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Abstract:

Introduction: Infant mortality  is  a pivotal  indicator of  community health and socioeconomic conditions.  Despite
global advancements in healthcare and significant reductions in infant mortality rates, substantial disparities persist,
particularly in underserved populations. This research aims to tackle these disparities by enhancing the predictive
accuracy  of  public  health  interventions.  We  utilize  advanced  feature  selection  techniques  to  identify  critical
predictors  of  infant  survival,  thereby  supporting  the  development  of  targeted  and  effective  health  policies  and
practices.

Methods: We introduce an enhanced Binary Multi-Objective Cheetah Optimization algorithm (BMOCO), specifically
designed for feature selection in extensive medical datasets. The suggested method focuses on optimizing eight S-
shaped and V-shaped transfer functions to refine the conversion of  continuous position vectors into binary form,
ensuring precise feature selection and robust model performance.

Results: The BMOCO method demonstrates superior accuracy and effectiveness in feature selection compared to
traditional evolutionary optimization algorithms such as MOGA (Multi-Objective Genetic Algorithm), MOALO (Multi-
Objective  Ant  Lion  Optimizer),  NSGA-II  (Non-dominated  Sorting  Genetic  Algorithm  II),  and  MOQBHHO  (Multi-
Objective Quadratic Binary Harris Hawk Optimization). Applied to U.S. infant birth data, our approach achieves an
average classification accuracy of  99.54%.  Critical  factors  impacting infant  mortality  identified include maternal
literacy, prenatal care frequency, and pre-existing maternal conditions, such as diabetes, smoking during pregnancy,
body mass index, infant birth weight, and breastfeeding practices. These findings indicate that the optimized BMOCO
model provides interpretable and data-driven insights that align with established clinical evidence.

Discussion:  The  results  underscore  the  effectiveness  of  advanced  machine  learning  techniques  in  uncovering
significant health predictors.

Conclusion:  The  proposed  BMOCO  algorithm  offers  a  robust  and  interpretable  tool  for  health  professionals  to
enhance predictive models, facilitating targeted interventions to reduce infant mortality rates and improve public
health outcomes.
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1. INTRODUCTION
The global health landscape has faced unprecedented

challenges  due  to  ongoing  pandemics,  underscoring  the
vulnerability  of  specific  populations,  including  pregnant
women.  These  conditions  have  significantly  heightened
concerns  about  neonatal  outcomes,  emphasizing  the
crucial  role  of  maternal  health  in  both  infant  well-being
and  the  broader  public  health  ecosystem.  Defined  as
children from birth to the end of  their  first  year,  infants
are  highly  vulnerable  during this  critical  initial  phase of
life.  The  Infant  Mortality  Rate  (IMR),  quantified  as  the
number of deaths per 1,000 live births, is a vital indicator
of public health and societal well-being [1]. This metric is
subdivided  into  perinatal,  neonatal,  and  post-neonatal
categories,  each  presenting  unique  challenges  and  risk
factors. Common causes of post-neonatal mortality include
malnutrition,  respiratory  diseases,  complications  arising
from pregnancy, sudden infant death syndrome, and socio-
economic issues [2].

As of the first quarter of 2024, the IMR in the U.S. was
approximately  5.55  per  1,000  live  births  [3],  while
worldwide, the IMR was 25.519 per 1000 live births [4].
Notably, the IMR in India was 25.799 deaths per 1000 live
births in 2024 [5], starkly contrasting with the U.S.’s IMR
and  those  of  European  countries  and  other  developed
OECD  countries.  In  developing  countries  like  India,  the
high IMR values underscore the need for targeted public
health interventions. These disparities highlight significant
differences  across  the  world  in  healthcare  systems,
poverty  levels,  and  public  health  policies.  Moreover,
inequalities  in  IMR  across  various  racial  groups  are
reported for the U.S. and other countries. These findings
are profound and troubling, underlining that health equity
remains an elusive goal despite ongoing efforts worldwide
[6].  While  significant  progress  has  been  made  in
healthcare,  the  persistence  of  high  IMR  in  specific
demographics starkly illustrates the complex interplay of
maternal  health,  healthcare  accessibility,  and  socio-
economic conditions [7, 8]. These factors are critical not
only  in  understanding  but  also  in  improving  a  nation’s
health outcomes. The increase in premature and low-birth-
weight  births  has  further  complicated  the  landscape,
necessitating focused research to mitigate these risks and
effectively reduce infant mortality rates [9, 10].

In this context, the current research paper introduces
an advanced Feature Selection (FS)  technique using the

Cheetah optimization algorithm [11] to identify the most
significant  predictors  of  infant  survival.  The  presented
approach aims to enhance the accuracy and efficiency of
health  interventions,  ultimately  improving  neonatal
outcomes. In our research, we utilize extensive U.S. birth
record data from 2016 to 2022, sourced from the Centers
for  Disease  Control  and  Prevention  (CDC)  and  the
National  Center  for  Health  Statistics  (NCHS)  [12].

Efficient  FS  is  paramount  in  modern  data  analytics,
particularly in healthcare, where the stakes are high, and
serious problems can arise when analyzing data incorrectly
[13,  14].  Redundant  or  irrelevant  features  can  obscure
significant patterns and insights in health data, leading to
inefficient  models  and  potentially  harmful  misdiagnoses.
Metaheuristic  algorithms,  extensively  reviewed  in  a
previous  study  [15-19],  provide  a  robust  framework  for
addressing these challenges. These algorithms have shown
considerable promise across various application areas, from
economic  forecasting  to  healthcare,  by  significantly
enhancing  the  accuracy  and  efficiency  of  conventional
predictive models [20, 21]. In response to these challenges,
this research introduces a crowding distance-based Binary
Multi-Objective  Cheetah  Optimization  (BMOCO)  method.
This sophisticated approach aims to improve the selection
of  pertinent  features  from  large  datasets,  potentially
enhancing  the  efficiency  and  effectiveness  of  predictive
models  used  for  infant  health  assessments.  By  optimizing
the FS process, we aim to reduce redundancy and focus on
the most impactful variables influencing infant health and
mortality outcomes, thereby facilitating more accurate and
reliable infant health prediction.

The proposed approach employs cutting-edge machine
learning techniques, reflecting our aim to bridge the gap
between theoretical/computational advances and practical
healthcare  applications.  By  harnessing  the  power  of
detailed  data  analysis  and  FS,  we  provide  actionable
insights that can lead to effective policy interventions and
improved clinical practices, particularly for infant care and
infant health. Thus, from a broad perspective, the current
research underscores the importance of integrating data
science with public health strategies to tackle the leading
causes  of  infant  mortality,  aiming  to  foster  a  healthier
future for the next generation.

Several  key  innovations  in  feature  selection  and
predictive modeling for infant healthcare data analysis are
introduced in this paper [22]:
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1.1.  Enhanced  Binary  Multi-objective  Cheetah
Optimization (BMOCO)

We  propose  an  improved  version  of  the  Binary  Multi-
Objective Cheetah Optimization method, tailored for feature
selection in large-scale, high-dimensional medical datasets.
The  enhancement  incorporates  dynamic  control
mechanisms that regulate the balance between exploration
and exploitation to achieve better convergence.

1.2.  Optimized  Transfer  Functions  for  Binary
Conversion

To improve the transformation of continuous position
vectors into binary format,  eight S-shaped and V-shaped
transfer  functions  are  systematically  evaluated  and
optimized.  This  optimization  enhances  the  precision  and
robustness  of  the  feature  selection  process,  which  is
especially important when working with sensitive medical
data.

1.3. Comprehensive Benchmarking Against State-of-
the-art Algorithms

The  proposed  BMOCO  method  is  extensively
benchmarked  against  several  leading  multi-objective
evolutionary  algorithms,  including  MOGA  [16],  MOALO
[23], NSGA-II [24], and MOQBHHO [17], demonstrating its
competitive advantage.

1.4.  Application  to  Real-world  Infant  Mortality
Datasets

The proposed methodology is validated on real-world
U.S. birth datasets. In addition to enhancing classification
accuracy,  the  method  identifies  key  predictors  of  infant
mortality,  such as birth weight,  maternal  education,  and
prenatal care frequency, providing actionable insights for
healthcare practitioners.

1.5.  Framework  for  Data-driven  Public  Health
Decision-making

This work establishes a methodological foundation for
leveraging  advanced  optimization  and  machine  learning
techniques to inform targeted public health interventions,
particularly those aimed at reducing infant mortality rates
in underserved populations.

1.6. Background and Related Work
Research  into  neonatal  health  through  predictive

analytics  has  become  increasingly  vital  as  data  science
and machine learning technologies advance. It provides a
comprehensive  review of  significant  contributions  in  the
relevant  literature,  focusing  on  methodologies  and
findings  that  directly  influence  the  understanding  and
prediction of infant health and mortality. In recent studies,
various  maternal  characteristics  were  scrutinized  using
logistic regression, naive Bayes, and linear support vector
machines on data from U.S. Territories in 2013 [25]. These
analyses have provided insights into dangerous maternal
factors  significantly  impacting  neonatal  survival  rates.
Similarly, Gaussian Process Classification was proposed to
predict hospital mortality among neonates, showcasing the

potential  of  advanced  probabilistic  models  in  healthcare
settings  [26].  The  application  of  machine  learning
techniques  to  assess  the  cost-effectiveness  of  long-term
newborn care was explored,  demonstrating the utility  of
predictive models in managing healthcare costs effectively
[27].

Research  has  consistently  highlighted  the  strong
correlation  between  neonatal  deaths  and  premature
births.  Predictive  models  were  created  using  data  from
Italian  neonates  and  subsequently  tested  and  validated
across  various  temporal  settings,  demonstrating  their
robustness  and  adaptability  [28].  Furthermore,  machine
learning techniques were employed in Neonatal Intensive
Care Units (NICUs) to assess short-term mortality, which
has  crucial  implications  for  clinical  decision-making  and
treatment  optimization  [29].  Exploring  maternal  traits
associated  with  Small  Gestational  Age  (SGA)  has  been
crucial  for  early  identification  of  at-risk  neonates,
particularly  in  resource-limited  settings  [30].  Different
socioeconomic characteristics, such as maternal education
and birth order, were analyzed to predict infant mortality
using a three-year comprehensive dataset, which provided
deep insights into the social determinants of health [31].

Despite  all  these  significant  advancements,  the
evolution  of  methodologies  for  effectively  selecting
variables  that  predict  infant  mortality  still  needs  to  be
improved.  A  study  utilized  a  dataset  of  275  neonates  to
demonstrate  how  random  forest  models  could  excel  in
predicting preterm neonatal death, emphasizing the need
for  high  sensitivity  and  specificity  in  predictive  models
[32].  Adapting  swarm-based  optimization  methods,
inspired by the foraging and hunting behaviors of untamed
creatures,  introduces  another  novel  approach  to  feature
selection in predictive modeling [33-35]. Specifically, the
cheetah’s  unique  hunting  strategies  have  inspired
algorithms that balance efficiency with the ability to cover
extensive search areas [11]. Evolutionary strategies such
as these can improve algorithmic performance by adapting
search tactics based on the success of previous attempts,
thereby  showcasing  flexible  problem-solving  in  dynamic
environments [36].

The feature selection task can be framed as a binary
optimization  problem  [37]  where  the  transfer  function
plays  a  pivotal  role  [38].  This  function  is  essential  for
converting a numeric search space into a discrete domain,
a  step  that  is  crucial  for  applying  a  binary  optimization
method effectively [39]. Optimizing transfer functions and
feature  subsets  has  been  emphasized  as  a  means  to
enhance  the  exploration  and  exploitation  capabilities  of
algorithms, thereby avoiding local optima and improving
overall model performance. Integrating machine learning
with  traditional  epidemiological  approaches  has  also
opened  new  avenues  for  understanding  complex
interactions  between  genetic,  environmental,  and  social
factors  contributing  to  neonatal  outcomes  [28].  Such  a
multidisciplinary  approach  could  enable  a  more
comprehensive  understanding  of  the  causes  of  infant
health and mortality, which is crucial for developing more
targeted interventions.
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In  summary,  the  reviewed  literature  highlights  the
critical role of feature selection and predictive modeling in
advancing  neonatal  health  analytics.  Despite  notable
progress,  there  remains  a  pressing  need  for  more
adaptive,  scalable,  and  interpretable  methods  that  can
effectively  extract  meaningful  predictors  from  high-
dimensional  datasets.  This  study  addresses  this  gap  by
proposing  an  optimized  feature  selection  framework
grounded  in  evolutionary  computation.

2. MATERIALS AND METHODS

2.1.  Foundations  of  Cheetah-Based  Multi-objective
Feature Selection

We  delve  into  the  advanced  optimization  techniques
underpinning  the  current  research  study,  focusing  on
integrating  Cheetah  Optimization  and  Multi-Objective
Optimization to address the complex challenges inherent
in predicting infant mortality. These approaches capitalize
on  the  inherent  patterns  and  behaviours  observed  in
nature  and  adapt  them  to  address  the  challenges  of
intricate, high-dimensional spaces, which are often typical
of  medical  data  analytics.  The  proposed  Binary  Multi-
Objective  Cheetah  Optimization  (BMOCO)  method
represents an approach specifically tailored to manage the
discrete  complexities  of  high-dimensional  datasets
effectively, particularly for feature selection. By balancing
the accuracy of feature selection with the overarching goal
of  model  simplicity,  BMOCO aims  to  enhance  predictive
performance while minimizing computational demands. It
outlines a detailed description of the Cheetah Optimization
Algorithm  and  the  theoretical  foundations  of  multi-
objective  optimization.  The  Cheetah  Optimization
Algorithm  (COA)  [11]  is  a  novel,  population-based
optimization approach inspired by cheetahs’ dynamic and
strategic  hunting  behaviour.  Before  discussing  the
specifics  of  the  COA,  it  is  important  to  visualize  how  a
cheetah  approaches  its  hunt.  Figure  1  illustrates  the
hunting  strategies  employed  by  cheetahs,  highlighting
their strategic and responsive nature, which the algorithm
seeks to emulate computationally. The cheetah's hunting
strategy often begins with a period of  vigilance.  When a
cheetah sights a target (prey) in its surroundings, it may
choose to remain stationary and wait for the prey to move
closer  before  launching  an  attack.  This  attack  mode
typically  involves  stages  of  stirring  and  entrapping.
Conversely, the cheetah may abandon the hunt for several
reasons, such as fatigue or the prey's rapid movement. In
such  cases,  the  cheetah  may  take  a  break  and
subsequently return to hunting after a pause. The cheetah
selects the optimal tactic by assessing the target’s (prey)
state,  location,  and  proximity  (Fig.  1a-d)  [11].  The  COA
mimics  these  natural  tactics  to  address  optimization
problems,  integrating  biologically  inspired  strategies  to
enhance algorithmic efficiency and adaptability.

Specifically, the COA model adapts to dynamic target
(prey)  availability  and  the  cheetah’s  physical  state,
employing a  blend of  passive and active hunting tactics.
These  strategies  are  designed  to  optimize  energy
expenditure  and  increase  the  probability  of  successful

hunts,  directly  analogous  to  optimizing  computational
resources and solution accuracy in complex optimization
scenarios.

Fig. (1). Illustration of  various hunting strategies employed by
cheetahs: (a) Observing the prey, (b) Perching and awaiting, (c)
Running, (d) Trapping.

2.1.1. Search Strategy
The COA models the cheetah’s prey-search behaviour

by  employing  either  an  active  patrol  or  a  passive  wait
approach, depending on the density and behaviour of the
target (prey).

In scenarios where the target (prey) is abundant and
stationary, the algorithm adopts a scanning mode from a
fixed  position,  thereby  maximizing  energy  efficiency.
Conversely,  when  the  target  (prey)  is  dispersed,  it
necessitates  an  active,  energy-intensive  search  strategy.
This  adaptability  is  mathematically  modelled  as  follows:
(Eq. 1)

(1)

where  Xi,j
t+1  is  the  cheetah's  next  position,  Xi,j

t  is  the
current  position,  t  is  the  current  time,   and  αi,j

t

represent  the  randomization  parameter  and step  length,
respectively. This dual-mode hunting strategy reflects the
algorithm’s  ability  to  switch  between  exploration  and
exploitation, optimizing the search for optimal solutions.

2.1.2. Sit-and-wait Strategy
This energy-conserving strategy involves the cheetah

lying in wait, minimizing its movements to avoid alerting
nearby  targets  (prey).  The  algorithm  mirrors  this
behaviour  by  maintaining  the  position  until  optimal
conditions for an attack arise, thus saving computational
resources  and  focusing  efforts  only  when  high-quality
solutions  are  within  reach:  (Eq.  2)

(2)
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2.1.3. Attack Strategy
Mirroring  the  cheetah’s  rapid  chase,  this  strategy  is

activated when the target (prey) is within optimal range.
The  algorithm  calculates  the  trajectory  for  an  effective
intercept, utilizing speed and tactical repositioning, which
represents  a  rapid  convergence  towards  the  best-known
solution: (Eq. 3)

(3)

where  XB,j
t  indicates  the  best  current  position  of  the

target  (prey),  and  rˇi,j,  and  βi,j
t  are  the  turning  and

interaction  factors,  respectively.

2.1.4. Fundamentals of Multi-Objective Optimization
(MOO)

Multi-Objective Optimization (MOO) involves optimizing
multiple  conflicting  objectives  simultaneously,  a  common
challenge in  complex decision-making scenarios  [40].  The
goal  is  to  find  a  solution  that  achieves  the  best  possible
balance  among  competing  objectives.  Mathematically,  an
MOO problem can be formulated as follows: (Eq. 4)

(4)

In the above formulation, f1, f2,..., fm and g1, g2,..., gn are
the  objective  functions  to  be  minimized  and  maximized,
respectively.  ej  and  hk  represent  the  inequality  and
equality constraints the solutions must satisfy,  with yiLB
and  yiUB  denoting  the  lower  and  upper  bounds  of  the
decision variables yi. The concept of dominance is crucial
to this approach. A solution p1 is said to dominate another
solution p2 if it  performs better in at least one objective
without  being  worse  in  any  of  the  others.  Optimal
solutions form a Pareto front, a benchmark for evaluating
trade-offs among competing objectives [41]. This approach
enables a holistic view of potential solutions, often leading
to  innovative  outcomes  that  traditional  single-objective
optimization  might  overlook  [42-44].

Despite  its  potential,  the  literature  suggests  the  need
for  further  research  on  multi-objective  evolutionary
approaches  to  feature  selection  in  health  data.  Exploring
this  gap  can  lead  to  significant  advancements  in  the
analysis  and  understanding  of  complex  medical  datasets,
offering  a  balanced  approach  to  predictive  accuracy  and
computational efficiency and ultimately enhancing patient
outcomes.  The  exploration  of  advanced  optimization
techniques  sets  a  solid  foundation  for  the  methodologies
employed  in  this  study,  aiming  to  leverage  these
sophisticated  algorithms  to  improve  predictive  models  of
infant health outcomes. The integration of these techniques
represents  a  convergence  of  biological  inspiration  and
mathematical  precision,  poised  to  make  significant

contributions to healthcare analytics. Such an evolutionary-
based  advanced  optimization  approach  is  Cheetah
Optimization  for  feature  selection.

2.2. Proposed Method
The  study  presents  the  proposed  Binary  Multi-

Objective Cheetah Optimization (BMOCO) model in detail,
outlining its algorithmic components and the workflow for
feature  selection  in  high-dimensional  medical  datasets.
Inspired  by  the  adaptive  hunting  behavior  of  cheetahs,
BMOCO  incorporates  multiobjective  optimization
principles and a dynamic transfer function mechanism to
identify  the  most  relevant  features  while  maintaining
classification accuracy. The method is structured around
several  key  components,  including  position  encoding,
fitness  evaluation,  archive  management,  and  strategy-
driven position updates. Each component contributes to a
flexible and efficient search process capable of  handling
the complexities of large-scale health data.

2.2.1.  Motivation  Behind  Cheetah  Optimization  for
Feature Selection

The integration of Cheetah Optimization (CO) into the
Feature  Selection  (FS)  domain  is  motivated  by  several
distinct  qualities  of  the  CO  algorithm  that  make  it
particularly appealing for addressing complex optimization
challenges:

2.2.2. Novelty and Adaptability
The CO [11] is a relatively new optimization algorithm,

and  its  potential  across  various  application  domains
remains largely untapped. The exploratory nature of this
algorithm  makes  it  ideal  for  testing  in  uncharted
territories  of  optimization  problems,  including  feature
selection  in  healthcare  data  analytics.

2.2.3. No Free Lunch Theorem
According to the No Free Lunch (NFL) theorem [45],

no  single  algorithm  can  optimally  solve  all  optimization
problems.  This  theorem  supports  the  rationale  for
exploring  novel  approaches  like  CO  in  diverse  settings,
including  feature  selection,  where  traditional  methods
may  fail.

2.2.4. Simplicity and Efficiency
Unlike other optimization methods that rely heavily on

complex  mathematical  formulations,  CO  utilizes
straightforward procedures enhanced by strategic hunting
behaviours.  This  simplicity  allows  for  efficient  search
space  exploration  while  maintaining  the  algorithm’s
robustness.

2.2.5. Balance between Exploration and Exploitation
CO’s  hunting  strategies  prevent  premature  conver-

gence, a common issue in optimization tasks. By enabling
a  balanced  approach  to  exploration  (searching  through
diverse  areas  of  the  search  space)  and  exploitation
(intensifying  the  search  around  promising  areas),  CO
ensures  a  thorough  investigation  of  potential  solutions.
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Fig. (2). Conceptual framework of the proposed feature selection methodology using BMOCO.

2.2.6. Innovation in Multi-objective Optimization
Although  initial  attempts  have  been  made  to  apply

cheetah-inspired strategies in feature selection, the domain
still  lacks  comprehensive  studies,  especially  concerning
multi-objective optimization with parallel transfer function
optimization. This gap presents a significant opportunity to
innovate  and  improve  feature  selection  methodologies,
especially  in  high-dimensional  data  scenarios.

These unique aspects of CO prompted us to investigate
its  application  to  the  feature  selection  domain,  aiming  to
leverage  its  capabilities  for  enhancing  effectiveness  and
efficiency  in  selecting  relevant  features.  This  approach  is
expected to contribute to the literature by providing a new
perspective  on  optimizing  feature  selection  processes  in
complex datasets.

2.2.7.  Feature  Selection  Using  Binary  Multi-
Objective Cheetah Optimization (BMOCO)

Figure  2  displays  the  conceptual  framework  of  the
proposed  feature  selection  methodology  using  the  binary
version of Multi-Objective Cheetah Optimization (BMOCO).

This adaptation addresses the discrete nature of the feature
selection  problem,  where  features  are  either  selected  or
not,  making the original  continuous-domain CO algorithm
unsuitable without modifications [11].

The  adjustments  necessary  to  adapt  CO  for  feature
selection are outlined as follows:

2.2.7.1. Position Encoding
In  BMOCO,  each  cheetah  is  represented  by  a  binary

string of length L + 3 (where L is the number of features
in  the  dataset).  This  encoding  is  crucial  for  the  discrete
nature of feature selection, where each bit in the string (0
or 1) signifies the exclusion or inclusion of a feature, and
the additional three bits determine the choice of transfer
function used during optimization. Figure 3 illustrates this
binary position encoding.

2.2.7.2. Fitness Computation
The fitness of each cheetah’s configuration in BMOCO

is evaluated based on two primary objectives: (Eq. 5)
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(5)

The first objective, Obj1, aims to minimize the number
of  features  selected  to  simplify  the  model  and  reduce
overfitting.  This  reduction is  crucial  in  enhancing model
generalizability and computational efficiency. (Eq. 6)

(6)

Where X  represents the position vector of a cheetah.
To  compute  Obj2  features  corresponding  to  ones  in  X,
compress  the  dataset,  and  evaluate  classification
performance  using  a  KNN  classifier  and  10-fold  cross-
validation.

2.2.7.3. External Archive Maintenance
An  external  archive  is  crucial  for  storing  non-

dominated  solutions  identified  during  optimization.  It
maintains diverse solutions, reflecting the best trade-offs
between  minimizing  feature  count  and  maximizing
classification accuracy. This approach is vital for handling
multi-objective  optimization’s  inherent  complexities  and
ensuring  a  broad  solution  for  space  exploration.  To
introduce  the  external  archive’s  management,  Figure  4
depicts how solutions are evaluated and either retained or
replaced based on their dominance relations.

2.2.7.4. Transfer Function Optimization
The  adaptation  of  transfer  functions  in  BMOCO  is

essential  for  effectively  navigating  the  binary  search
space. These functions adjust the probabilities of bit flips
in a cheetah’s position vector, influencing the exploration
and  exploitation  dynamics  within  the  algorithm.  This
nuanced  handling  helps  significantly  enhance  the
convergence  behaviour,  allowing  the  algorithm  to
effectively  escape  local  optima  and  ensuring  a  compre-
hensive search across the feature space. Before diving into
the specific functions used, it is beneficial to understand
the  variety  and  purpose  of  each  transfer  function
employed.  These  functions  are  designed  to  modify  the
solution  space  navigation  differently,  optimizing  the
search and solution refinement  processes  as  depicted in
Table 1.

Figure  5a,  b  illustrates  the  visual  appearance  of  the
eight transfer functions. In each iteration, after assessing
the fitness of the members of the cheetah population, the
set  of  non-dominated  solutions  is  identified  and
strategically arranged in reverse order based on Crowding
Distance  (CD)  values.  The  solution  with  the  highest  CD
value is then selected as the ’prey,’ and the corresponding
transfer function is adopted for the subsequent step of the
process. It is important to note that although the transfer
function is selected dynamically during the run, it  is  not
updated once chosen.

Table 1. S-shaped and V-shaped transfer functions used in BMOCO.

S-Shaped TFs V-Shaped TFs

Name Function Bits Name Function Bits

S1 000 V1 100

S2 001 V2 101

S3 010 V3 110

S4 011 V4 111

Fig. (3). Binary position encoding of each cheetah in BMOCO, highlighting feature inclusion and transfer function selection.
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Fig. (4). Detailed management process of the external archive in BMOCO.

Fig. (5). Visual representation of (a) S-shaped and (b) V-shaped transfer functions used in BMOCO.
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The  selection  of  transfer  functions  within  BMOCO is
pivotal  in  effectively  navigating  the  solution  landscape.
Each transfer function modifies the probability distribution
for  selecting  features,  thus  influencing  the  algorithm’s
balance between exploration and exploitation. By adopting
these  functions  dynamically  based  on  the  optimization
state, BMOCO can maintain diversity in the solution pool
while efficiently converging to optimal solutions.

Three additional bits in each cheetah’s position string
are  used to  select  among these  eight  transfer  functions,
further  tailoring  the  search  process  to  the  specific
dynamics  of  the  feature  selection  landscape.  In  each
iteration, after assessing the fitness of each cheetah, the
set of non-dominated solutions is strategically arranged in
reverse  order  of  crowding  distance  (CD)  values.  The
highest  CD value  solution  is  then  selected  as  the  ’prey,’
guiding  the  subsequent  search  direction.  The  selected
transfer  function  significantly  impacts  how  the  search
progresses,  ensuring  adaptability  and  robustness  in  the
search strategy.

2.2.7.5. Position Update
The position update mechanism in BMOCO reflects the

adaptive strategies cheetahs employ in the wild, balancing
energy  conservation  during  the  search  phase  and
aggressive  pursuit  during  attacks.

When  hunting,  either  the  seeking  or  the  attacking
strategy may be applied depending on the context, but as
the cheetah’s energy declines, the likelihood of switching
to  the  search  strategy  increases.  During  the  early
iterations, the algorithm emphasizes exploration through
the search method, while later iterations favor exploitation
by  applying  the  attack  strategy  to  refine  candidate
solutions. The transition between strategies is controlled
using random thresholds. If r2 ≥ r3, the cheetah adopts a
sit-and-wait approach, and its position remains unchanged
as  per  Eq.  (2).  Otherwise,  the  value  of  r1—a  random
number in [0, 1]—is used to compute H = e2(1−t/T)(2r1 − 1),
which governs the strategy choice.  If  H ≥ r4, the attack
strategy is employed using Eq. (3); otherwise, the search
strategy in Eq. (1) is used. The prey’s location is defined
as the solution with the highest crowding distance in the
current  archive,  representing  a  high-quality,  sparsely
crowded solution. The selected transfer function from the
prey is then used to probabilistically update the cheetah’s
position  via  Eq.  (7),  allowing  efficient  exploitation  of
promising  regions  of  the  search  space  [38].

(7)

Where  rnd  is  a  random  number  between  [0,1],  X
represents the cheetah’s position, L is the dimension, t is
the current iteration, ¬ denotes negation, and T () is the
chosen transfer  function.  Random thresholds  govern the
sit-and-wait  approach  and  an  active  search-and-attack.
This ensures that the strategy shifts dynamically based on
the  situation,  reflecting  the  real-time  decision-making
processes  observed  in  natural  cheetah  behaviour.

2.2.7.6. BMOCO Algorithm
The  BMOCO  Algorithm  1  encapsulates  the  entire

feature  selection  process,  from  initialization  to  the  final
selection  of  optimal  feature  sets  based  on  crowding
distance.  This  process  ensures  the  algorithm  finds  non-
dominated  solutions  regarding  feature  count  and
classification  accuracy,  representing  a  balance  between
these  competing  objectives.  BMOCO’s  computational
complexity  primarily  depends  on  the  number  of  features
and  the  size  of  the  dataset.  Each  algorithm  iteration
evaluates all individuals in the population across the entire
feature set, making the computational cost proportional to
the product of these factors. This scaling is crucial in high-
dimensional data, where efficient handling of large feature
sets becomes imperative.

2.2.7.7.  Selection  of  the  Crowding  Distance-Based
Optimal  Solution  from  the  Repository

After  a  specified  number  of  iterations,  the  external
archive, filled with non-dominated solutions, is assessed to
identify the optimal set of features. This selection uses the
Crowding Distance (CD) metric,  which measures density
around each solution in the objective space, ensuring that
the selected features are practical and diverse [17].

This  comprehensive  approach,  embodied  in  the
BMOCO  algorithm,  harnesses  the  dynamics  of  natural
predation and adapts them for complex, high-dimensional
feature  spaces,  driving  towards  solutions  that  offer  a
practical  balance  between  minimal  feature  sets  and
maximum  classification  accuracy.

Algorithm 1 BMOCO-Based Feature Selection
Input: Population size N, Maximum iterations MaxIt,

Dataset D
Output: Optimized feature set A in external archive 1:

Initialize the population of cheetahs randomly.
2: Calculate initial objective values Obj1 and Obj2 for

each cheetah.
3:  Store  the  non-dominated  solutions  in  an  external

archive. 4: fori = 1 to MaxIt do
5: Select K (where 2 ≤ K ≤ N) cheetahs randomly. 6:

for all cheetahs in the selection do
7: Calculate rˆ,  rˇ,  α,  β,  and H  based on current and

local best positions. 8: Generate random numbers r2, r3,
r4 uniformly distributed in [0, 1].

9: if r2 ≤ r3 then
10: if H ≥ r4 then
11: Update the position of the cheetah using the attack

strategy equation. 12: else
13:  Update  position  using  the  search  strategy

equation.  14:  end  if
15: else
16: Maintain position using a sit-and-wait strategy. 17:

end if
18: Apply the appropriate transfer function.
19: Recalculate objective values Obj1 and Obj2.
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20:  Update  the  external  archive  with  new  non-
dominated  solutions.  21:  end  for

22: end for
23: Return the best solution from the archive based on

Crowding Distance (CD).

2.3. Experimental Setup and Benchmarking
It  outlines  a  comprehensive  experimental  framework

designed to assess the effectiveness of the BMOCO method
in  feature  selection  tasks.  It  details  the  computational
setup,  the  datasets  employed,  and  the  benchmarking
algorithms  against  which  BMOCO  is  compared.  This
framework  facilitates  a  robust,  reproducible,  and  fair
evaluation  by  aligning  computational  settings,  classifier
choice,  and  metric  definitions  across  all  comparative
algorithms. This rigorous evaluation not only underscores
the adaptability and efficiency of BMOCO but also situates
it  within  the  broader  context  of  existing  multi-objective
optimization  methods.  We  further  elucidate  the  dataset’s
structure,  the preprocessing steps to  ensure data quality,
and a suite of multi-objective performance indicators used
to  measure  the  efficacy  of  the  proposed  and  existing
methods.  This  methodical  approach  ensures  a  thorough
understanding  and  validation  of  the  optimization
capabilities  of  BMOCO,  aiming  to  establish  new
benchmarks  in  feature  selection  for  complex  datasets.

2.3.1.  Benchmark  Algorithms  for  Performance
Comparison

We compare the efficacy of the Binary Multi-Objective
Cheetah  Optimization  (BMOCO)  approach  to  rigorously
evaluate  it  against  four  established  benchmarking  algor-
ithms tailored explicitly  for  feature selection tasks.  These
algorithms  include  MOGA-FS  (Multi-Objective  Genetic
Algorithm  for  Feature  Selection)  [16],  MOALO-FS  (Multi-
Objective  Ant  Lion  Optimizer  for  Feature  Selection)  [23],
NSGA-II-FS  (Non-dominated  Sorting  Genetic  Algorithm  II
for  Feature  Selection)  [24],  and  MOQBHHO-FS  (Multi-
Objective  Quadratic  Binary  Harris  Hawk Optimization  for
Feature  Selection)  [17].  Each  method  has  been  selected
based on relevance and proven performance in similar opti-
mization scenarios, providing a robust basis for comparison.

The  experimental  framework  uses  Python  3.7  on  a
computer  with  an  Intel(R)  Core(TM)  i3-6006U  CPU  at
2.00GHz  and  8.00  GB  of  RAM.  This  setup  ensures  the
computational  environment  is  controlled  and  consistent,
allowing  reproducible  results.

We  utilize  the  K-Nearest  Neighbors  (KNN)  classifier
with K set to 5 and a 10-fold cross-validation procedure for

the classification accuracy measurement. This classifier is
chosen  for  its  simplicity  and  effectiveness  in  handling
various data types without requiring explicit adjustments to
the training phase. KNN operates on a simple principle: it
classifies  new  cases  based  on  a  majority  vote  of  their  k
nearest neighbours, where the case is assigned to the class
most  common  among  them,  measured  by  a  distance
function. KNN is instance-based: it stores the training set
and classifies new samples by a majority vote among the k
nearest neighbors.

Specific  parameter  settings  for  each  optimization
algorithm  are  meticulously  defined  to  ensure  compre-
hensive  assessment,  as  shown  in  Table  2.

These parameter configurations are harmonized with
those  commonly  used  in  evolutionary  and  swarm
intelligence algorithms, ensuring experimental consistency
and  enabling  a  focused  evaluation  of  the  performance
benefits  introduced  by  BMOCO.

2.3.2. Dataset Characteristics and Preprocessing for
BMOCO Evaluation

To evaluate the BMOCO method, we utilize birth data
collected across seven standard U.S. Territories from 2016
to  2022.  These  datasets  are  sourced  from  the  National
Center for Health Statistics [12] and are instrumental in
assessing the effectiveness of the feature selection process
facilitated  by  BMOCO.  Each  dataset  shares  a  consistent
structure,  enabling  reliable  comparative  analysis  over
time.  Table  3  provides  an  overview  of  sample  sizes,
features,  and  class  distribution  across  years.

We  used  the  complete  birth  records  for  each  year
rather  than  subsampling  to  retain  full  clinical  and
demographic  variability,  including  rare  but  important
patterns.  While  formal  power  analysis  is  typical  in
hypothesis-driven  clinical  studies,  large-scale  real-world
data combined with 10-fold cross-validation offers strong
empirical  reliability  in  machine  learning  settings  and
ensures  robust  model  performance  evaluation.

Each sample was normalized to ensure computational
stability  and  fairness  in  distance-based  classification.
Normalization ensures that all features contribute equally
in KNN classification, preventing scale-based distortion.

This  data  structure  provides  a  robust  basis  for
applying  and  validating  BMOCO,  facilitating  an  in-depth
analysis  of  the  algorithm’s  performance  in  selecting
relevant  features  that  can  accurately  predict  outcomes
across  varied  sample  sizes  and  consistent  feature
dimensions.

Table 2. Parameter settings for comparative algorithms.

Parameters BMOCO MOGA-FS MOALO-FS NSGA-II-FS MOQBHHO-FS

#Iterations 30 30 30 30 30
#Individuals 20 20 20 20 20

Repository Size 50 50 50 50 50
Crossover Rate - - - 0.8 -
Mutation Rate - 0.02 0.05 0.02 -
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Table 3. Overview of the datasets used in the study.

S.NO. Dataset Year No. of Samples No. of Features No. of Classes

1 2016 35,185 1330 3
2 2017 29,851 1330 3
3 2018 25,919 1330 3
4 2019 24,373 1330 3
5 2020 23,484 1330 3
6 2021 23,448 1330 3
7 2022 23,011 1330 3

2.3.3.  Evaluation  Metrics  for  Multi-objective
Optimization in Feature Selection

Various  well-regarded  multi-objective  evaluation
metrics  have  been  utilized  to  assess  the  performance  of
the  BMOCO  method  against  established  benchmarks  in
feature selection. These metrics provide a comprehensive
view  of  how well  each  method  performs  across  multiple
objectives and can be used to identify the most effective
approach  for  handling  complex  datasets  from  newborn
screening  [46].  The  metrics  that  we  have  used  are  as
follows:

2.3.4. Generational Distance (GD)
This metric measures the Euclidean distance between

the solutions obtained by the algorithm (computed front,
A) and the true Pareto front (PF). It is defined as: (Eq. 8)

(8)

A  smaller  value  of  GD  indicates  that  the  computed
solutions are closer to the Pareto front, reflecting higher
solution  quality.  In  this  study,  the  actual  Pareto  front  is
estimated by pooling and filtering non-dominated solutions
from multiple runs of all algorithms, as suggested by [47].

2.3.5. Inverted Generational Distance (IGD)
Complementary to GD, IGD measures how well a set of

solutions approximates the true Pareto front: (Eq. 9)

(9)

An optimal algorithm would minimize IGD, indicating
comprehensive coverage and proximity of its solutions to
all members of the actual Pareto front.

2.3.6. HyperVolume (HV)
HV quantifies the volume covered by the members of

the computed Pareto front (A) in the objective space. It is
bounded  by  a  reference  point  rp  ∈  Rm,  ensuring  all
solutions in A dominate rp. A higher HV value suggests a
better  spread  and  convergence  of  solutions  within  the
objective  space.

2.3.7. Spread
This metric evaluates the diversity of solutions across

the Pareto front by measuring the extent of spread among
all objective function values: (Eq. 10)

(10)

A desirable property for an effective optimization is a
broader spread, which indicates a diverse set of solutions
spanning possible trade-offs between objectives.

Employing these metrics provides a robust framework
for comparing the effectiveness and efficiency of various
multi-objective  feature  selection  methods,  aiding  in
identifying  the  most  suitable  algorithm  for  handling  the
complexity  and  nuances  of  newborn  dataset  feature
selection.

3. RESULTS
It  presents  a  detailed  evaluation  of  the  proposed

Binary  Multi-Objective  Cheetah  Optimization  (BMOCO)
method  alongside  a  comparison  with  other  benchmark
multi-objective feature selection methods. Employing U.S.
infant  mortality  datasets,  we  assess  the  efficacy  of
BMOCO  and  its  competitors  across  various  metrics
designed to capture both the efficiency and effectiveness
of each method in feature selection. These metrics include
Pareto  front  approximations,  objective  function  metrics,
statistical  tests,  execution  time,  and  multi-objective
performance  measures.  The  comprehensive  analysis  not
only highlights the strengths and weaknesses of BMOCO
but  also  situates  it  within  the  current  landscape  of
advanced feature selection techniques used in healthcare
analytics.

3.1.  Performance  Comparison  based  on  Pareto
Fronts

It  delves  into  the  comparative  performance  of  the
suggested  Binary  Multi-Objective  Cheetah  Optimization
(BMOCO)  method  against  established  benchmarks  using
the representation of Pareto fronts. Pareto fronts illustrate
the  trade-offs  between  conflicting  objectives,  such  as
minimizing feature count while maximizing classification
accuracy. By examining these fronts, we can evaluate each
method’s effectiveness in balancing model simplicity with
predictive performance.

The Pareto fronts depicted in Figure 6 show that those
from  BMOCO  are  consistently  closer  to  the  true  Pareto
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fronts  across  all  datasets.  This  proximity  indicates  that
BMOCO  efficiently  generates  solutions  that  reduce  the
number  of  features  used  and  maintain  or  enhance
classification  accuracy.  A  detailed  analysis  reveals  that

BMOCO  outperforms  other  methods,  particularly  in  its
ability  to  identify  critical  predictive  features  with  fewer
indicators,  as  evidenced  by  the  high  accuracy  rates
achieved  with  significantly  reduced  feature  sets.

Fig. (6). Comparison of pareto fronts obtained from BMOCO and benchmark methods after 30 iterations.
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Table 4. Best solutions by crowding distance criteria (number of features, classification accuracy).

Datasets Before FS
After FS

MOGA-FS MOALO-FS NSGA-II-FS MOQBHHO-FS BMOCO-FS

2016 [1330, 96.6] [51, 98] [21, 95.5] [47, 97.3] [30, 96] [18, 96.1]

2017 [1330, 97.44] [52, 99] [25, 98.5] [47, 99.3] [18, 99.2] [41, 99.7]

2018 [1330, 97.79] [55, 99.5] [53, 99.6] [47, 99.5] [56, 99.8] [38, 99.7]

2019 [1330, 97.25] [52, 99.4] [50, 99.7] [46, 99.5] [60, 99.8] [37, 99.7]

2020 [1330, 96.45] [52, 99.4] [50, 99.7] [41, 99.2] [50, 99.8] [37, 99.7]

2021 [1330, 97.99] [50, 99.6] [50, 99.7] [43, 99.2] [36, 99.4] [41, 99.7]

2022 [1330, 97.7] [44, 99.6] [44, 99.7] [43, 99.2] [42, 99.6] [18, 99.2]

Further analysis of specific datasets reveals additional
remarkable  results.  For  instance,  the  2016  dataset
managed  with  only  18  features  reached  an  accuracy  of
96.1%,  closely  approximating  the  actual  model
performance.  In  2017,  both  MOQBHHO  and  BMOCO
achieved excellent results, but BMOCO’s 99.7% accuracy
with 41 features stands out,  showcasing its  efficiency in
feature reduction without compromising accuracy.

As discussed in the study, the Crowding Distance (CD)
metric  has  been  employed  as  the  primary  criterion  for
selecting the best non-dominated solutions at  the end of
an  optimization  process.  This  metric  helps  identify  the
most  effective  solutions  that  balance  multiple  objectives
without  bias,  ensuring  a  fair  comparison  across  all
methods. Table 4 summarizes the best solutions selected
based  on  the  CD  criterion,  underscoring  the  superior
performance of BMOCO in achieving high accuracy with
fewer features across multiple datasets.

The detailed analysis of solutions presented in Table 4
highlights  BMOCO’s  exceptional  ability  to  minimize  the
number  of  features  while  maximizing  classification
accuracy.  For  example,  in  the  2019  and  2020  datasets,
BMOCO  achieves  nearly  the  highest  accuracy  with
significantly  fewer  features  than  other  methods,
demonstrating its effectiveness in feature optimization and
model  efficiency.  This  performance  indicates  BMOCO’s
robust  strategy  formulation  and  adaptation  to  the
complexities  of  high-dimensional  feature  spaces.  These
results substantiate the potential of BMOCO in improving
feature  selection  methodologies  in  complex,  data-driven
fields.

3.2.  Performance  Comparison  based  on  Objective
Function Metrics

It evaluates the performance of Binary Multi-Objective
Cheetah  Optimization  (BMOCO)  compared  to  other
benchmark methods based on objective function metrics,
average  feature  size,  and  classification  accuracy.  These
metrics provide insights into each method’s efficiency in
reducing feature set dimensionality while maintaining or
improving the model’s predictive accuracy.

Table  5  presents  a  detailed  analysis  of  the  average
feature  sizes  and  classification  accuracy  values  obtained

after  30  iterations  of  feature  selection.  Notably,  BMOCO
consistently  achieves  lower  average  feature  sizes  while
maintaining  competitive  classification  accuracies,  empha-
sizing its efficiency in simplifying models without significant
loss  in  performance.  For  instance,  in  the  2016  and  2020
datasets,  BMOCO  significantly  reduces  the  number  of
features while achieving the highest classification accuracy
among the compared methods. Additionally, in 2017, NSGA-
II identified a more significant feature subset and achieved
slightly higher accuracy than BMOCO, highlighting a trade-
off  between  feature  reduction  and  accuracy.  However,
BMOCO achieves near-optimal accuracy with considerably
fewer features across all datasets, illustrating a substantial
improvement  in  balancing  model  complexity  and
performance.

3.3.  Performance  Comparison  based  on  Multi-
objective Performance Measures

It  assesses  the  efficacy  of  Binary  Multi-Objective
Cheetah  Optimization  (BMOCO)  relative  to  other
established  multi-objective  feature  selection  algorithms.
The  evaluation  is  grounded  on  four  critical  performance
metrics: Generational Distance (GD), Inverted Generational
Distance  (IGD),  Hypervolume  (HV),  and  Spread,  which
collectively  offer  a  comprehensive  view  of  each  method’s
capability  to  handle  trade-offs  between  conflicting
objectives  effectively.

Analysis  from  Table  6  summarizes  that  BMOCO
demonstrates superior or competitive performance across
multiple  datasets.  Notably,  BMOCO  consistently  exhibits
the lowest GD and IGD values for the 2016, 2018, and 2019
datasets,  suggesting  a  closer  approximation  to  the  actual
Pareto fronts than other methods. Furthermore, BMOCO’s
spread  values  are  exceptionally  high,  indicating  a
comprehensive coverage across the objective space, which
is essential for effectively exploring diverse solutions. For
instance, in the 2022 dataset, BMOCO reached the highest
spread of 1.03, significantly outperforming other methods
for  exploring  extensive  regions  of  the  solution  space.
Additionally,  the HV values  of  BMOCO are commendable,
with  consistently  high  marks,  underscoring  its  ability  to
maintain  a  balance between convergence and diversity  in
solution quality.
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3.4. Performance Comparison based on the Wilcoxon
Signed-rank Test

Our  study  assesses  the  statistical  significance  of  the
performance  differences  between  the  proposed  Binary
Multi-Objective  Cheetah  Optimization  (BMOCO)  Feature
Selection  (FS)  approach  and  other  benchmark  methods.
To ensure robustness in the comparisons, we employ the

Wilcoxon  signed-rank  test  on  Inverted  Generational
Distance  (IGD)  values  collected  from 20  distinct  runs  of
each  method.  This  nonparametric  test  helps  determine
whether two related paired samples come from the same
distribution, an essential aspect of verifying the statistical
superiority or equivalence of the proposed method relative
to others.

Table 5. Comparison of average feature size and classification accuracy across datasets.

Datasets Methods Average Feature Size Average Classification Accuracy(%)

- MOGA-FS 39 96.92

- MOALO-FS 35.25 96.27

2016 NSGA-II-FS 46.33 97.3

- MOQBHHO-FS 34.66 96.46

- BMOCO 30.5 97.93

- MOGA-FS 42.25 97.92

- MOALO-FS 37 99.17

2017 NSGA-II-FS 47.66 99.33

- MOQBHHO-FS 28.66 98.3

- BMOCO 25.5 99.23

- MOGA-FS 44.75 98.87

- MOALO-FS 44.5 99.22

2018 NSGA-II-FS 47.66 99.5

- MOQBHHO-FS 42.5 99.6

- BMOCO 22.6 98.82

- MOGA-FS 48.75 98.9

- MOALO-FS 45.25 99.32

2019 NSGA-II-FS 46 99.5

- MOQBHHO-FS 43.75 99.6

- BMOCO 21.8 98.82

- MOGA-FS 46 98.9

- MOALO-FS 43 99.34

2020 NSGA-II-FS 46.33 99.33

- MOQBHHO-FS 39.2 99.15

- BMOCO 24.25 99.3

- MOGA-FS 41 98.95

- MOALO-FS 44 99.47

2021 NSGA-II-FS 47 99.25

- MOQBHHO-FS 42.25 99.5

- BMOCO 24.5 98.8

- MOGA-FS 39 98.9

- MOALO-FS 41 99.4

2022 NSGA-II-FS 47 99.25

- MOQBHHO-FS 40.33 99.56

- BMOCO 22 98.5
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Table 6. Multi-objective performance measure values.

Datasets Methods GD IGD HV Spread

- MOGA-FS 0.09 0.09 0.23 0.56

- MOALO-FS 0.09 0.09 0.24 0.66

2016 NSGA-II-FS 0.18 0.22 0.26 0.31

- MOQBHHO-FS 0.20 0.18 0.29 0.75

- BMOCO 0.09 0.09 0.24 0.62

- MOGA-FS 0.09 0.10 0.23 0.52

- MOALO-FS 0.09 0.09 0.23 0.59

2017 NSGA-II-FS 0.18 0.22 0.27 0.38

- MOQBHHO-FS 0.23 0.18 0.30 0.90

- BMOCO 0.10 0.09 0.24 0.72

- MOGA-FS 0.11 0.13 0.23 0.50

- MOALO-FS 0.11 0.13 0.23 0.49

2018 NSGA-II-FS 0.20 0.26 0.27 0.38

- MOQBHHO-FS 0.11 0.12 0.24 0.65

- BMOCO 0.06 0.06 0.20 0.72

- MOGA-FS 0.11 0.15 0.22 0.28

- MOALO-FS 0.11 0.13 0.22 0.38

2019 NSGA-II-FS 1.15 1.21 0.10 0.00

- MOQBHHO-FS 0.12 0.12 0.24 0.63

- BMOCO 0.07 0.06 0.20 0.72

- MOGA-FS 0.11 0.14 0.22 0.37

- MOALO-FS 0.06 0.08 0.19 0.35

2020 NSGA-II-FS 0.22 0.25 0.27 0.42

- MOQBHHO-FS 0.06 0.06 0.20 0.57

- BMOCO 0.14 0.11 0.24 0.72

- MOGA-FS 0.09 0.11 0.22 0.43

- MOALO-FS 0.09 0.11 0.22 0.34

2021 NSGA-II-FS 0.43 0.44 0.32 0.41

- MOQBHHO-FS 0.09 0.11 0.22 0.38

- BMOCO 0.12 0.09 0.25 0.82

- MOGA-FS 0.08 0.11 0.22 0.35

- MOALO-FS 0.08 0.11 0.22 0.32

2022 NSGA-II-FS 0.42 0.45 0.32 0.41

- MOQBHHO-FS 0.19 0.22 0.27 0.34

- BMOCO 0.25 0.17 0.33 1.03

As  presented  in  Table  7,  the  Wilcoxon  test  results
exhibit  statistically  significant  superiority  (’++’)  of  the
BMOCO  method  over  most  of  the  compared  methods
across  most  datasets.  Specifically,  BMOCO  consistently
outperforms others in datasets ranging from 2016 to 2021,
except  for  2022,  where  MOGA-FS  shows  superior
performance  as  indicated  by  the  ’–’  in  the  significance

column.  These  results  provide  substantial  statistical
evidence  that  BMOCO  is  generally  more  effective  at
optimizing  the  trade-off  between  feature  reduction  and
classification accuracy. Table 7  also highlights instances
(’==’)  where  the  performance  between  methods  is
statistically  equivalent,  providing  a  nuanced  view  of  the
competitive landscape in multi-objective feature selection.
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Table 7. Wilcoxon signed-rank test results.

BMOCO vs MOGA-FS MOALO-FS NSGA-II-FS MOQBHHO-FS

- p-value signf p-value signf p-value signf p-value signf

2016 3.651×10-4 ++ 6.453×10-7 ++ 2.098×10-3 ++ 6.712×10-2 ++

2017 7.812×10-2 ++ 2.115×10-6 ++ 3.167×10-3 ++ 2.651×10-6 ++

2018 1.128×10-3 ++ 2.026×10-2 ++ 6.712×10-5 ++ 3.185×10-4 ++

2019 7.802×10-4 ++ 1.812×10-3 ++ 3.832×10-5 ++ 2.873×10-3 ++

2020 5.231×10-2 ++ 0.082 == 3.724×10-3 ++ 0.078 ==

2021 1.874×10-2 ++ 4.843×10-4 ++ 3.954×10-2 ++ 5.325×10-5 ++

2022 4.161×10-3 – 1.000 == 5.143×10-3 ++ 2.901×10-5 ++

Table 8. Comparison of execution duration (in minutes).

Datasets BMOCO MOGA MOALO NSGA-II MOQBHHO

2016 15.71 21.25 23.18 27.37 16.92
2017 13.17 16.24 17.50 24.47 13.75
2018 13.05 15.21 15.33 25.67 14.09
2019 11.95 11.25 13.67 13.87 11.63
2020 10.21 13.52 14.07 19.39 11.25
2021 9.87 10.95 12.41 14.07 10.02
2022 8.32 10.28 13.35 13.35 7.85

3.5.  Performance  Evaluation  based  on  Execution
Time

This evaluation assesses the computational efficiency
of five multi-objective Feature Selection (FS) methods by
analyzing  the  average  execution  times  across  seven
datasets.  The  proposed  Binary  Multi-Objective  Cheetah
Optimization Algorithm (BMOCO) demonstrates superior
performance due to its selective participation mechanism
in  the  evolutionary  process  and  dynamic  adjustment
between  exploration  and  exploitation  phases  based  on
heuristic  cues.

Table 8 presents that BMOCO often requires less time
to  complete  its  iterations  than  its  counterparts.  This  is
particularly  notable  in  complex  datasets  where  efficient
execution is  critical.  The NSGA-II  method,  known for  its
rigorous  merging  of  populations  and  generation  of  non-
dominated  fronts,  consistently  shows  longer  execution
times.  In  contrast,  BMOCO  efficiently  leverages  its
adaptive  exploration  and  exploitation  phases,  reducing
overall  computational  overhead.  MOQBHHO  also  shows
competitive  execution  times,  benefiting  from  a  similar
mechanism that adjusts based on the situational needs of
the algorithm. The results underscore BMOCO’s potential
in applications where execution time and solution quality
are paramount.

3.6. Computational Complexity Analysis
The computational complexity of the proposed Binary

Multi-Objective Cheetah Optimization (BMOCO) used for

feature  selection  in  a  K-Nearest  Neighbours  (KNN)
classifier framework is determined by several parameters:
number  of  training  samples  (X),  maximum  number  of
iterations (MaxIt), population size (N), number of objective
functions  (J),  and  feature  dimension  (L).  The  total
computational  complexity  of  the  BMOCO  algorithm  is
represented  by  the  following  equation:  (Eq.  11)

(11)

The computational effort required for initialization and
each  fitness  calculation,  when  X  training  samples  are
involved,  primarily  depends  on  these  parameters:  the
dimension of the features and the number of bits for the
transfer  function  selection  (L  +  3).  Typically,  the
complexity of fitness calculation using a KNN classifier is
O(X  ×  L).  Thus,  the  initialization  complexity  is
approximated  by  the  following  equation:  (Eq.  12)

(12)

Each iteration involves updating positions, calculating
fitness, and rearranging the repository based on crowding
distance,  which  is  computed  by  O(J  ×  N  log  N)  [17],
considering N potential solutions and J objective functions
that  must  be  sorted  as  represented  by  the  following
equation:  (Eq.  13)
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(13)

This  analysis  underlines  the  BMOCO’s  efficiency,
especially  in  handling  high-dimensional  data  through
evolutionary  operations  and  intelligent  exploitation  of
feature  space,  resulting  in  a  time  complexity  of
approximately  O(N  log  N).

4. DISCUSSION

4.1. Analysis of Selected Features
The analysis of features selected from various datasets

highlights several critical determinants of infant survival:
maternal education, prenatal care, pre-existing maternal
conditions  such  as  diabetes,  maternal  smoking  during
pregnancy, maternal Body Mass Index (BMI), infant birth
weight,  and  breastfeeding  practices.  These  factors
collectively  contribute  to  the  varying  rates  of  infant
mortality  observed  across  different  socio-economic  and
demographic  groups.

4.1.1. Maternal Education
Improved  maternal  education  has  been  strongly

associated with lower infant mortality rates. Higher levels
of  education  among  mothers  often  correlate  with  better
economic  status  and  access  to  healthcare  resources,
thereby  enhancing  the  quality  of  prenatal  and  postnatal
care.  Studies  have  shown  that  infants  born  to  well-
educated  mothers  exhibit  higher  survival  rates  due  to
better  healthcare  practices  and  increased  awareness  of
health-promoting behaviours [48].

4.1.2. Prenatal Care
Frequent  and  effective  prenatal  visits  are  pivotal  for

identifying and managing potential  complications during
pregnancy, such as diabetes [49]. Prenatal care includes
routine check-ups, gestational diabetes management, and
counselling,  which  significantly  reduce  risks  associated
with pregnancy and childbirth.

4.1.3. Diabetes Before Pregnancy
Mothers with pre-existing diabetes have a higher risk

of complications that can lead to increased infant mortality
if not properly managed. Effective control of blood sugar
levels  during  pregnancy  minimizes  risks  such  as
macrosomia  (large  body  size  of  babies)  and  congenital
anomalies  [50].

4.1.4. Smoking During Pregnancy
Smoking  during  pregnancy  is  detrimental  to  fetal

development,  often  leading  to  reduced  growth,  preterm
birth, and increased risk of respiratory and cardiovascular
diseases  in  infants.  The  presence  of  harmful  substances
like  carbon  monoxide  in  tobacco  smoke  significantly
impairs  fetal  oxygen  supply  [51].

4.1.5. Maternal BMI
High  maternal  BMI  is  linked  to  various  adverse

outcomes, including preterm births, low birth weight, and

complications during labour, which can escalate the risk of
infant  mortality.  This  association  highlights  the
importance of nutritional management before and during
pregnancy [52].

4.1.6. Infant Birth Weight
Low birth weight is a critical factor in infant mortality,

often associated with developmental issues and infection
vulnerability.  Babies  with  low  birth  weight  require
immediate and intensive care to mitigate risks of  severe
health complications [9].

4.1.7. Breastfeeding
Initiating breastfeeding shortly after birth is crucial for

infant  survival.  Breast  milk  provides  essential  nutrients
and antibodies vital for immune development, protecting
newborns from common infectious diseases [53].

These findings underscore the multifaceted nature of
infant  mortality,  highlighting  the  interplay  among
biological, environmental, and socio-economic factors. The
selected  features  from  the  datasets  reflect  the  direct
influences on infant health and emphasize some broader
public health implications. Addressing these determinants
through  targeted  health  policies  and  education  can
significantly  enhance  infant  survival  rates  globally.

4.2.  Positive  Aspects  of  the  Proposed  Feature-
Selection Method

Evaluating  the  proposed  Binary  Multi-Objective
Cheetah  Optimization  (BMOCO)  across  various  metrics
and tests has revealed several advantages that make it a
robust feature selection method for medical data analytics,
particularly in infant health. These advantages underscore
BMOCO’s  capability  to  efficiently  navigate  the  complex
landscape  of  feature  selection  by  leveraging  its  unique
algorithmic strategies.

4.2.1. Optimal Trade-off in Fitness Assessment
BMOCO excels at finding the optimal trade-off between

two  critical  fitness  assessment  criteria.  This  capability
allows  it  to  outperform  existing  multi-objective  methods,
making it particularly effective for identifying features that
significantly impact infant health.

4.2.2. Effective Population Diversity Management
A key strength of BMOCO lies in its ability to manage

population  diversity  effectively.  It  selects  the  best
candidates from the repository using the crowding distance
metric in each iteration, ensuring a wide variety of genetic
material is maintained for subsequent generations.

4.2.3. Superior Classification Accuracy
By  incorporating  transfer  function  optimization,

BMOCO achieves the best classification accuracy with the
smallest  feature  size  across  all  evaluated  datasets.  This
demonstrates its effectiveness in optimizing feature sets for
precise health data analysis.

4.2.4. Utilization of KNN Classifier
Using the K-Nearest  Neighbors (KNN) classifier  as  a
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wrapper  supports  robust  classification  and  reduces
computational  costs  compared  to  other  methods.  KNN’s
simplicity and effectiveness enhance the overall efficiency
of BMOCO in feature selection tasks.

4.2.5. Convergence Rate
BMOCO exhibits a higher convergence rate than other

methods. This is evidenced by lower Generational Distance
(GD) and Inverted Generational Distance (IGD) values of
its Pareto fronts, indicating a closer approximation to the
actual Pareto front.

4.2.6. Comprehensive Coverage in Objective Space
The spread of BMOCO’s non-dominated solution set is

significantly large across all datasets, indicating the most
extensive coverage in the objective space, which is crucial
for thoroughly exploring potential solutions.

4.2.7. Efficiency in Execution Time
As  highlighted  in  Table  8,  BMOCO  consistently

requires  less  execution  time  than  other  evaluated
methods. This efficiency makes it suitable for large-scale
and time-sensitive applications.

Combining  these  features  makes  BMOCO  a  highly
effective  tool  for  feature  selection  in  medical  data
analytics,  particularly  in  applications  where  reducing
feature  dimensionality  without  sacrificing  accuracy  is
critical.

While the current study focused on comparisons with
evolutionary multi-objective methods, future work will also
include evaluations against conventional filter-based and
embedded  feature  selection  techniques  to  further
benchmark  the  generalizability  and  efficiency  of  the
proposed  BMOCO  framework.

CONCLUSION AND FUTURE WORK
This  study  introduces  the  Binary  Multi-Objective

Cheetah Optimization (BMOCO) with an enhanced transfer
function optimizer designed for feature selection tasks.

It  has  been  applied  to  an  extended  U.S.  infant  birth
and  mortality  dataset.  The  main  adaptation  involved
optimizing eight  additional  transfer  functions  to  suit  the
binary  nature  of  the  feature  selection  problem.  The
proposed BMOCO algorithm was evaluated for its ability
to  reduce  feature  dimensions  and  its  effectiveness  in
classification  accuracy  using  the  K-Nearest  Neighbors
(KNN)  classifier.

Compared to established multi-objective optimization
methods  such  as  MOGA,  MOALO,  NSGA-II,  and
MOQBHHO, BMOCO demonstrated superior performance
in  reducing  feature  count  while  enhancing  classification
accuracy. This was quantitatively supported by evaluating
the  quality  of  the  Pareto  fronts  generated  by  BMOCO,
which  exhibited  higher  quality  metrics  across  various
performance  indicators.  BMOCO’s  stability  and  efficacy
were further validated using the Wilcoxon signed-rank test
on  multiple  runs’  Inverted  Generational  Distance  (IGD)
values.

The significance of BMOCO’s findings for biology and

public health is  further reinforced by the analysis  of  the
selected  features.  Key  determinants  of  infant  survival,
such  as  maternal  education,  prenatal  care,  pre-existing
diabetes,  maternal  smoking,  Body  Mass  Index  (BMI),
infant  birth  weight,  and  breastfeeding  practices,  were
consistently  identified,  aligning  closely  with  established
clinical  evidence.  This  convergence  between  compu-
tational  outcomes  and  biomedical  understanding
highlights the practical value of the proposed method. By
effectively  surfacing  medically  validated  risk  factors,
BMOCO demonstrates  its  potential  as  a  reliable  tool  for
guiding  healthcare  decision-making  and  informing
targeted  intervention  strategies.

Despite  its  strengths,  the  current  solution  selection
process  in  BMOCO  relies  solely  on  crowding  distance,
which, while effective, may be sensitive to the distribution
of solutions and potentially overlook knee points, solutions
that  represent  optimal  trade-offs  between  objectives.
Future  work  could  incorporate  knee-point  detection
strategies  to  better  guide  the  selection  of  solutions  that
offer  meaningful  compromises.  Additionally,  BMOCO’s
framework  could  be  expanded  to  address  more  complex
multi-objective problems by incorporating objectives related
to feature relevance (e.g., correlation, mutual information),
scalability, and computational efficiency. The applicability
of  BMOCO  also  extends  beyond  feature  selection;  future
research  could  explore  its  adaptation  to  other  binary
optimization  problems  across  domains  [54].

Although our preprocessing steps include normali-zation
to  address  scaling  issues,  the  current  version  of  BMOCO
has not been explicitly evaluated under conditions of noisy,
incomplete,  or  poor-quality  data.  This  is  a  common
challenge in real-world medical datasets and represents a
limitation of the current study. In future work, we plan to
assess the robustness of BMOCO by introducing synthetic
noise and simulating missing values to better approximate
real-world  data  imperfections  and  to  evaluate  the
algorithm’s stability and resilience under such conditions.

It  is  also  worth  noting  that  the  experimental  analysis
was primarily conducted on U.S. datasets, which may limit
the generalizability of results across countries with varying
healthcare  infrastructures  and  socio-economic  conditions.
Therefore, future studies should investigate the algorithm’s
performance  using  datasets  from  diverse  regions  and
settings. Moreover, although BMOCO demonstrated robust
performance  on  the  current  dataset,  its  behavior  under
noisy, incomplete, or imbalanced data, a frequent scenario
in  real-world  clinical  environments,  was  not  extensively
analyzed and warrants future investigation. While this study
focused  on  wrapper-based  optimization  techniques,
including  comparisons  with  filter-based  and  embedded
feature  selection  approaches  could  provide  a  more
comprehensive  view  of  the  method’s  relative  strengths.

Finally, as MOQBHHO also yielded competitive results,
future  research  could  explore  a  hybridization  of  BMOCO
with  MOQBHHO  to  harness  complementary  strengths.
Another  promising  direction  is  integrating  filter-based
methods  into  the  BMOCO  framework,  introducing
objectives such as correlation and mutual information. Such
a  hybrid  filter-wrapper  approach  could  enhance  both  the
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convergence  speed  and  the  robustness  of  the  BMOCO
algorithm  in  high-dimensional,  noisy  feature  selection
scenarios  [55].
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