RESEARCH ARTICLE

OPEN ACCESS

ISSN: 1875-0362

Predictive Analysis of Methylation Patterns in Oral Squamous Cell Carcinoma (OSCC) Using Machine Learning

Debasree Sarkar^{1,*}

¹Department of Biotechnology, SRM Institute of Science & Technology (SRMIST) Tiruchirappalli Campus, SRM Nagar, Trichy-Chennai highway, Near Samaya Puram, Tiruchirappalli - 621105, Tamil Nādu, India

Abstract:

Introduction: Oral and oropharyngeal cancers are the most common types of head and neck cancers, with over 90% originating from squamous cells in the mouth and throat. Chronic tobacco and alcohol use, inflammation, viral infections, betel quid chewing, and genetic predisposition are major risk factors for OSCC, which kills over 100,000 patients annually. Epigenetic mechanisms, such as DNA methylation, can silence tumor suppressor genes, contributing to cancer progression and patient outcomes in Oral Squamous Cell Carcinoma (OSCC). This study aimed to predict prominent methylation signatures that can distinguish OSCC from normal cells.

Methods: Machine learning algorithms, like Support Vector Machine (SVM), Random Forest (RF), and Multilayer Perceptron (MLP), were implemented using R packages and a balanced training dataset consisting of M-values of methylated CpG sites from 46 matched OSCC and normal adjacent tissue samples.

Results: MLP model demonstrated the highest accuracy of 92% on the training dataset and 100% on the blind dataset, even with a reduced feature set of just 10 significantly differentially methylated CpG sites.

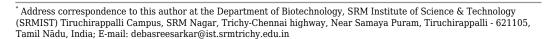
Discussion: Despite the high burden of oral cancer in South America, and an alarming trend of rising number of cases, research into this particular area is sorely lacking. This work aims to address the issue by performing a machine learning-based analysis of methylation patterns, a major established factor, in oral cancer datasets obtained from Brazilian patients. However, the lack of experimental evidence supporting the results of this analysis can be considered a significant limitation of this study.

Conclusion: A highly accurate and generalizable machine learning model was developed using the Multi-layer Perceptron with multiple layers (MLP-ml) algorithm, which achieved an accuracy of 95% on an independent validation dataset of 15 OSCC tumors and 7 non-tumor adjacent tissue samples. Machine learning algorithms can therefore provide valuable insights into biological datasets that may be overlooked by regular bioinformatics workflows

Keywords: DNA methylation, Oral cancer, Methylome, Machine learning, Random forest, Multilayer perceptron, Support vector machine.

© 2025 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



 $\label{lem:cite_as:} Cite\ as: Sarkar\ D.\ Predictive\ Analysis\ of\ Methylation\ Patterns\ in\ Oral\ Squamous\ Cell\ Carcinoma\ (OSCC)\ Using\ Machine\ Learning.\ Open\ Bioinform\ J,\ 2025;\ 18:\ e18750362423160.\ http://dx.doi.org/10.2174/0118750362423160250929075233$

Received: June 24, 2025 Revised: August 7, 2025 Accepted: August 27, 2025 Published: October 07, 2025

Send Orders for Reprints to reprints@benthamscience.net

1. INTRODUCTION

Oral and oropharyngeal cancers are the two most common types of cancer that develop in the head and neck region, and more than 90% of these cancers originate from

the flat, scale-like squamous cells found in the lining of the mouth and throat. After initiation, tumour cells can deeply invade the local structures and lymph nodes of the neck, leading to further distant metastases even into the aero-

digestive tract of the patients, all of which increases the chances of potential recurrence of oral cancers [1]. Epigenetic mechanisms that result in dysregulation of gene expression have been found to play a major role in OSCC [2], which claims the lives of more than 100,000 patients worldwide every year [3]. Chronic tobacco and alcohol use, which can have a direct impact on epigenetic regulation of gene expression, constitute two major risk factors for OSCC tumorigenesis, along with other prominent factors like chronic inflammation, viral infections (human papillomavirus or HPV), betel quid chewing, and genetic predisposition [4, 5]. It is, therefore, of critical importance to understand the role of epigenetic alterations, like aberrant DNA methylation, in the initiation and progression of OSCC.

DNA methylation is a key epigenetic modification that can silence tumour suppressor genes, contributing to the development and subsequent progression of different types of cancers, including breast, lung, colon, and ovarian cancers [6-8]. DNA methylation alterations, such as hypermethylation of tumour suppressor genes, are commonly observed in OSCC, and are known to influence cancer progression and patient outcomes [9]. In addition, increased expression of DNA Methyltransferases (DNMTs) is often observed in oral cancers, leading to gene inactivation and chromosomal instability [10]. DNMT are enzymes that catalyze DNA methylation and play a role in its initiation and maintenance. After DNA replication, DNMT1 is responsible for transferring methylation patterns to the newly-synthesized DNA strand [11]. Conversely, DNMT3A and DNMT3B participate in de novo methylation [12, 13]. Nevertheless, it has been demonstrated that in addition to DNMT1, DNMT3A and DNMT3B are also necessary for the creation and maintenance of methylation patterns [14]. Ten Eleven Translocation (TET) proteins, on the other hand, inhibit DNMT activity. Cytosines can be demethylated by TET1, TET2, and TET3 via a sequence of reactions, oxidizing 5methylcytosine to 5-hydroxymethylcytosine Furthermore, research suggests that Thymine DNA Glycosylase (TDG) and Activation-Induced Cytidine Deaminase (AICDA) are also involved in the demethylation process [16, 17]. Interestingly, HPV oncoproteins E6 and E7 can interfere with the activity of DNMTs, which can lead to changes in methylation patterns across the host cell genome, further emphasizing the potential role of oncogenic HPV infection in inducing OSCC [18]. Epigenetic drugs like DNA methyltransferase-1 (DNMT1) inhibitors have shown promise in cancer treatment by modulating aberrant DNA methylation patterns [19]. Targeting DNA methylation through DNMT inhibitors may, therefore, offer a novel therapeutic strategy against OSCC [20].

In general, it has been observed that global DNA hypomethylation contributes to the process of OSCC tumorigenesis through multiple potential mechanisms, including the reduction of methylation at DNA repetitive elements leading to chromosomal instability and the demethylation of some methylation-silenced promoter regions of proto-oncogenes. Furthermore, specific methylation patterns have been associated with tumor

differentiation and nodal involvement, leading to Differentially Methylated Regions (DMRs) being recognized as potential biomarkers for early detection and prognosis in oral cancer, with specific genes like DAPK1 and TIMP3 showing significant associations with clinical outcomes [21].

Machine learning algorithms, such as Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN), might play a crucial role in the identification of prominent methylation signatures that can distinguish OSCC from normal cells by rapid analysis of the high-dimensional datasets typically produced by genome-wide DNA methylation studies. Machine Learning (ML) is a branch of Artificial Intelligence (AI) that is deeply rooted in applied statistics, building computational models that use inference and pattern recognition instead of explicit sets of rules. ML focuses on developing computer systems that learn from data and progressively improve their predictive performance, and therefore, can be very efficient in detecting patterns embedded in highdimensional datasets that might not be explicitly defined and discernible by humans as such machine learning techniques have become fairly popular among biomedical researchers to study methylation patterns associated with various types of cancers including OSCC [22-27].

Despite the highest incidence being in Asia, followed by Europe and North America, with a disproportionately high disease burden in Low- and Middle-Income Countries, South America, particularly Brazil, also has high incidence rates of oral and oropharyngeal cancers, which are unfortunately underreported and largely overlooked by the global research community. In this article, machine learning approaches were utilized to predict methylation patterns associated with OSCC using two separate Brazilian datasets. Although a few studies have employed machine learning for decoding methylation patterns in diseases like Tuberculosis and Chagas Cardiomyopathy, this is the first report of machine learning being used on a cancer methylome dataset from South America. [28, 29].

2. MATERIALS AND METHODS

2.1. Study Design

The research question addressed in this study was whether machine learning-based predictive analysis is capable of identifying distinctive patterns of methylations in OSCC vs. normal tissue specimens. This is an analytical study carried out using quantitative methods on a set of Brazilian OSCC patients, who served as the study population, whose DNA methylation profiles were made publicly available through the Gene Expression Omnibus (GEO) database.

2.2. Dataset Description

2.2.1. Training Dataset

The dataset GSE234379 was downloaded from the GEO, a public functional genomics data repository available through the National Center for Biotechnology Information, funded by the government of the United

States. This dataset consists of DNA methylation data from 46 matched OSCC and adjacent normal tissue samples collected from patients at A.C. Camargo Cancer Center, Sao Paulo, Brazil, run on a genome-wide platform (Illumina Infinium HumanMethylation450 BeadChip) [30].

2.2.2. Independent Dataset

The dataset GSE178216, containing genome-wide methylation data from 7 non-tumor adjacent tissues and 15 tumors from OSCC patients at the Brazilian National Cancer Institute (INCA, Rio de Janeiro, Brazil) in Illumina Infinium HumanMethylation450 BeadChip, was used as the independent validation dataset [31].

2.3. DNA Methylation Analysis

DNA methylation analysis was performed using the R Bioconductor package 'minfi' (version 1.54.1) [32], wherein Beta values (proportion of methylation at a specific CpG site) and M-values (log-ratio of methylation) for each probe across samples were determined from the raw IDAT files in the dataset, after pre-processing using Noob (normal-exponential out-of-band), a background correction method with dye-bias normalization. Beta values and M-values are two commonly used measures to represent methylation levels, with the caveat that Beta values are more suitable for visualization and clustering, while M-values are better for statistical modeling and differential methylation analysis. This is because M-values have better statistical properties, such as more homoscedasticity (homogeneity of variance/variance does not depend on the mean), which also aligns better with assumptions in most machine learning algorithms. Studies have also shown that M-values often lead to better model accuracy and feature selection performance, and machine learning algorithms typically benefit from the unbounded, more Gaussian-like distribution of M-values. Additionally, the log-ratio nature of M-values helps highlight subtle but consistent changes, making them more useful for pattern recognition in classification tasks. Hence, a final set of 67 Mvalues, which were retained after filtering out the rows with missing values or no variation, was chosen as the input dataset for the machine learning algorithms described in the next section.

Packages like 'limma' (v. 3.64.1) [33], 'IlluminaHumanMethylation450kanno.ilmn12.hg19' (v. 3.21), 'DMRcate' (v. 3.4.0) [34], and 'ChIPseeker' (v. 1.44.0) [35], were used for Differential Methylation Analysis, annotation and identification of Differentially Methylated Regions (DMRs), and subsequent DMR analysis, comparison, and visualization, respectively.

2.4. Machine Learning

The following machine learning algorithms were implemented using the caret (version 6.0-94) package in R [36]: (a) Naïve Bayes (NB), (b) Support Vector Machines with

Linear Kernel (SVM-linear), (c) Support Vector Machines with Radial Basis Function Kernel (SVM-radial), (d) Bagged Classification and Regression Trees (treebag), (e) gradient boosting model using decision trees via XGBoost (xgbTree), (f) Random Forest (RF), and (g) Multi-Layer Perceptron, with multiple layers (MLP-ml). Naïve Bayes is a probabilistic classifier based on Bayes' theorem with the naive assumption that all features are independent and follow a Gaussian distribution. Support Vector Machines (SVMs) are powerful supervised learning algorithms that try to find the optimal hyperplane that best separates data points from different classes by maximizing the margin between them. Bagging stands for Bootstrap Aggregating, and is an ensemble method that creates multiple bootstrap samples (random samples with replacement) from the training dataset. The 'treebag' method in caret refers to a bagging ensemble of decision trees, often known as Bagged CART (Classification and Regression Trees). The xgbTree method in the caret package trains a gradient boosting model using decision trees as base learners, which is implemented via the XGBoost library. This library sequentially builds trees where each new tree attempts to correct errors made by the previous ones. Random Forest is an ensemble of decision trees built using Bagging (Bootstrap Aggregation) and Random Feature Selection, where a large number of trees are built and their predictions are aggregated to produce a more accurate and robust model. A Multi-Layer Perceptron (MLP) is a type of feed-forward artificial neural network, and the 'Multi-Layer Perceptron with Multiple Layers' method supports multiple hidden layers, using the RSNNS (Stuttgart Neural Network Simulator) backend.

In each of these methods, 80% of the dataset was used as training data for 5-fold cross-validation, while the remaining 20% was used as the blind/test dataset for model evaluation. During 5-fold cross-validation and model evaluation, several threshold-dependent and threshold-independent performance metrics were used [37]. The 'pROC' (version 1.18.5) package was used for plotting the Receiver Operating Characteristic (ROC) curves [38].

3. RESULTS

The dataset GSE234379, comprising genome-wide DNA methylation data from 46 matched oral cavity cancer and adjacent normal tissue samples generated using the Illumina Infinium HumanMethylation450 BeadChip (450k), was downloaded from the GEO database, and analyzed using various R packages. Finally, a carefully filtered set of 67 M-values (representing 67 CpG sites) was used as input to train machine learning models using NB, SVM-linear, SVM-radial, treebag, xgbTree, RF, and MLP-ml algorithms (Fig. 1), as described in the Materials and Methods section. As shown in Table (1A and B), the MLP-ml model achieved the best accuracy score of 92% on the training set, and 100% on the blind dataset.

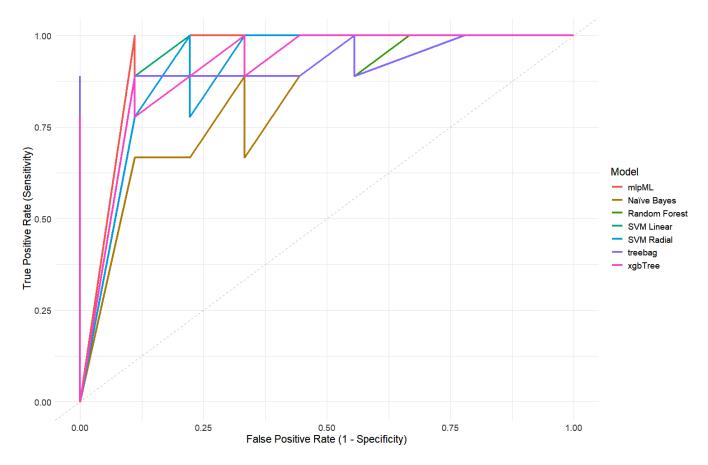


Fig. (1). ROC curves for different ml models with true positive rate or sensitivity as the y-axis and false positive rate as the x-axis, respectively.

Table 1A. Summary of performance metrics for different machine learning methods on the training dataset.

-	logLoss	AUC	F1	Sensitivity	Specificity	Precision	Recall	Accuracy
NB	2.42	0.89	0.85	0.86	0.84	0.84	0.86	0.85
svmL	0.40	0.89	0.84	0.84	0.84	0.84	0.84	0.84
svmR	0.41	0.90	0.88	0.89	0.86	0.87	0.89	0.88
treebag	0.28	0.95	0.90	0.95	0.84	0.85	0.95	0.89
xgbTree	0.30	0.97	0.91	0.95	0.86	0.88	0.95	0.91
RF	0.29	0.97	0.91	0.95	0.86	0.88	0.95	0.91
mlpML	0.30	0.94	0.92	0.95	0.89	0.90	0.95	0.92

Table 1B. Summary of performance metrics for different machine learning methods on the blind dataset.

-	logLoss	AUC	F1	Sensitivity	Specificity	Precision	Recall	Accuracy
NB	2.81	0.95	0.78	0.78	0.78	0.78	0.78	0.78
svmL	0.12	1.00	0.95	1.00	0.89	0.90	1.00	0.94
svmR	0.28	0.95	0.82	0.78	0.89	0.88	0.78	0.83
treebag	0.31	0.96	0.82	1.00	0.56	0.69	1.00	0.78
xgbTree	0.33	0.98	0.86	1.00	0.67	0.75	1.00	0.83
RF	0.25	0.98	0.90	1.00	0.78	0.82	1.00	0.89
mlpML	0.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00

-	logLoss	AUC	F1	Sensitivity	Specificity	Precision	Recall	Accuracy
topmost_feature	0.27	0.95	0.90	1.00	0.78	0.82	1.00	0.89
top3_features	0.03	1.00	1.00	1.00	1.00	1.00	1.00	1.00
top5_features	0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00
top10_features	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
top15_features	0.04	1.00	1.00	1.00	1.00	1.00	1.00	1.00
top20_features	0.08	1.00	0.94	0.89	1.00	1.00	0.89	0.94

Table 2. Summary of performance metrics for mlpML using different numbers of features.

Table 3. Summary of performance metrics for the minimalistic MLP-ml model using only the top 10 CpG sites as features on the independent validation dataset.

-	logLoss	AUC	F1	Sensitivity	Specificity	Precision	Recall	Accuracy
GSE178216	0.11	1.00	0.93	1.00	0.93	0.88	1.00	0.95

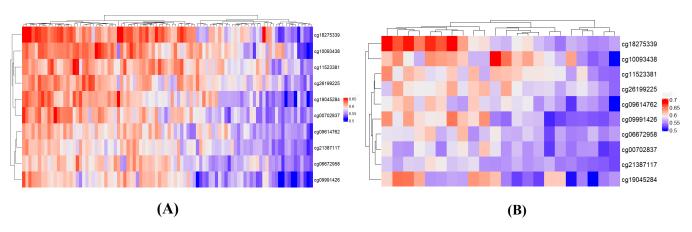


Fig. (2). Heatmaps of beta values of the top 10 CpG sites detected via machine learning in (A) GSE234379, (B) GSE178216.

To further analyze the MLP-ml model, the number of features (CpG sites) used for prediction was sequentially reduced to determine the least number of features sufficient to develop a minimalistic model. As shown in Table 2, the best-performing minimalistic model used only the top 10 features to give an accuracy score of 100%. Table S1 lists the details of these top 10 CpG sites, including the summary test statistic for the DMR (from limma), mean difference in M-values across the DMR, p-value for the DMR before any correction for multiple testing, and FDR-adjusted p-value using the Benjamini-Hochberg method, along with the genomic co-ordinates and overlapping genes (if any).

The minimalistic MLP-ml model using only the top 10 CpG sites as features was also used to predict OSCC samples in an independent validation dataset GSE178216 consisting of 15 OSCC and 7 normal adjacent tissue samples, achieving an accuracy of 0.9545 [95% CI: $(0.7716,\,0.9988),\,$ P-Value 0.002469] and an AUC of 100%, as shown in Table 3. Fig. (2) shows heatmaps of Beta values of these top 10 CpG sites in the 2 datasets used in this study.

4. DISCUSSION

The incidence of oral cancer and corresponding mortality rates in South America is notably high [39], with Brazil reporting the highest rates among males [40]. The rising incidence rates, driven by factors such as tobacco and alcohol consumption, pose significant challenges for public health policy, necessitating targeted interventions to address the underlying risk factors and improve healthcare access. In the current study, 2 whole-genome methylation datasets originating from Brazilian hospitals were analyzed using machine learning algorithms to decipher specific methylation patterns associated with OSCC. The M-value (log-ratio of methylation for each probe) matrix of 485512 probes across 92 samples (46 OSCC tumors and 46 matched normal samples) was screened to remove rows with missing values or no variation, yielding a curated set of 67 CpG sites. This is a crucial pre-processing step because rows with NAs (missing values) can compromise statistical integrity or disrupt functions, while imputation of methylation values is challenging and can introduce bias, especially for highdimensional, sparse data like methylation arrays. Removal of rows with zero variance, on the other hand, is intuitive because methylation sites with the same value in all samples cannot distinguish between the sample groups, thereby adding noise or redundancy, increasing model complexity without any benefit. No-variation sites are biologically uninformative and computationally inefficient, they inflate dimensionality without contributing to variance, possibly distorting results, and hence should be excluded.

Machine learning models from several methods, including NB, SVM-linear, SVM-radial, treebag, xgbTree, RF, and MLP-ml algorithms, were trained using the larger dataset (GSE234379), which is a balanced dataset of 46 OSCC and 46 normal samples. The use of a balanced training set in machine learning is crucial for preventing model from overfitting, and allows better generalization, more reliable performance metrics, and more informative feature importance rankings. The generalization ability of the different machine learning models was then checked using the second Brazilian dataset (GSE178216), which was generated using the same Illumina Infinium HumanMethylation450 BeadChip, as an independent dataset. The MLP-ml model achieved the best prediction accuracy on both the training examples and on the independent dataset, even with a reduced feature set of only the top 10 CpG sites. Interestingly, the first two CpG sites in the list correspond to the genes CCDC17 and SELI/SELENOI, which have already been implicated in various cancers [41, 42], including Squamous Cell Carcinoma (SCC) [43].

MLP models have been previously used to predict driver genes from multi-omics pan-cancer data, which included DNA methylation profiles [44], as well as risk of diabetes and cancer from DNA methylation arrays [45]. However, a major limitation of this study is the lack of experimental validation for the predictions made by the computational methods. In addition, this study focuses solely on DNA methylation; however, a more comprehensive model should also incorporate other epigenetic signals and correlate them with gene expression datasets to provide a holistic overview of the underlying mechanistic aspects of OSCC tumorigenesis and disease progression.

CONCLUSION

Overall, this study provided clues into salient methylation signatures unique to OSCC in South American patients, or more specifically, Brazilian patients, using two publicly available whole-genome methylation datasets and machine learning prediction models. The best-performing minimalistic MLP model used only the top 10 CpG sites to give an accuracy score of 100% on both the blind testing set and the second independent validation dataset. Similar studies are needed on methylation datasets from other South American countries to further validate this model and the methylation pattern associated with OSCC in our study.

AUTHORS' CONTRIBUTIONS

The author confirms sole responsibility for the following: Study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

LIST OF ABBREVIATIONS

OSCC = Squamous Cell Carcinoma SVM = Support Vector Machine

RF = Random Forest

MLP = Multilayer Perceptron

NB = Naïve Bayes

SVM-linear = Support Vector Machines with Linear

Kernel

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

All the data and supporting information are provided within the article.

FUNDING

None.

CONFLICT OF INTEREST

The author declares no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publisher's website along with the published article.

REFERENCES

- [1] Chen SH, Hsiao SY, Chang KY, Chang JY. New insights into oral squamous cell carcinoma: From clinical aspects to molecular tumorigenesis. Int J Mol Sci 2021; 22(5): 2252. http://dx.doi.org/10.3390/ijms22052252 PMID: 33668218
- [2] Russo D, Merolla F, Varricchio S, et al. Epigenetics of oral and oropharyngeal cancers. Biomed Rep 2018; 9(4): 275-83. http://dx.doi.org/10.3892/br.2018.1136 PMID: 30233779
- [3] Wu J, Chen H, Liu Y, Yang R, An N. The global, regional, and national burden of oral cancer, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. J Cancer Res Clin Oncol 2025; 151(2): 53.
 - http://dx.doi.org/10.1007/s00432-025-06098-w PMID: 39875744
- [4] D'souza S, Addepalli V. Preventive measures in oral cancer: An overview. Biomed Pharmacother 2018; 107: 72-80. http://dx.doi.org/10.1016/j.biopha.2018.07.114 PMID: 30081204

- [5] Oliveira AC, Cavalcanti de Lima IC, Frez Marques VM, Alves de Araújo WH, De Campos Ferreira C. Human papillomavirus prevalence in oral and oropharyngeal squamous cell carcinoma in South America. Oncol Rev 2022; 16(1): 552. http://dx.doi.org/10.4081/oncol.2022.552 PMID: 35432780
- [6] Weisenberger DJ, Lakshminarasimhan R, Liang G. The role of DNA methylation and DNA methyltransferases in cancer. Adv Exp Med Biol 2022; 1389: 317-48. http://dx.doi.org/10.1007/978-3-031-11454-0_13 PMID: 36350516
- Lakshminarasimhan R, Liang G. The role of DNA methylation in cancer. Adv Exp Med Biol 2016; 945: 151-72. http://dx.doi.org/10.1007/978-3-319-43624-1 7 PMID: 27826838
- [8] Lavoro A, Ricci D, Gattuso G, et al. Recent advances on generelated DNA methylation in cancer diagnosis, prognosis, and treatment: A clinical perspective. Clin Epigenetics 2025; 17(1): 76.
- http://dx.doi.org/10.1186/s13148-025-01884-2 PMID: 40325471
 [9] Mesgari H, Esmaelian S, Nasiri K, Ghasemzadeh S, Doroudgar P, Payandeh Z. Epigenetic regulation in oral Squamous Cell Carcinoma microenvironment: A comprehensive review. Cancers 2023; 15(23): 5600.
 http://dx.doi.org/10.3390/cancers15235600 PMID: 38067304
- [10] Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: From its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164: 103399. http://dx.doi.org/10.1016/j.critrevonc.2021.103399 PMID:
- 34147646 [11] Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation
- pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 2015; 16(9): 519-32. http://dx.doi.org/10.1038/nrm4043 PMID: 26296162
- [12] Zhang ZM, Lu R, Wang P, et al. Structural basis for DNMT3A-mediated de novo DNA methylation. Nature 2018; 554(7692): 387-91.
- http://dx.doi.org/10.1038/nature25477 PMID: 29414941
 [13] Baubec T, Colombo DF, Wirbelauer C, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 2015: 520(7546): 243-7.

http://dx.doi.org/10.1038/nature14176 PMID: 25607372

- [14] Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10(11): 805-11. http://dx.doi.org/10.1038/nrg2651 PMID: 19789556
- [15] Pfeifer GP, Szabó PE, Song J. Protein interactions at oxidized 5-Methylcytosine bases. J Mol Biol 2020; 432(6): 1718-30. http://dx.doi.org/10.1016/j.jmb.2019.07.039 PMID: 31401118
- [16] Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 2010; 463(7284): 1042-7. http://dx.doi.org/10.1038/nature08752 PMID: 20027182
- [17] Cortellino S, Xu J, Sannai M, et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deaminationbase excision repair. Cell 2011; 146(1): 67-79. http://dx.doi.org/10.1016/j.cell.2011.06.020 PMID: 21722948
- [18] Ekanayake Weeramange C, Tang KD, Vasani S, Langton-Lockton J, Kenny L, Punyadeera C. DNA methylation changes in Human Papillomavirus-Driven head and neck cancers. Cells 2020; 9(6): 1359.
- http://dx.doi.org/10.3390/cells9061359 PMID: 32486347
 [19] Yang SC, Wang WY, Zhou JJ, et al. Inhibition of DNMT1 potentiates antitumor immunity in oral squamous cell carcinoma. Int Immunopharmacol 2022; 111: 109113. http://dx.doi.org/10.1016/j.intimp.2022.109113 PMID: 35944462
- [20] Uddin MG, Fandy TE. DNA methylation inhibitors: Retrospective and perspective view. Adv Cancer Res 2021; 152: 205-23. http://dx.doi.org/10.1016/bs.acr.2021.03.007 PMID: 34353438
- [21] Rivera-Peña B, Folawiyo O, Turaga N, et al. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27(3): 89.

- http://dx.doi.org/10.3892/ol.2024.14223 PMID: 38268779
- [22] Chen Y, Yan Y, Xu M, et al. Development of a machine learning classifier for brain tumors diagnosis based on DNA methylation profile. Front Bioinform 2021; 1: 744345. http://dx.doi.org/10.3389/fbinf.2021.744345 PMID: 36303797
- [23] Newsham I, Sendera M, Jammula SG, Samarajiwa SA. Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns. Biol Methods Protoc 2024; 9(1): bpae028. http://dx.doi.org/10.1093/biomethods/bpae028 PMID: 38903861
- [24] Zhang Z, Lu Y, Vosoughi S, Levy JJ, Christensen BC, Salas LA. HiTAIC: Hi erarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. NAR Cancer 2023; 5(2): zcad017. http://dx.doi.org/10.1093/narcan/zcad017 PMID: 37089814
- [25] Adeoye J, Wan CCJ, Zheng LW, Thomson P, Choi SW, Su YX. Machine learning-based genome-wide salivary DNA methylation analysis for identification of noninvasive biomarkers in oral cancer diagnosis. Cancers 2022; 14(19): 4935. http://dx.doi.org/10.3390/cancers14194935 PMID: 36230858
- [26] Yang Z, Liu F, Li Z, et al. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15(1): 92. http://dx.doi.org/10.1186/s13148-023-01506-9 PMID: 37237385
- [27] Das S, Karuri S, Chakraborty J, et al. Universal penalized regression (Elastic-net) model with differentially methylated promoters for oral cancer prediction. Eur J Med Res 2024; 29(1): 458. http://dx.doi.org/10.1186/s40001-024-02047-4 PMID: 39261895
- [28] Karlsson L, Öhrnberg I, Sayyab S, et al. A DNA methylation signature from buccal swabs to identify tuberculosis infection. J Infect Dis 2025; 231(1): e47-58. http://dx.doi.org/10.1093/infdis/jiae333 PMID: 38962817
- [29] Brochet P, Ianni B, Nunes JPS, et al. Blood DNA methylation marks discriminate Chagas cardiomyopathy disease clinical forms. Front Immunol 2022; 13: 1020572. http://dx.doi.org/10.3389/fimmu.2022.1020572 PMID: 36248819
- [30] Calanca N, Francisco ALN, Bizinelli D, et al. DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas. Biomed Pharmacother 2023; 167: 115559. http://dx.doi.org/10.1016/j.biopha.2023.115559 PMID: 37742611
- [31] Soares-Lima SC, Mehanna H, Camuzi D, et al. Upper aerodigestive tract Squamous Cell Carcinomas show distinct overall DNA methylation profiles and different molecular mechanisms behind WNT signaling disruption. Cancers 2021; 13(12): 3014. http://dx.doi.org/10.3390/cancers13123014 PMID: 34208581
- [32] Fortin JP, Triche TJ, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 2017; 33(4): 558-60. http://dx.doi.org/10.1093/bioinformatics/btw691 PMID: 28035024
- [33] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47-7. http://dx.doi.org/10.1093/nar/gkv007 PMID: 25605792
- [34] Peters TJ, Meyer B, Ryan L, et al. Characterisation and reproducibility of the HumanMethylationEPIC v2.0 BeadChip for DNA methylation profiling. BMC Genomics 2024; 25(1): 251. http://dx.doi.org/10.1186/s12864-024-10027-5 PMID: 38448820
- [35] Wang Q, Li M, Wu T, et al. Exploring epigenomic datasets by chipseeker. Curr Protoc 2022; 2(10): e585. http://dx.doi.org/10.1002/cpz1.585 PMID: 36286622
- [36] Kuhn M. Building predictive models in R using the caret package. J Stat Softw 2008; 28(5): 1-34. http://dx.doi.org/10.18637/jss.v028.i05
- [37] Sarkar D, Saha S. Machine-learning techniques for the prediction of protein-protein interactions. J Biosci 2019; 44(4): 104.

- http://dx.doi.org/10.1007/s12038-019-9909-z PMID: 31502581
- [38] Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12(1): 77. http://dx.doi.org/10.1186/1471-2105-12-77 PMID: 21414208
- [39] Sarode G, Maniyar N, Sarode SC, Jafer M, Patil S, Awan KH. Epidemiologic aspects of oral cancer. Dis Mon 2020; 66(12): 100988.

http://dx.doi.org/10.1016/j.disamonth.2020.100988 PM 32605720

- [40] de Miranda Vargas DG, da Cunha AR, Probst LF, et al. Characteristics and in-hospital morbidity trends associated with oral and oropharyngeal cancers in Brazil. BMC Oral Health 2022; 22(1): 276.
 - http://dx.doi.org/10.1186/s12903-022-02312-0 PMID: 35794558
- [41] Xu M, Wang W, Su S, Li W, Hu X, Zhang J. Arecoline alleviated loperamide induced constipation by regulating gut microbes and the expression of colonic genome. Ecotoxicol Environ Saf 2023;

- 264: 115423.
- http://dx.doi.org/10.1016/j.ecoenv.2023.115423 PMID: 37666200
- [42] Huang X, Yang X, Zhang M, et al. SELENOI functions as a key modulator of ferroptosis pathway in colitis and colorectal cancer. Adv Sci 2024; 11(28): 2404073. http://dx.doi.org/10.1002/advs.202404073 PMID: 38757622
- [43] Nobeyama Y, Nakagawa H. Aberrant DNA methylation in keratoacanthoma. PLoS One 2016; 11(10): e0165370. http://dx.doi.org/10.1371/journal.pone.0165370 PMID: 27788211
- [44] Zhang SW, Xu JY, Zhang T. DGMP: Identifying cancer driver genes by jointing DGCN and MLP from multi-omics genomic data. Genomics Proteomics Bioinformatics 2022; 20(5): 928-38. http://dx.doi.org/10.1016/j.gpb.2022.11.004 PMID: 36464123
- [45] Zhang S, Jin J, Xu B, Zheng Q, Mou H. The relationship between epigenetic biomarkers and the risk of diabetes and cancer: A machine learning modeling approach. Front Public Health 2025; 13: 1509458.
 - http://dx.doi.org/10.3389/fpubh.2025.1509458 PMID: 40190762