  the  information  is
empowering rather than alarming. Therefore, we position
FastImpute as a tool for risk exploration: one that enriches
patient-provider  discussions  rather  than  serving  as  a
standalone  diagnostic  instrument.  Its  current  role  as  an
exploratory  tool  highlights  the  need  for  extensive
validation before it can be considered for clinical practice.

CONCLUSION
This study introduces FastImpute, a reference-free, light-

weight  genotype  imputation  model  that  enhances  privacy
and  accessibility.  By  leveraging  client-side  deployment,
FastImpute addresses the computational inefficiencies and
privacy concerns of traditional methods and reference-free
approaches.

Our  PRS313_BC  case  study  for  breast  cancer  risk
assessment shows that FastImpute can perform comparably
to Beagle in identifying high-risk individuals, demonstrating
its potential for real-time genetic risk assessments in clinical
settings  on  devices  like  smartphones.  This  advancement
could  lead  to  earlier  disease  detection  and  more
personalized  treatments.

Future research could focus on expanding the training
dataset  to  include  more  diverse  genotyping  chips  and
genomic  regions,  implementing  superpopulation-specific
calibration, and exploring more complex models to enhance
imputation accuracy while maintaining the benefits of client-
side deployment.

LIMITATIONS
While  our  study  demonstrates  the  potential  of

FastImpute, we acknowledge certain limitations. First, our
reconstruction  of  the  23andMe  V5  panel  relied  on  a
sample of 119 users from openSNP.org [14]. Though this
sample represents nearly half of the publicly available V5
data  from  2020  onwards,  larger,  more  representative
datasets  would  enhance  the  generalizability  of  our
findings. We were only trying to present a case study, so
there  is  minimal  impact  on  the  validity  of  our  results.
Future  collaborations  with  consumer  genetic  testing

https://aaronge-2020.github.io/FastImpute/
https://github.com/aaronge-2020/FastImpute
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companies  could  provide  access  to  more  comprehensive
data,  allowing  for  a  more  robust  analysis  of  various
genotyping  chips.

Second,  our  methodological  choices  were  guided  by
our  primary  goal  of  creating  a  lightweight  and  portable
pipeline. For instance, our data selection method focuses
on regions within a +/- 500K base pair window with LD,
following  the  default  values  provided  by  LDProxy.  This
window may overlook informative, long-range LD patterns
and  could  potentially  exclude  some  ancestry-specific
information relevant for PRS accuracy. This choice was a
deliberate compromise to maintain a small model size and
ensure  rapid,  client-side  processing.  Future  studies,
however,  could  evaluate  the  impact  of  expanding  this
window to capture additional genetic variation, balancing
imputation accuracy against computational cost.

Similarly,  our  study  relies  on  linear  and  logistic
regression models, which may not capture complex, non-
linear genetic associations as effectively as deep learning
methods  could.  This  decision  was  guided  by  our  feature
selection  strategy,  which  curated  input  SNPs  based  on
strong linear correlation (R2), and by our primary goal of
ensuring  client-side  deployability.  While  our  preliminary
tests showed that more complex models offered minimal
performance  gains  for  this  feature  set,  they  came  at  a
prohibitive computational cost. Nonetheless, we acknow-
ledge  that  this  approach  may  not  be  optimal  for  all
genomic  contexts.  Future  work  could  explore  hybrid
models  that  incorporate  non-linear  effects  while  pre-
serving  a  lightweight  architecture.

Third,  our  proof-of-concept  focused  on  a  single
polygenic  risk  score,  PRS313_BC.  Because  this  score  is
composed of 313 SNPs distributed across all autosomes, it
served as a rigorous benchmark that inherently tests our
workflow’s  performance across  a  diverse  set  of  genomic
regions.  However,  the  generalizability  of  our  pipeline  to
polygenic  risk  scores  developed  for  other  diseases  and
traits, which may have different genetic architectures, has
yet to be experimentally verified.

Finally,  the  PRS calculated  in  our  web  application  is
not calibrated based on the user's superpopulation. As we
are only presenting an illustrative example, we believe this
is beyond the scope of the current project.  However, we
recognize that this calibration is important, as the genetic
distance  between  the  user  and  our  training  dataset  can
influence the predictive power of our models. While out of
scope  for  this  initial  proof-of-concept,  future  research
should prioritize training superpopulation-specific models
to enhance imputation accuracy and normalize PRS scores
for clinical relevance.
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