The Open Bioinformatics Journal ISSN: 1875-0362
DOI: 10.2174/0118750362377947250903082648, 2026, 19, e18750362377947 1

RESEARCH ARTICLE OPEN ACCESS

ﬂl‘
HDI Corpus: A Dataset for Named Entity Recognition .3 L

for In-Context Herb-Drug Interactions r@,x\ §

«a>

Anthony Cnudde"**", Patrick Watrin®"*/, Charlotte Nachtegael*"*' and Florence Souard'

'Department of Pharmacology, Pharmacotherapy and Pharmaceutical care, ULB, Boulevard du Triomphe, 1050,
Brussels, Belgium

*Machine Learning Group, ULB, Boulevard du Triomphe, 1050, Brussels, Belgium

Cental - Centre de traitement automatique du langage, UCLouvain, Place de I'Universit ‘e, 1348, Louvain-La-Neuve,
Belgium

‘Department of Molecular Hemato-Oncology, Laboratoire Hospitalier Universitaire de Bruxelles- Universitair
Laboratorium Brussel (LHUB-ULB) ULB, Rue Haute, 1000 Brussels, Belgium

Abstract:

Introduction: This article proposes a new dataset for Named Entity Recognition based on PubMed articles and
aiming to address the problem of Herb-Drug Interactions. It aims to offer a new dataset for recognizing herb-drug
interaction entities, including contextual information.

Background: Machine learning and Deep learning provide users with powerful tools for task automation, but require
large quantities of data to perform well. In the field of Natural Language Processing, training Deep Learning models
requires the annotation of large corpora of text. While some corpora exist in medical literature, each specific task
requires an adapted corpus.

Methods: The dataset was tested using a classical Named Entity Recognition pipeline, as well as new possibilities
offered by generative Al

Results: The dataset proposes annotated sentences of around a hundred articles and covers 15 entities, including
herbs, drugs, and pathologies, as well as contextual information, such as cohort composition, patient information, or
pharmacological clues.

Discussion: The study demonstrates that this dataset performs comparably to the DDI (Drug-Drug Interaction)
corpus — a standard dataset in the drug Named Entity Recognition — for drug recognition, and performs well on
most of the entities. Conclusion: We believe this corpus could help diversify pharmacological Named Entity
Recognition.

Keywords: Natural Language Processing, Unstructured herb-drug interaction, Named Entity Recognition,
Pharmacology, Natural health products.
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1. INTRODUCTION

The use of medicinal herbs continues to spread in
industrialized countries [1]. Herb-Drug Interactions (HDI)
are events caused by the pharmacological interaction
between a natural health product and a drug. The risk of
interaction when Natural Health Products (NHPs) are
used concurrently with a medication is well-documented.
While these events are unusual, they can lead to serious
issues such as contraceptive failure, transplant rejection,
or other adverse events, including death [2].

To handle these interactions, health professionals need
access to information through scientific literature, where
HDIs are described in clinical and pre-clinical studies or
case reports. In real practice, however, professionals lack
the time to consult these scientific articles while attending
to patients. To help them access relevant information,
databases are a valuable tool. Yet, these databases need to
be frequently updated to remain relevant. The time and
money cost of maintaining a database is thus significant,
and tools to improve and ease the collection of information
are welcome. One of these tools is Natural Language
Processing (NLP) [3].

NLP is a field of informatics and linguistics that aims
to process natural language, i.e., human-readable
language. It consists of multiple tasks, such as Named
Entity Recognition, which aims to extract words or chunks
of words corresponding to a given label, Question
Answering, and Text Summarization. With the help of
NLP, the process of structuring information from
unstructured data — in this case, scientific literature —
can be greatly improved.

A significant amount of effort is put into structuring
data to improve its accessibility and reduce the time spent
on unnecessary information. Structured formats, such as
JSON, XML, or forms, are different tools used to reach this
goal — with varying levels of success [4-6]. Yet, most
information is only available as unstructured or semi-
structured data.

To automate the shift from unstructured text to
structured formats, the ability to find relevant information
and categorize it is required. This task might seem trivial
at first sight, but it requires both expert knowledge and
artificial intelligence tools capable of understanding the
context of a sentence.

Successive waves of development in Artificial
Intelligence (AI) have led to opportunities to handle this
task.

One can cite the advent of Recurrent Neural Networks
[7], which greatly improved the integration of context
through the model. The next great leap in NLP is the
transformer architecture, which led to a whole new set of
state-of-the-art models. The attention mechanism used in
these architectures, once trained on a given task, allows
for an even better consideration of the context and leads
to impressive results [8]. The architecture itself, called
encoder-decoder, was further modified, leading to
encoder-only — with its biggest representative being
BERT [9, 10] — and decoder-only models, which formed
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the basis of, among others, GPT [11, 12]. This model
brought us the well-known ChatGPT application.

From there, a shift occurred in NLP methodologies.
The traditional methods aim to analyze data to make
decisions. For example, one might want to process and
classify text into different categories. In the case of
information retrieval, one representative example of this
approach is the use of Machine Learning models to
identify specific entities, such as names of persons,
organizations, dates, drugs, etc. This task is called Named
Entity Recognition (NER) [13]. In recent years, a
groundbreaking change occurred with the birth and
democratization of autoregressive language models. The
distinctive feature of these models is their ability to
generate text to answer queries (often referred to as
prompts) submitted by the user [14]. This ability,
combined with their impressive ability to adapt to a large
variety of situations, makes them an incredible tool in
NLP. For instance, while NER aims to find every single
entity in a text — leaving users with a second step of
information reconstruction — generative models can
directly provide structured outputs. Unfortunately, this
versatility comes at the cost of huge computational needs
and slow training and inference. To run a generative
model on consumer hardware, some concessions are
needed; the models available in this context are smaller,
less efficient, and their context length — which is the
length of text they are able to process — is much smaller
than their full-size counterparts [15, 16].

Although auto-regressive language models can be used
in a wide range of situations, this ease of use must not
overshadow analytical methods. The computational time
and energy costs of these models might by themselves
justify the use of other methods. Furthermore, while the
auto-regressive language models are able to solve a wide
variety of tasks with little to no training, they do not
guarantee better results than specialized analytical
models.

One of the major drawbacks of using Al is the need for
extensive corpora. These corpora allow models to be
trained to handle specific tasks. Thus, the more specific
the task, the more specific the corpus needs to be —
datasets for biomedical text processing are thus difficult
and expensive to constitute. While some datasets exist,
such as the DDI Corpus (Drug-Drug Interaction) [17] or
the NCBI Disease Dataset [18], they are usually focused
on specific tasks or entities, and might not fit a wide range
of applications.

In this work, we propose a new dataset, the HDI
Corpus, composed of sentences directly extracted from
pre-clinical and clinical HDI studies and case reports
directly extracted from PubMed Central, the open-access
subset from PubMed. This dataset aims to identify entities
involved in the description of HDIs. Besides the usual
entities highlighted in existing datasets, we also included
entities involved in the context of the interactions. As
such, besides the ‘Drug,” ‘Herb,” and 'Pathology,” we also
included annotations about patient/cohort ('Sex’, 'Age’,
‘Size’, etc), dosages, herb preparation process and use.



HDI Corpus: A Dataset for Named Entity Recognition

To evaluate its qualities, we assess this corpus using
generative models and their traditional counterparts, and
compare it to a widely used pharmacology corpus, the DDI
Corpus. We chose to test the ability of auto-regressive
language models to extract entities of interest for their
straightforward performance evaluation — evaluation
metrics being one of the greatest difficulties in generative
artificial intelligence evaluation — and their importance in
information extraction. Our goal is to provide an overview
of their performance, their stability across contexts, and
their computational cost. We focus on small models, as
these models run on consumer hardware and are thus the
most accessible for anyone without access to specialized
infrastructure, and for free, increasing their potential in
creative uses.

Thus, the following questions are raised:

e How does this new dataset perform on common
biomedical NER tasks?

e Given a specific task that could be handled by an
analytical model, does a generative model perform
better?

e Given the individual performance of generative and
analytical models, when should one be preferred over the
other?

2. MATERIAL AND METHODS

2.1. Hardware

The models were all tested on a machine with a
GeForce RTX 4070 Mobile (8GB VRAM) GPU and an Intel®
Core™ i9-13900HX CPU.

2.2. Software

These tests were run using Python. The auto-
regressive language models were loaded using
Transformers 4.38.1 in a Python 3.11 environment, and
Spacy 3.7.4 was used for Named Entity Recognition in a
Python 3.12 environment.

Data analysis and visualization were performed using
pandas 2.2 and plotly 5.22.

The corresponding configuration files are available on
GitHub.

2.3. Datasets

For the Named Entity Recognition (NER) part, the
model was trained from scratch using (1) the DDI Corpus,
(2) the HDI corpus’.

The DDI Corpus (Drug-Drug Interaction Corpus) is an

Entity-Relation extraction corpus designed in 2013. It
is composed of 233 MedLine abstracts and 792 texts from
Drugbank, in which 8,502 pharmacological substances and
5028 DDIs are annotated. Although primarily designed for
Entity-Relation extraction, the dataset also allows NER
due to the presence of annotated substances. The original

dataset uses a specific classification and assigns these
substances into multiple categories. As these categories
are related to deep pharmacological knowledge, we chose
to assemble these categories into a single "drug” category.
Once Medline sentences with entities were selected, the
dataset consists of 877 sentences for a total of 1836
annotated drugs.

The custom corpus is a corpus we designed specifically
for NER and themed around HDI. The corpus contains not
only pharmacological substances and herbs, but also
elements of context that are important for interpreting
interactions. The annotated entities are listed below:

e Drug: Name of a pharmacological substance (INN-
International Nonproprietary Name);

o Herb: Name of an herb (scientific or vernacular name) or
herbal molecule;

o Herb part: Part of the plant used (leaves, root, etc.);

e Frequency of a treatment or an intervention (3 times a
day, ...);

e Extraction process: Preparation method used by the
manufacturer or patient to process the plant organ (juice,
tea, dried powder, hydro-alcoholic solution such as
tincture, maceration, etc.);

e Pathology or absence of healthy volunteers;

o Duration: Duration of a treatment or intervention (for 7

days, ...);

Study: Description of a study protocol;

Cohort: Description and composition;

Age of the individuals involved in the cohort or patient;

Sex;

Ethnic group: if described in the description of the

cohort

e Target: Pharmacological target (CYP, transporter, efflux
pump...);

e Parameter: Biological parameter monitored or modified
by a natural active substance

e Amount: Any numerical value;

The dataset is composed of 11131 sentences extracted
from 95 peer-reviewed articles. Each sentence contains at
least one entity, for a total of 23403 annotated entities. A
histogram of the number of occurrences per entity is
shown in Fig. (1).

The annotation guide has been redacted, and it is
provided in supplementary material. More information
about these entities and examples is available there. The
dataset was annotated by three different expert
annotators, all pharmacists. The annotators were selected
among an initial pool of 6 candidates. The selected ones
had the best inter-annotator agreement. The inter-
annotator agreement, demonstrated in the form of a
pairwise mean F1 score over all labels, is shown in
Fig. (2).

' The DDI corpus can be accessed by following the instructions in the
related article. Our custom HDI dataset is available on
https://github.com/ancnudde/HDIDataset.
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Fig. (1). Histogram of occurrences by entity.
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Fig. (2). Inter-annotator agreement between the three selected annotators.

We chose to use the pairwise mean F1 score instead of
the more commonly used Kappa metric, as the Kappa
score suffers from the lack of definition of what negative
examples are. In the case of NER, the ways spans can
overlap in a sentence make negative examples

uncountable. In this configuration, the Kappa score would
poorly tackle token-level annotation particularities, such
as span overlaps [19, 20]. Examples of annotations of
these two datasets are available in Fig. (3).
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The aim of this study is to investigate the effect of ginkgo biloba co-administration on the

Herb name

pharmacokinetics of tamoxifen, anastrozole and letrozole in women with early stage

Drug Drug

breast cancer.

Drug Sex Pathology

Varenicline is the generic name for Chantix, the newest drug available for the treatment of

edrug brand

tobacco dependence.

Fig. (3). Example of annotations for the (a) HDI and (b) DDI corpus. The screenshot is obtained from the Doccano software that was used

to annotate the HDI corpus.

3. MODELS

For the NER part of this work, models were trained
from scratch using the SpaCy pipeline. The pipeline
combines a transformer for text embedding with a
conditional random field classifier for classification. The
transformer used is BiomedBERT-base-uncased-abstract-
fulltext [21], a version of BERT fine-tuned for Biomedical
applications. The training was performed using 10-fold
cross-validation with different values of learning rate
(1.107° 5.107% 1.107% 5.107*), and performances were
tested on an independent test set. Complete training
configuration file and splits are available on GitHub.

The value represents the pairwise F1 score between
each annotator.

[a] Example of annotation for the HDI corpus.
[b] Example of annotation for the DDI corpus.

For the generative part of the work, pretrained models
were obtained from HuggingFace. We chose to test various
popular models and model sizes, though we were largely
limited by our criteria to use consumer-available ones only.
The tests were run on Mistral 7B [16] and Phi3 mini (3B)
[22], two generalist models. All models were 4-bit quantized.

3.1. Prompting

To reach better performance with text generation, a
simple yet powerful tool is prompt engineering. This term
encompasses strategies that any user can apply to guide the
generation process in order to obtain the desired output. To
write better prompts, we divided the input text into multiple
parts:

e Context: Gives the context in which the Large Language
Model (LLM) is used, for instance, its role (expert,
student, etc.). It helps the LLM to use the right tone and
vocabulary in its answer.

e Instruction: Explains what the LLM should do given the

prompt, i.e., the task to achieve. It guides the LLM to
achieve the expected content.

e QOutput indicator: The expected output format.

e Input: The question or text on which the answer of the
LLM will be based.

The prompt was refined iteratively to reach the best
performance. We paid specific attention to the output
indicator and instruction parts as they seemed to lead to the
most important changes in generated text. To get the best
answers, we found out the best way was to ask the model to
generate a specific format, such as JSON. JSON format has
the advantage of linking the attribute to its value in its own
structure, helping to fit the generation to user expectations.

A second strategy used in our prompts is the use of few-
shot prompting. Few-shot prompting consists of giving the
model a small number of examples directly in the prompt to
further guide text generation. Few-shot is proven to greatly
improve the output of generative language models with little
work. A drawback of few-shot learning is the increase in
prompt length, leading to longer inference time and
saturation of the context size — the number of tokens a
model can process. Given the limited size and context length
of the models used in this work, we limited the number of
shots to 5.

Prompts were also tested with two approaches: the first
one aims to identify every type of entity in the same run, the
second one divides the general prompt into multiple
prompts, one for each entity type. The goal is to assess
performance when the model targets a single type of
information instead of all at once. The final prompts were
obtained after multiple rounds of refining. An example of
the final prompt, as well as the naive prompt used as a
control, is shown in Table 5.

As the models are supposed to generate JSON, we use a
script to parse the output and extract only JSON-compliant
content. Any content outside of the correct format, such as
comments, is removed in the process.
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4. RESULTS

4.1. Named Entity Recognition - NER

Overall performance of the models trained for NER on
DDI and HDI corpora is shown in Table 2, and decomposition
of results by entity for the HDI corpus in Table 3. While the
DDI corpus seems to perform better at first look (F1-score of
around 95% for DDI, and around 80% for HDI), a closer look
at the detailed scores shows that the performance is highly
dependent on the entity. The most represented entities
(drugs, herb names, pathology, etc.) yield better scores while
the model underperforms for less represented ones (age,
cohort, duration, etc.).

There are two notable exceptions with the scores of
“parameters” and “extraction process.” This exception is
due to the nature of these entities themselves: parameters
can actually be targets depending on the context, and the
activity of a target can, in some cases, be a parameter. For
instance, “CYP2D6” can be considered a target of an
interaction, but its activity can be considered a parameter
to monitor. The poor performance of the “extraction
process” is linked to the difficulty of targeting the right
terms in the sentence, as the extraction process is the
class that has the widest range of ways it can be
expressed. On the contrary, entities like “sex” or “age” are
under-represented and still perform well, likely due to
their naturally constrained lexical nature [23].

These results show that two parameters are involved
in performance: the number of annotations for a given
entity, and its lexical complexity.

4.2. Entities Extraction Using Generative Language
Models

Results obtained for entity extraction using generative
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language models are shown in Table 4 for the DDI dataset.
The extraction is evaluated on the same dataset as for the
NER task. The results for the DDI corpus show the
performance of few-shot prompting [24, 25] on the
generation of structured data. The difference between the
control prompt only and the control prompt with few-shot
is significant, outperforming the fine-tuned prompt
without few-shot and nearly reaching the scores of a fine-
tuned prompt with few-shot. For the HDI corpus, results
are shown in Table 5 and 6. Here, the results are much
less impressive, especially with Mistral. These
observations correspond to those for the traditional named
entity recognition task, where the DDI corpus already
yields better scores than the HDI corpus. The first source
of error lies in the format of the answer given by the
model — we only took into account parsable JSON outputs;
parsability requires the output to be a valid JSON with the
right keys. The fraction of parsable outputs varies from
97% in the best cases (Phi3, few-shot, for “Target” and
“Extraction process”) to 0% (Mistral, in multiple cases,
including both 0- and few-shot situations).

4.3. Herb-Drug Interaction Dataset Performances

Compared to existing datasets [17, 18, 26], ours
provides more types of entities to include context about
HDI. Among the 15 entity types, large differences in the
trained models’ performance appear. The most
represented entities, such as “Drugs”, “Herb names,” or
“Pathologies” perform well, while the least represented
ones show disappointing results.

Compared to the DDI corpus used as a reference, the
HDI corpus performs slightly worse on the “Drug” entity
(87.04% vs. 94.51% precision, 90.69% vs. 96.554% recall,
and 88.84% vs. 95.5 F1-Score).

Table 1. Example of prompts used. The Refined prompt is composed of 4 parts: a context, the instruction, the
examples for few-shot prompting, the output indicator, and the text input. The example for few-shot prompting
uses the Phi3 chat template. The example illustrates a case of single-shot prompting for clarity.

Prompt part Naive prompt
ContextA very word referring to the described entities
Instruction

Output indicator

Naive prompt

Summarize this text.
Include information about:
drugs, herb name, study,
parameter, frequency, herb
part, cohort, duration, sex,
age, amount, ethnic group,
pathology, target, extraction
process

The following format must be followed: {"DRUGS”: [”List of drugs found in text”]}
Please do not add supplementary information. If no information is found for a field, leave the field empty.

<s><|user|> This is a scientific article about pharmacology.We need to parse all the cited entities. Find every
word referring to the described entities. The following format must be followed:{”"DRUGS”: ["List of drugs

Few-shots* found in text”]}

Please do not add supplementary in information. If no information is found for a field, leave the field empty.
"Although the precise active components responsible for this anti-diabetic action are unknown, studies with
compound K (CK), a final metabolite of protopanaxadiol ginsenoside demonstrate that CK exhibits anti-
hyperglycaemic effects through an insulin secreting action similar to metformin.”.<|end|><|assistant|>

"DRUG”: ["metformin”]<|end|><|user|>

Input Hypericin, although easily quantifiable, has no antidepressive activity or ability to induce CYP3A4.
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Table 2. Overall performances of models trained on the DDI and HDI corpora

Model Precision Recall F1-Score
DDI Corpus 94.51 96.54 95.50
HDI Corpus 80.26 79.51 79.88

Table 3. Performances by entity of named entity recognition model trained on the HDI corpus.

Entity Precision Recall F1-Score
Drug 87.08 90.69 88.84
Sex 82.73 93.06 87.58
Age 72.91 87.50 79.55
Herb name 74.98 78.49 76.67
Pathology 70.58 74.84 72.56
Ethnic group 70.16 64.70 67.17
Amount 65.19 63.58 64.20
Frequency 69.71 53.12 60.11
Herb part 78.02 49.50 60.23
Study 42.14 61.68 49.73
Duration 52.35 47.08 48.69
Target 63.44 68.53 65.61
Cohort 77.86 43.65 52.92
Parameter 46.07 39.59 42.34
Extraction process 36.84 19.78 25.60

Table 4. Scores of entity extraction models trained on DDI corpus with Mistral and Phi3 models.

Prompt Precision Recall F1-Score
Mistral 7B - control prompt 0.00 0.00 0.00
Mistral 7B - control prompt with few-shots 0.79 0.65 0.72
Mistral 7B - fine-tuned prompt 0.69 0.54 0.60
Mistral 7B - fine-tuned prompt with few-shots 0.80 0.65 0.72
Phi3 mini - control prompt 0.00 0.00 0.00
Phi3 mini - control prompt with few-shots 0.75 0.71 0.73
Phi3 mini - fine-tuned prompt 0.68 0.57 0.62
Phi3 mini - fine-tuned prompt with few-shots 0.78 0.71 0.74

Table 5. Scores of entity extraction models trained on HDI corpus with Mistral model. Parsable fraction
correspond to proportion of examples that respect JSON formatting and can be parsed using a simple JSON
parser.

precision recall fscore parsable fraction
0 Shot 0.00 0.00 0.00 0.00
Drug
Herb name 0.00 0.00 0.00 0.00
Study 0.02 0.18 0.04 0.59
Parameter 0.00 0.00 0.00 0.00
Frequency 0.00 0.00 0.00 0.08
Herb part 0.40 0.07 0.12 0.04
Cohort 0.01 0.22 0.03 0.18
Duration 0.04 0.18 0.07 0.48
Sex 0.10 0.60 0.16 0.55
Age 0.01 0.20 0.02 0.37
Amount 0.00 0.00 0.00 0.01
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precision recall fscore parsable fraction
Ethnic group 0.00 0.00 0.00 0.04
Pathology 0.17 0.20 0.18 0.41
Target 0.00 0.00 0.00 0.04
Extraction process 0.03 0.15 0.04 0.56
Few Shots 0.00 0.00 0.00 0.00

Drug

Herb name 0.81 0.03 0.06 0.01
Study 0.01 0.04 0.01 0.40
Parameter 0.00 0.00 0.00 0.00
Frequency 0.01 0.14 0.02 0.20
Herb part 0.16 0.46 0.24 0.07
Cohort 0.01 0.11 0.01 0.18
Duration 0.00 0.00 0.00 0.05
Sex 0.07 0.10 0.08 0.06
Age 0.00 0.00 0.00 0.02
Amount 0.01 0.06 0.02 0.28
Ethnic group 0.00 0.00 0.00 0.02
Pathology 0.50 0.00 0.01 0.02
Target 0.00 0.00 0.00 0.00
Extraction process 0.02 0.22 0.04 0.39

Table 6. Scores of entity extraction models trained on HDI corpus with Phi3 model. Parsable fraction
correspond to proportion of examples that respect JSON formatting and can be parsed using a simple JSON
parser.

precision recall fscore parsable fraction
0 Shot

Drug 0.00 0.00 0.00 0.00
Herb name 0.14 0.02 0.04 0.27
Study 0.03 0.38 0.06 0.97
Parameter 0.09 0.08 0.09 0.05
Frequency 0.00 0.00 0.00 0.00
Herb part 0.01 0.21 0.02 0.78
Cohort 0.01 0.33 0.01 0.61
Duration 0.03 0.26 0.05 0.48
Sex 0.03 0.50 0.05 0.28
Age 0.00 0.80 0.01 0.89
Amount 0.07 0.18 0.10 0.12
Ethnic group 0.06 0.60 0.10 0.83
Pathology 0.14 0.47 0.22 0.99
Target 0.05 0.57 0.09 0.96
Extraction process 0.00 0.28 0.01 0.89

Few Shots
Drug 0.29 0.76 0.42 0.90
Herb name 0.36 0.63 0.46 0.89
Study 0.05 0.59 0.09 0.81
Parameter 0.07 0.51 0.12 0.96
Frequency 0.03 0.73 0.06 0.81
Herb part 0.11 0.50 0.18 0.27
Cohort 0.01 0.33 0.02 0.29
Duration 0.05 0.23 0.08 0.38
Sex 0.18 0.80 0.30 0.56
Age 0.00 0.20 0.01 0.84
Amount 0.04 0.56 0.08 0.67
Ethnic group 0.12 0.87 0.21 0.90
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precision
Pathology 0.27
Target 0.05
Extraction process 0.01

recall fscore parsable fraction
0.52 0.35 0.58
0.68 0.09 0.97
0.41 0.03 0.97

Table 7. Types of errors identified in text summarization using generative models.

Type of error Generated

Missing answer /
Knowledge error” Saline solution

Incorrect format - does not
leave empty field

Missed acronyms /

Not specified in the text

Multiple occurrences of same statins
entities
Abbreviations ciprofloxacin

Annotators errors/debatable venlafaxine

choice

Multiple references 4-hydroxy-N-

desmethyltamoxifen
hydrochloride

Entities confusion

Inflected forms Clinical studies

5. DISCUSSION

5.1. Interpretation of
Characteristics

NER and Dataset

While augmenting the dataset could improve the
scores, the under-representation of the problematic fields
in the literature makes it hard to apply and would require
an expert to analyze text and extract relevant parts, which
would be time-consuming and costly. The performance gap
between entities is influenced both by frequency and
lexical variability. “Targets” and “Parameters” exhibit
confusion due to semantic overlaps; targets are defined as
enzymes, transporters, or other process elements
modulated by interactions, while parameters are elements
that can fluctuate and cause clinical events. The resulting
ambiguity makes disambiguation particularly difficult [27,
28, 29]. Despite this, both entities are central to article
comprehension and should not be excluded.

5.2. Generative Models Error Analysis

Generative approaches differ from traditional NER,
which relies on identifying the exact position of an entity
in the text. Generative models can combine recognition
and contextual understanding in a single step, helping to
prioritize important information directly (Fig. 4). Errors in
generative model outputs can be categorized as:

e Format errors: Failure to generate parsable JSON.

Venlafaxine is a serotonin- norepinephrine
reuptake inhibitor used as an antidepressant

4-hydroxy-N-desmethyltamoxifen
hydrochloride/(E/Z)-endoxifen hydrochloride

Expected Explanation
40mg/kg
/ Identified as "DRUG” but not a drug
/
HAART HAART stands for "Highly Active

Antiretroviral Therapy” and should be
identified as DRUG. Some abbreviations are
correctly identified

To fit the task, doubles are removed from the

gold standard, but same entities with different

spelling (plural, ...) are not removed and lead
to false negatives

Statins, statin

ciprofloxacin (CIP)

This annotation could be split into multiple
ones

Same entity described with multiple names in
the same sentence

/ Technically correct but in this case, listed
under "DRUG” while "HERB NAME" is
expected
Clinical study

e Content errors: Incorrect or missing entities

Table 7 provides examples. The most common are
missed entities or mismatches with annotated gold
standards. This includes:

Multiple synonyms in the same sentence
Abbreviations or acronyms

Inflected forms
Semantically
annotations

correct entities not matching gold

A manually corrected subset of mismatched cases (n =
961) was evaluated to show the frequency and nature of
these edge cases (Fig. 5), confusion matrix is shown in
Fig. (6). Some errors were also attributable to annotation
inconsistencies.

5.3. Generative vs. Traditional Paradigms

The emergence of generative models raises questions
about their role compared to traditional approaches [30,
31, 32]. A challenge in evaluating generative outputs lies
in the absence of standardized frameworks that handle
textual flexibility without expert involvement. Limitations
include:

o NER seeks every entity’s exact span; generative models
extract meaning, not positions

e Generative models may not reproduce the exact token,
spelling, or form used in the reference
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Mamed Entily Recogration

TN

LOrazepaiy wins
ndrrinistersd as a
sclution containmg
5 mg imi. e solvent Lorazepam
Wi utesd s conl
treatment.” 1

e Tey e
cnl |

PRy

Ge=neralnee Ertilies Extraclion

Fig. (4). Illustration of the difference in named entities extraction between classical NER and Generative Extraction. NER always extracts
all recognized entities and thus requires preprocessing to identify the most important entities. Generative Extraction is able to directly
identify the most important entities from the prompt context.

corrected subset

default subset

Fl1-Score

Fig. (5). Evaluation on a corrected subset composed of sentences containing at least one false positive or false negative generated
annotation (n = 961). If the generated text is semantically correct but does not fit the gold standard of the corpus, it is modified to fit the
standard.



HDI Corpus: A Dataset for Named Entity Recognition

11
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Fig. (6). Confusion matrix for the Named Entity Recognition task on the HDI dataset. The BILUO tagging scheme is used. Red indicates a
higher match between the classes, while blue indicates lower matches. White indicates that no match occurred. Values are normalized

along columns for better visualization of errors.

In our experiments (based on sentence-chunked
inputs), this difference is less visible, but may be more
pronounced with longer texts.

While generative models provide flexibility, our results
suggest that small-scale generative models underperform
compared to traditional models in this task. Larger
generative models may narrow this gap, but at a cost in
computational resources.

CONCLUSION

In this article, we introduce and describe a newly
developed dataset specifically designed for the task of

Named Entity Recognition (NER) in the context of Herb-
Drug Interactions (HDIs). This dataset has been carefully
constructed using both clinical and pre-clinical scientific
studies that are publicly available through the PubMed
database. It is unique in that it not only focuses on
identifying entities directly involved in interactions, such
as drugs and herbs, but also incorporates entities that
provide contextual information surrounding these
interactions—such as dosage, patient characteristics, or
environmental factors. This dual focus enhances the
richness of the dataset and broadens its potential utility in
various biomedical applications. To the best of our
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knowledge, there currently exists no other publicly
available dataset that is tailored specifically for the study
of HDIs, particularly one that includes context-related
entities in addition to the primary interacting components.
This makes our dataset a novel and valuable resource for
the research community working on biomedical text
mining and pharmacovigilance.

We validate the usefulness and quality of our dataset
annotations by applying them to standard NER tasks and
benchmarking the performance against a widely
recognized dataset with similar objectives: the Drug-Drug
Interaction (DDI) corpus. Our experiments demonstrate
that the inter-annotator agreement among a selected
group of expert annotators is consistently high, which
supports the reliability and consistency of the annotation
process.

Moreover, our results show that models trained on our
HDI-specific dataset achieve performance metrics that are
only slightly lower than those achieved using the DDI
corpus, when comparing the same models across
equivalent types of entities. This finding suggests that our
corpus has strong potential for training machine learning
models, even though it is newly introduced. However, we
observed that certain types of entities, especially those
that are either underrepresented in the dataset or
inherently more complex and ambiguous, tend to yield
lower prediction accuracy. Examples of such entities
include specific patient demographics, less common
herbal substances, and context descriptors. In contrast,
more frequently encountered entities—such as the names
of widely used drugs, common herbs, and prevalent
pathologies—are identified with significantly higher
accuracy. The difficulty in predicting context-related
entities may be attributed to the variability and lack of
standardized structure in how this information is
presented in text.

In addition to conventional NER methodologies, we
also explored the application of generative language
models for extracting relevant information from
biomedical text. Our findings indicate that generative Al
offers notable advantages in terms of adaptability and
ease of use, as it eliminates the necessity of retraining a
new model for each specific task. However, this flexibility
comes with trade-offs, particularly in the areas of
performance consistency, versatility across different entity
types, and increased computational resource demands.
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