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Abstract:

Introduction: Infant mortality is a pivotal indicator of community health and socioeconomic conditions. Despite
global advancements in healthcare and significant reductions in infant mortality rates, substantial disparities persist,
particularly in underserved populations. This research aims to tackle these disparities by enhancing the predictive
accuracy of public health interventions. We utilize advanced feature selection techniques to identify critical
predictors of infant survival, thereby supporting the development of targeted and effective health policies and

practices.

Methods: We introduce an enhanced Binary Multi-Objective Cheetah Optimization algorithm (BMOCO), specifically
designed for feature selection in extensive medical datasets. The suggested method focuses on optimizing eight S-
shaped and V-shaped transfer functions to refine the conversion of continuous position vectors into binary form,

ensuring precise feature selection and robust model performance.

Results: The BMOCO method demonstrates superior accuracy and effectiveness in feature selection compared to
traditional evolutionary optimization algorithms such as MOGA (Multi-Objective Genetic Algorithm), MOALO (Multi-
Objective Ant Lion Optimizer), NSGA-II (Non-dominated Sorting Genetic Algorithm II), and MOQBHHO (Multi-
Objective Quadratic Binary Harris Hawk Optimization). Applied to U.S. infant birth data, our approach achieves an
average classification accuracy of 99.54%. Critical factors impacting infant mortality identified include maternal
literacy, prenatal care frequency, and pre-existing maternal conditions, such as diabetes, smoking during pregnancy,
body mass index, infant birth weight, and breastfeeding practices. These findings indicate that the optimized BMOCO

model provides interpretable and data-driven insights that align with established clinical evidence.

Discussion: The results underscore the effectiveness of advanced machine learning techniques in uncovering
significant health predictors.
Conclusion: The proposed BMOCO algorithm offers a robust and interpretable tool for health professionals to

enhance predictive models, facilitating targeted interventions to reduce infant mortality rates and improve public
health outcomes.

Keywords: Infant mortality, Feature selection, Transfer function, Cheetah optimization, Multi-objective optimization,
Predictive analytics, Machine learning, Health informatics.
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1. INTRODUCTION

The global health landscape has faced unprecedented
challenges due to ongoing pandemics, underscoring the
vulnerability of specific populations, including pregnant
women. These conditions have significantly heightened
concerns about neonatal outcomes, emphasizing the
crucial role of maternal health in both infant well-being
and the broader public health ecosystem. Defined as
children from birth to the end of their first year, infants
are highly vulnerable during this critical initial phase of
life. The Infant Mortality Rate (IMR), quantified as the
number of deaths per 1,000 live births, is a vital indicator
of public health and societal well-being [1]. This metric is
subdivided into perinatal, neonatal, and post-neonatal
categories, each presenting unique challenges and risk
factors. Common causes of post-neonatal mortality include
malnutrition, respiratory diseases, complications arising
from pregnancy, sudden infant death syndrome, and socio-
economic issues [2].

As of the first quarter of 2024, the IMR in the U.S. was
approximately 5.55 per 1,000 live births [3], while
worldwide, the IMR was 25.519 per 1000 live births [4].
Notably, the IMR in India was 25.799 deaths per 1000 live
births in 2024 [5], starkly contrasting with the U.S.’s IMR
and those of European countries and other developed
OECD countries. In developing countries like India, the
high IMR values underscore the need for targeted public
health interventions. These disparities highlight significant
differences across the world in healthcare systems,
poverty levels, and public health policies. Moreover,
inequalities in IMR across various racial groups are
reported for the U.S. and other countries. These findings
are profound and troubling, underlining that health equity
remains an elusive goal despite ongoing efforts worldwide
[6]. While significant progress has been made in
healthcare, the persistence of high IMR in specific
demographics starkly illustrates the complex interplay of
maternal health, healthcare accessibility, and socio-
economic conditions [7, 8]. These factors are critical not
only in understanding but also in improving a nation’s
health outcomes. The increase in premature and low-birth-
weight births has further complicated the landscape,
necessitating focused research to mitigate these risks and
effectively reduce infant mortality rates [9, 10].

In this context, the current research paper introduces
an advanced Feature Selection (FS) technique using the
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Cheetah optimization algorithm [11] to identify the most
significant predictors of infant survival. The presented
approach aims to enhance the accuracy and efficiency of
health interventions, ultimately improving neonatal
outcomes. In our research, we utilize extensive U.S. birth
record data from 2016 to 2022, sourced from the Centers
for Disease Control and Prevention (CDC) and the
National Center for Health Statistics (NCHS) [12].

Efficient FS is paramount in modern data analytics,
particularly in healthcare, where the stakes are high, and
serious problems can arise when analyzing data incorrectly
[13, 14]. Redundant or irrelevant features can obscure
significant patterns and insights in health data, leading to
inefficient models and potentially harmful misdiagnoses.
Metaheuristic algorithms, extensively reviewed in a
previous study [15-19], provide a robust framework for
addressing these challenges. These algorithms have shown
considerable promise across various application areas, from
economic forecasting to healthcare, by significantly
enhancing the accuracy and efficiency of conventional
predictive models [20, 21]. In response to these challenges,
this research introduces a crowding distance-based Binary
Multi-Objective Cheetah Optimization (BMOCO) method.
This sophisticated approach aims to improve the selection
of pertinent features from large datasets, potentially
enhancing the efficiency and effectiveness of predictive
models used for infant health assessments. By optimizing
the FS process, we aim to reduce redundancy and focus on
the most impactful variables influencing infant health and
mortality outcomes, thereby facilitating more accurate and
reliable infant health prediction.

The proposed approach employs cutting-edge machine
learning techniques, reflecting our aim to bridge the gap
between theoretical/computational advances and practical
healthcare applications. By harnessing the power of
detailed data analysis and FS, we provide actionable
insights that can lead to effective policy interventions and
improved clinical practices, particularly for infant care and
infant health. Thus, from a broad perspective, the current
research underscores the importance of integrating data
science with public health strategies to tackle the leading
causes of infant mortality, aiming to foster a healthier
future for the next generation.

Several key innovations in feature selection and
predictive modeling for infant healthcare data analysis are
introduced in this paper [22]:


https://creativecommons.org/licenses/by/4.0/legalcode
mailto:akanavos@ionio.gr
http://dx.doi.org/10.2174/0118750362389838251118071924
http://crossmark.crossref.org/dialog/?doi=10.2174/0118750362389838251118071924&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net

Binary Multi-Objective Cheetah Optimization for Infant Mortality Risk 3

1.1. Enhanced Binary Multi-objective Cheetah
Optimization (BMOCO)

We propose an improved version of the Binary Multi-
Objective Cheetah Optimization method, tailored for feature
selection in large-scale, high-dimensional medical datasets.
The enhancement incorporates dynamic control
mechanisms that regulate the balance between exploration
and exploitation to achieve better convergence.

1.2. Optimized Transfer Functions for Binary
Conversion

To improve the transformation of continuous position
vectors into binary format, eight S-shaped and V-shaped
transfer functions are systematically evaluated and
optimized. This optimization enhances the precision and
robustness of the feature selection process, which is
especially important when working with sensitive medical
data.

1.3. Comprehensive Benchmarking Against State-of-
the-art Algorithms

The proposed BMOCO method 1is extensively
benchmarked against several leading multi-objective
evolutionary algorithms, including MOGA [16], MOALO
[23], NSGA-II [24], and MOQBHHO [17], demonstrating its
competitive advantage.

1.4. Application to Real-world Infant Mortality
Datasets

The proposed methodology is validated on real-world
U.S. birth datasets. In addition to enhancing classification
accuracy, the method identifies key predictors of infant
mortality, such as birth weight, maternal education, and
prenatal care frequency, providing actionable insights for
healthcare practitioners.

1.5. Framework for Data-driven Public Health
Decision-making

This work establishes a methodological foundation for
leveraging advanced optimization and machine learning
techniques to inform targeted public health interventions,
particularly those aimed at reducing infant mortality rates
in underserved populations.

1.6. Background and Related Work

Research into neonatal health through predictive
analytics has become increasingly vital as data science
and machine learning technologies advance. It provides a
comprehensive review of significant contributions in the
relevant literature, focusing on methodologies and
findings that directly influence the understanding and
prediction of infant health and mortality. In recent studies,
various maternal characteristics were scrutinized using
logistic regression, naive Bayes, and linear support vector
machines on data from U.S. Territories in 2013 [25]. These
analyses have provided insights into dangerous maternal
factors significantly impacting neonatal survival rates.
Similarly, Gaussian Process Classification was proposed to
predict hospital mortality among neonates, showcasing the

potential of advanced probabilistic models in healthcare
settings [26]. The application of machine learning
techniques to assess the cost-effectiveness of long-term
newborn care was explored, demonstrating the utility of
predictive models in managing healthcare costs effectively
[27].

Research has consistently highlighted the strong
correlation between neonatal deaths and premature
births. Predictive models were created using data from
Italian neonates and subsequently tested and validated
across various temporal settings, demonstrating their
robustness and adaptability [28]. Furthermore, machine
learning techniques were employed in Neonatal Intensive
Care Units (NICUs) to assess short-term mortality, which
has crucial implications for clinical decision-making and
treatment optimization [29]. Exploring maternal traits
associated with Small Gestational Age (SGA) has been
crucial for early identification of at-risk neonates,
particularly in resource-limited settings [30]. Different
socioeconomic characteristics, such as maternal education
and birth order, were analyzed to predict infant mortality
using a three-year comprehensive dataset, which provided
deep insights into the social determinants of health [31].

Despite all these significant advancements, the
evolution of methodologies for effectively selecting
variables that predict infant mortality still needs to be
improved. A study utilized a dataset of 275 neonates to
demonstrate how random forest models could excel in
predicting preterm neonatal death, emphasizing the need
for high sensitivity and specificity in predictive models
[32]. Adapting swarm-based optimization methods,
inspired by the foraging and hunting behaviors of untamed
creatures, introduces another novel approach to feature
selection in predictive modeling [33-35]. Specifically, the
cheetah’s unique hunting strategies have inspired
algorithms that balance efficiency with the ability to cover
extensive search areas [11]. Evolutionary strategies such
as these can improve algorithmic performance by adapting
search tactics based on the success of previous attempts,
thereby showcasing flexible problem-solving in dynamic
environments [36].

The feature selection task can be framed as a binary
optimization problem [37] where the transfer function
plays a pivotal role [38]. This function is essential for
converting a numeric search space into a discrete domain,
a step that is crucial for applying a binary optimization
method effectively [39]. Optimizing transfer functions and
feature subsets has been emphasized as a means to
enhance the exploration and exploitation capabilities of
algorithms, thereby avoiding local optima and improving
overall model performance. Integrating machine learning
with traditional epidemiological approaches has also
opened new avenues for understanding complex
interactions between genetic, environmental, and social
factors contributing to neonatal outcomes [28]. Such a
multidisciplinary approach could enable a more
comprehensive understanding of the causes of infant
health and mortality, which is crucial for developing more
targeted interventions.
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In summary, the reviewed literature highlights the
critical role of feature selection and predictive modeling in
advancing neonatal health analytics. Despite notable
progress, there remains a pressing need for more
adaptive, scalable, and interpretable methods that can
effectively extract meaningful predictors from high-
dimensional datasets. This study addresses this gap by
proposing an optimized feature selection framework
grounded in evolutionary computation.

2. MATERIALS AND METHODS

2.1. Foundations of Cheetah-Based Multi-objective
Feature Selection

We delve into the advanced optimization techniques
underpinning the current research study, focusing on
integrating Cheetah Optimization and Multi-Objective
Optimization to address the complex challenges inherent
in predicting infant mortality. These approaches capitalize
on the inherent patterns and behaviours observed in
nature and adapt them to address the challenges of
intricate, high-dimensional spaces, which are often typical
of medical data analytics. The proposed Binary Multi-
Objective Cheetah Optimization (BMOCO) method
represents an approach specifically tailored to manage the
discrete complexities of high-dimensional datasets
effectively, particularly for feature selection. By balancing
the accuracy of feature selection with the overarching goal
of model simplicity, BMOCO aims to enhance predictive
performance while minimizing computational demands. It
outlines a detailed description of the Cheetah Optimization
Algorithm and the theoretical foundations of multi-
objective optimization. The Cheetah Optimization
Algorithm (COA) [11] is a novel, population-based
optimization approach inspired by cheetahs’ dynamic and
strategic hunting behaviour. Before discussing the
specifics of the COA, it is important to visualize how a
cheetah approaches its hunt. Figure 1 illustrates the
hunting strategies employed by cheetahs, highlighting
their strategic and responsive nature, which the algorithm
seeks to emulate computationally. The cheetah's hunting
strategy often begins with a period of vigilance. When a
cheetah sights a target (prey) in its surroundings, it may
choose to remain stationary and wait for the prey to move
closer before launching an attack. This attack mode
typically involves stages of stirring and entrapping.
Conversely, the cheetah may abandon the hunt for several
reasons, such as fatigue or the prey's rapid movement. In
such cases, the cheetah may take a break and
subsequently return to hunting after a pause. The cheetah
selects the optimal tactic by assessing the target’s (prey)
state, location, and proximity (Fig. 1a-d) [11]. The COA
mimics these natural tactics to address optimization
problems, integrating biologically inspired strategies to
enhance algorithmic efficiency and adaptability.

Specifically, the COA model adapts to dynamic target
(prey) availability and the cheetah’s physical state,
employing a blend of passive and active hunting tactics.
These strategies are designed to optimize energy
expenditure and increase the probability of successful
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hunts, directly analogous to optimizing computational
resources and solution accuracy in complex optimization
scenarios.

Fig. (1). Illustration of various hunting strategies employed by
cheetahs: (a) Observing the prey, (b) Perching and awaiting, (c)
Running, (d) Trapping.

2.1.1. Search Strategy

The COA models the cheetah’s prey-search behaviour
by employing either an active patrol or a passive wait
approach, depending on the density and behaviour of the
target (prey).

In scenarios where the target (prey) is abundant and
stationary, the algorithm adopts a scanning mode from a
fixed position, thereby maximizing energy efficiency.
Conversely, when the target (prey) is dispersed, it
necessitates an active, energy-intensive search strategy.
This adaptability is mathematically modelled as follows:
(Eq. 1)

X =Xt 47 -af; €Y

where X,*! is the cheetah's next position, X,/ is the

=1

current position, t is the current time, 'ii and a

represent the randomization parameter and step length,

respectively. This dual-mode hunting strategy reflects the

algorithm’s ability to switch between exploration and
exploitation, optimizing the search for optimal solutions.

2.1.2. Sit-and-wait Strategy

This energy-conserving strategy involves the cheetah
lying in wait, minimizing its movements to avoid alerting
nearby targets (prey). The algorithm mirrors this
behaviour by maintaining the position until optimal
conditions for an attack arise, thus saving computational
resources and focusing efforts only when high-quality
solutions are within reach: (Eq. 2)

Xitl _ yt )

i J i,
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2.1.3. Attack Strategy

Mirroring the cheetah’s rapid chase, this strategy is
activated when the target (prey) is within optimal range.
The algorithm calculates the trajectory for an effective
intercept, utilizing speed and tactical repositioning, which
represents a rapid convergence towards the best-known
solution: (Eq. 3)

Xt = X§ i+ BE; 3)

where X, indicates the best current position of the

target (prey), and r,;, and B,/ are the turning and
interaction factors, respectively.

2.1.4. Fundamentals of Multi-Objective Optimization
(MO0O0)

Multi-Objective Optimization (MOO) involves optimizing
multiple conflicting objectives simultaneously, a common
challenge in complex decision-making scenarios [40]. The
goal is to find a solution that achieves the best possible
balance among competing objectives. Mathematically, an
MOO problem can be formulated as follows: (Eq. 4)

minimize fi{y), falv),.... Tmlu)
maximize gy(y), g2y, . ... (V)
subject to:
P F - @)
e1(y), ealy), ..., ei{y) = 0,
hylw), Ralu).. ... he(y) =10,
yif <y <of' P

In the above formulation, f;, f,,..., f,, and g, g,...., g, are
the objective functions to be minimized and maximized,
respectively. e, and h, represent the inequality and
equality constraints the solutions must satisfy, with y,LB
and y,UB denoting the lower and upper bounds of the
decision variables y,. The concept of dominance is crucial
to this approach. A solution p1 is said to dominate another
solution p2 if it performs better in at least one objective
without being worse in any of the others. Optimal
solutions form a Pareto front, a benchmark for evaluating
trade-offs among competing objectives [41]. This approach
enables a holistic view of potential solutions, often leading
to innovative outcomes that traditional single-objective
optimization might overlook [42-44].

Despite its potential, the literature suggests the need
for further research on multi-objective evolutionary
approaches to feature selection in health data. Exploring
this gap can lead to significant advancements in the
analysis and understanding of complex medical datasets,
offering a balanced approach to predictive accuracy and
computational efficiency and ultimately enhancing patient
outcomes. The exploration of advanced optimization
techniques sets a solid foundation for the methodologies
employed in this study, aiming to leverage these
sophisticated algorithms to improve predictive models of
infant health outcomes. The integration of these techniques
represents a convergence of biological inspiration and
mathematical precision, poised to make significant

contributions to healthcare analytics. Such an evolutionary-
based advanced optimization approach is Cheetah
Optimization for feature selection.

2.2. Proposed Method

The study presents the proposed Binary Multi-
Objective Cheetah Optimization (BMOCO) model in detail,
outlining its algorithmic components and the workflow for
feature selection in high-dimensional medical datasets.
Inspired by the adaptive hunting behavior of cheetahs,
BMOCO incorporates multiobjective  optimization
principles and a dynamic transfer function mechanism to
identify the most relevant features while maintaining
classification accuracy. The method is structured around
several key components, including position encoding,
fitness evaluation, archive management, and strategy-
driven position updates. Each component contributes to a
flexible and efficient search process capable of handling
the complexities of large-scale health data.

2.2.1. Motivation Behind Cheetah Optimization for
Feature Selection

The integration of Cheetah Optimization (CO) into the
Feature Selection (FS) domain is motivated by several
distinct qualities of the CO algorithm that make it
particularly appealing for addressing complex optimization
challenges:

2.2.2. Novelty and Adaptability

The CO [11] is a relatively new optimization algorithm,
and its potential across various application domains
remains largely untapped. The exploratory nature of this
algorithm makes it ideal for testing in uncharted
territories of optimization problems, including feature
selection in healthcare data analytics.

2.2.3. No Free Lunch Theorem

According to the No Free Lunch (NFL) theorem [45],
no single algorithm can optimally solve all optimization
problems. This theorem supports the rationale for
exploring novel approaches like CO in diverse settings,
including feature selection, where traditional methods
may fail.

2.2.4. Simplicity and Efficiency

Unlike other optimization methods that rely heavily on
complex mathematical formulations, CO utilizes
straightforward procedures enhanced by strategic hunting
behaviours. This simplicity allows for efficient search
space exploration while maintaining the algorithm’s
robustness.

2.2.5. Balance between Exploration and Exploitation

CO’s hunting strategies prevent premature conver-
gence, a common issue in optimization tasks. By enabling
a balanced approach to exploration (searching through
diverse areas of the search space) and exploitation
(intensifying the search around promising areas), CO
ensures a thorough investigation of potential solutions.
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Fig. (2). Conceptual framework of the proposed feature selection methodology using BMOCO.

2.2.6. Innovation in Multi-objective Optimization

Although initial attempts have been made to apply
cheetah-inspired strategies in feature selection, the domain
still lacks comprehensive studies, especially concerning
multi-objective optimization with parallel transfer function
optimization. This gap presents a significant opportunity to
innovate and improve feature selection methodologies,
especially in high-dimensional data scenarios.

These unique aspects of CO prompted us to investigate
its application to the feature selection domain, aiming to
leverage its capabilities for enhancing effectiveness and
efficiency in selecting relevant features. This approach is
expected to contribute to the literature by providing a new
perspective on optimizing feature selection processes in
complex datasets.

2.2.7. Feature Selection Using Binary Mullti-
Objective Cheetah Optimization (BMOCQO)
Figure 2 displays the conceptual framework of the

proposed feature selection methodology using the binary
version of Multi-Objective Cheetah Optimization (BMOCO).

This adaptation addresses the discrete nature of the feature
selection problem, where features are either selected or
not, making the original continuous-domain CO algorithm
unsuitable without modifications [11].

The adjustments necessary to adapt CO for feature
selection are outlined as follows:

2.2.7.1. Position Encoding

In BMOCO, each cheetah is represented by a binary
string of length L + 3 (where L is the number of features
in the dataset). This encoding is crucial for the discrete
nature of feature selection, where each bit in the string (0
or 1) signifies the exclusion or inclusion of a feature, and
the additional three bits determine the choice of transfer
function used during optimization. Figure 3 illustrates this
binary position encoding.

2.2.7.2. Fitness Computation

The fitness of each cheetah’s configuration in BMOCO
is evaluated based on two primary objectives: (Eq. 3)
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Objl(X) =3 x;, Wiz e{0,1} 5)
The first objective, Obj1, aims to minimize the number
of features selected to simplify the model and reduce
overfitting. This reduction is crucial in enhancing model
generalizability and computational efficiency. (Eq. 6)

#true positives + #true negatives

Obj2(X)

#total cases (6)

Where X represents the position vector of a cheetah.
To compute Obj2 features corresponding to ones in X,
compress the dataset, and evaluate classification
performance using a KNN classifier and 10-fold cross-
validation.

2.2.7.3. External Archive Maintenance

An external archive is crucial for storing non-
dominated solutions identified during optimization. It
maintains diverse solutions, reflecting the best trade-offs
between minimizing feature count and maximizing
classification accuracy. This approach is vital for handling
multi-objective optimization’s inherent complexities and
ensuring a broad solution for space exploration. To
introduce the external archive’s management, Figure 4
depicts how solutions are evaluated and either retained or
replaced based on their dominance relations.

2.2.7.4. Transfer Function Optimization

The adaptation of transfer functions in BMOCO is
essential for effectively navigating the binary search
space. These functions adjust the probabilities of bit flips
in a cheetah’s position vector, influencing the exploration
and exploitation dynamics within the algorithm. This
nuanced handling helps significantly enhance the
convergence behaviour, allowing the algorithm to
effectively escape local optima and ensuring a compre-
hensive search across the feature space. Before diving into
the specific functions used, it is beneficial to understand
the variety and purpose of each transfer function
employed. These functions are designed to modify the
solution space navigation differently, optimizing the
search and solution refinement processes as depicted in
Table 1.

Figure 5a, b illustrates the visual appearance of the
eight transfer functions. In each iteration, after assessing
the fitness of the members of the cheetah population, the
set of non-dominated solutions is identified and
strategically arranged in reverse order based on Crowding
Distance (CD) values. The solution with the highest CD
value is then selected as the ’prey,” and the corresponding
transfer function is adopted for the subsequent step of the
process. It is important to note that although the transfer
function is selected dynamically during the run, it is not
updated once chosen.

Table 1. S-shaped and V-shaped transfer functions used in BMOCO.

S-Shaped TFs

Name Function Bits
S1 TR 1 000
T'(z) = Tre—5=
S2 Tt 1 001
1 | T) = e
s3 oy : 010
S4 T(x) = —tom 011
Absent Present

V-Shaped TFs

Name Function Bits
Vi T(x) = _.fr'f[%:'L 100
V2 Tz = -!'-c.'ril’u:J'll 101
V3 Tix)=|—= | 110

V1422
V4 T(x) = |é arctan|Zx) 111
S2
| | u ] u | ]

0 |0 |1

J L J

T,
Location

Y
Transfer Function

Fig. (3). Binary position encoding of each cheetah in BMOCO, highlighting feature inclusion and transfer function selection.
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Fig. (5). Visual representation of (a) S-shaped and (b) V-shaped transfer functions used in BMOCO.
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The selection of transfer functions within BMOCO is
pivotal in effectively navigating the solution landscape.
Each transfer function modifies the probability distribution
for selecting features, thus influencing the algorithm’s
balance between exploration and exploitation. By adopting
these functions dynamically based on the optimization
state, BMOCO can maintain diversity in the solution pool
while efficiently converging to optimal solutions.

Three additional bits in each cheetah’s position string
are used to select among these eight transfer functions,
further tailoring the search process to the specific
dynamics of the feature selection landscape. In each
iteration, after assessing the fitness of each cheetah, the
set of non-dominated solutions is strategically arranged in
reverse order of crowding distance (CD) values. The
highest CD value solution is then selected as the ‘prey,’
guiding the subsequent search direction. The selected
transfer function significantly impacts how the search
progresses, ensuring adaptability and robustness in the
search strategy.

2.2.7.5. Position Update

The position update mechanism in BMOCO reflects the
adaptive strategies cheetahs employ in the wild, balancing
energy conservation during the search phase and
aggressive pursuit during attacks.

When hunting, either the seeking or the attacking
strategy may be applied depending on the context, but as
the cheetah’s energy declines, the likelihood of switching
to the search strategy increases. During the early
iterations, the algorithm emphasizes exploration through
the search method, while later iterations favor exploitation
by applying the attack strategy to refine candidate
solutions. The transition between strategies is controlled
using random thresholds. If r2 = r3, the cheetah adopts a
sit-and-wait approach, and its position remains unchanged
as per Eq. (2). Otherwise, the value of rl—a random
number in [0, 1]—is used to compute H = e**"""(2r1 - 1),
which governs the strategy choice. If H = r4, the attack
strategy is employed using Eq. (3); otherwise, the search
strategy in Eq. (1) is used. The prey’s location is defined
as the solution with the highest crowding distance in the
current archive, representing a high-quality, sparsely
crowded solution. The selected transfer function from the
prey is then used to probabilistically update the cheetah’s
position via Eq. (7), allowing efficient exploitation of
promising regions of the search space [38].

XE(t+1) {—u_."}i-[.':_ if Prd < T{AX7 (i + 1))
: XFE(t),

ot herwise

Where rnd is a random number between [0,1], X
represents the cheetah’s position, L is the dimension, t is
the current iteration, — denotes negation, and T () is the
chosen transfer function. Random thresholds govern the
sit-and-wait approach and an active search-and-attack.
This ensures that the strategy shifts dynamically based on
the situation, reflecting the real-time decision-making
processes observed in natural cheetah behaviour.

(7

2.2.7.6. BMOCO Algorithm

The BMOCO Algorithm 1 encapsulates the entire
feature selection process, from initialization to the final
selection of optimal feature sets based on crowding
distance. This process ensures the algorithm finds non-
dominated solutions regarding feature count and
classification accuracy, representing a balance between
these competing objectives. BMOCO’s computational
complexity primarily depends on the number of features
and the size of the dataset. Each algorithm iteration
evaluates all individuals in the population across the entire
feature set, making the computational cost proportional to
the product of these factors. This scaling is crucial in high-
dimensional data, where efficient handling of large feature
sets becomes imperative.

2.2.7.7. Selection of the Crowding Distance-Based
Optimal Solution from the Repository

After a specified number of iterations, the external
archive, filled with non-dominated solutions, is assessed to
identify the optimal set of features. This selection uses the
Crowding Distance (CD) metric, which measures density
around each solution in the objective space, ensuring that
the selected features are practical and diverse [17].

This comprehensive approach, embodied in the
BMOCO algorithm, harnesses the dynamics of natural
predation and adapts them for complex, high-dimensional
feature spaces, driving towards solutions that offer a
practical balance between minimal feature sets and
maximum classification accuracy.

Algorithm 1 BMOCO-Based Feature Selection

Input: Population size N, Maximum iterations Maxlt,
Dataset D

Output: Optimized feature set A in external archive 1:
Initialize the population of cheetahs randomly.

2: Calculate initial objective values Objl and Obj2 for
each cheetah.

3: Store the non-dominated solutions in an external
archive. 4: fori = 1 to MaxIt do

5: Select K (where 2 = K = N) cheetahs randomly. 6:
for all cheetahs in the selection do

7: Calculate r", r’, a, B, and H based on current and
local best positions. 8: Generate random numbers r2, r3,
r4 uniformly distributed in [0, 1].

9:if r2 < r3 then
10: if H = r4 then

11: Update the position of the cheetah using the attack
strategy equation. 12: else

13: Update position using the search strategy
equation. 14: end if

15: else

16: Maintain position using a sit-and-wait strategy. 17:
end if

18: Apply the appropriate transfer function.
19: Recalculate objective values Objl and Obj2.
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20: Update the external archive with new non-
dominated solutions. 21: end for

22: end for

23: Return the best solution from the archive based on
Crowding Distance (CD).

2.3. Experimental Setup and Benchmarking

It outlines a comprehensive experimental framework
designed to assess the effectiveness of the BMOCO method
in feature selection tasks. It details the computational
setup, the datasets employed, and the benchmarking
algorithms against which BMOCO 1is compared. This
framework facilitates a robust, reproducible, and fair
evaluation by aligning computational settings, classifier
choice, and metric definitions across all comparative
algorithms. This rigorous evaluation not only underscores
the adaptability and efficiency of BMOCO but also situates
it within the broader context of existing multi-objective
optimization methods. We further elucidate the dataset’s
structure, the preprocessing steps to ensure data quality,
and a suite of multi-objective performance indicators used
to measure the efficacy of the proposed and existing
methods. This methodical approach ensures a thorough
understanding and validation of the optimization

capabilities of BMOCO, aiming to establish new
benchmarks in feature selection for complex datasets.
2.3.1. Benchmark Algorithms for Performance

Comparison

We compare the efficacy of the Binary Multi-Objective
Cheetah Optimization (BMOCO) approach to rigorously
evaluate it against four established benchmarking algor-
ithms tailored explicitly for feature selection tasks. These
algorithms include MOGA-FS (Multi-Objective Genetic
Algorithm for Feature Selection) [16], MOALO-FS (Multi-
Objective Ant Lion Optimizer for Feature Selection) [23],
NSGA-II-FS (Non-dominated Sorting Genetic Algorithm II
for Feature Selection) [24], and MOQBHHO-FS (Multi-
Objective Quadratic Binary Harris Hawk Optimization for
Feature Selection) [17]. Each method has been selected
based on relevance and proven performance in similar opti-
mization scenarios, providing a robust basis for comparison.

The experimental framework uses Python 3.7 on a
computer with an Intel(R) Core(TM) i3-6006U CPU at
2.00GHz and 8.00 GB of RAM. This setup ensures the
computational environment is controlled and consistent,
allowing reproducible results.

We utilize the K-Nearest Neighbors (KNN) classifier
with K set to 5 and a 10-fold cross-validation procedure for

Table 2. Parameter settings for comparative algorithms.

Parameters BMOCO MOGA-FS

#Iterations 30 30

#Individuals 20 20
Repository Size 50 50

Crossover Rate
Mutation Rate - 0.02

Piri et al.

the classification accuracy measurement. This classifier is
chosen for its simplicity and effectiveness in handling
various data types without requiring explicit adjustments to
the training phase. KNN operates on a simple principle: it
classifies new cases based on a majority vote of their k
nearest neighbours, where the case is assigned to the class
most common among them, measured by a distance
function. KNN is instance-based: it stores the training set
and classifies new samples by a majority vote among the k
nearest neighbors.

Specific parameter settings for each optimization
algorithm are meticulously defined to ensure compre-
hensive assessment, as shown in Table 2.

These parameter configurations are harmonized with
those commonly used in evolutionary and swarm
intelligence algorithms, ensuring experimental consistency
and enabling a focused evaluation of the performance
benefits introduced by BMOCO.

2.3.2. Dataset Characteristics and Preprocessing for
BMOCO Evaluation

To evaluate the BMOCO method, we utilize birth data
collected across seven standard U.S. Territories from 2016
to 2022. These datasets are sourced from the National
Center for Health Statistics [12] and are instrumental in
assessing the effectiveness of the feature selection process
facilitated by BMOCO. Each dataset shares a consistent
structure, enabling reliable comparative analysis over
time. Table 3 provides an overview of sample sizes,
features, and class distribution across years.

We used the complete birth records for each year
rather than subsampling to retain full clinical and
demographic variability, including rare but important
patterns. While formal power analysis is typical in
hypothesis-driven clinical studies, large-scale real-world
data combined with 10-fold cross-validation offers strong
empirical reliability in machine learning settings and
ensures robust model performance evaluation.

Each sample was normalized to ensure computational
stability and fairness in distance-based classification.
Normalization ensures that all features contribute equally
in KNN classification, preventing scale-based distortion.

This data structure provides a robust basis for
applying and validating BMOCO, facilitating an in-depth
analysis of the algorithm’s performance in selecting
relevant features that can accurately predict outcomes
across varied sample sizes and consistent feature
dimensions.

MOALO-FS NSGA-II-FS MOQBHHO-FS
30 30 30
20 20 20
50 50 50
0.8
0.05 0.02
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Table 3. Overview of the datasets used in the study.

S.NO. Dataset Year No. of Samples

1 2016 35,185

2 2017 29,851

3 2018 25,919

4 2019 24,373

5 2020 23,484

6 2021 23,448

7 2022 23,011
2.3.3. Evaluation Metrics for Multi-objective

Optimization in Feature Selection

Various well-regarded multi-objective evaluation
metrics have been utilized to assess the performance of
the BMOCO method against established benchmarks in
feature selection. These metrics provide a comprehensive
view of how well each method performs across multiple
objectives and can be used to identify the most effective
approach for handling complex datasets from newborn
screening [46]. The metrics that we have used are as
follows:

2.3.4. Generational Distance (GD)

This metric measures the Euclidean distance between
the solutions obtained by the algorithm (computed front,
A) and the true Pareto front (PF). It is defined as: (Eq. 8)

v Lip
GD(A, PF) o ('}_‘ min ||F{a} — ,r-'.:i--:ll?’wI )
.'!I k':_..:lrﬁj F )

A smaller value of GD indicates that the computed
solutions are closer to the Pareto front, reflecting higher
solution quality. In this study, the actual Pareto front is
estimated by pooling and filtering non-dominated solutions
from multiple runs of all algorithms, as suggested by [47].

2.3.5. Inverted Generational Distance (IGD)

Complementary to GD, IGD measures how well a set of
solutions approximates the true Pareto front: (Eq. 9)

FI .\ll':'r'
1
ID(A, PF) = —— | §" min||F(a) — F(i)|P 9
IGINA, PF) PF k I]I}I_l__.l.!ﬂar..l. Fi I"J €))

An optimal algorithm would minimize IGD, indicating

comprehensive coverage and proximity of its solutions to
all members of the actual Pareto front.

2.3.6. HyperVolume (HV)

HV quantifies the volume covered by the members of
the computed Pareto front (A) in the objective space. It is
bounded by a reference point rp € R", ensuring all
solutions in A dominate rp. A higher HV value suggests a
better spread and convergence of solutions within the
objective space.

2.3.7. Spread
This metric evaluates the diversity of solutions across

No. of Features No. of Classes

1330 3
1330
1330
1330
1330
1330
1330

Wwlww w w

the Pareto front by measuring the extent of spread among
all objective function values: (Eq. 10)

| M 5
N (ru-tr,"”,I’HJifss' - n!e’ri-l"”,!-'.‘hifss_',) (10)
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A desirable property for an effective optimization is a
broader spread, which indicates a diverse set of solutions
spanning possible trade-offs between objectives.

Employing these metrics provides a robust framework
for comparing the effectiveness and efficiency of various
multi-objective feature selection methods, aiding in
identifying the most suitable algorithm for handling the
complexity and nuances of newborn dataset feature
selection.

3. RESULTS

It presents a detailed evaluation of the proposed
Binary Multi-Objective Cheetah Optimization (BMOCO)
method alongside a comparison with other benchmark
multi-objective feature selection methods. Employing U.S.
infant mortality datasets, we assess the efficacy of
BMOCO and its competitors across various metrics
designed to capture both the efficiency and effectiveness
of each method in feature selection. These metrics include
Pareto front approximations, objective function metrics,
statistical tests, execution time, and multi-objective
performance measures. The comprehensive analysis not
only highlights the strengths and weaknesses of BMOCO
but also situates it within the current landscape of
advanced feature selection techniques used in healthcare
analytics.

Spread

3.1. Performance Comparison based on Pareto
Fronts

It delves into the comparative performance of the
suggested Binary Multi-Objective Cheetah Optimization
(BMOCO) method against established benchmarks using
the representation of Pareto fronts. Pareto fronts illustrate
the trade-offs between conflicting objectives, such as
minimizing feature count while maximizing classification
accuracy. By examining these fronts, we can evaluate each
method’s effectiveness in balancing model simplicity with
predictive performance.

The Pareto fronts depicted in Figure 6 show that those
from BMOCO are consistently closer to the true Pareto
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fronts across all datasets. This proximity indicates that BMOCO outperforms other methods, particularly in its
BMOCO efficiently generates solutions that reduce the ability to identify critical predictive features with fewer
number of features used and maintain or enhance indicators, as evidenced by the high accuracy rates
classification accuracy. A detailed analysis reveals that achieved with significantly reduced feature sets.

2016 2017
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Fig. (6). Comparison of pareto fronts obtained from BMOCO and benchmark methods after 30 iterations.
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Table 4. Best solutions by crowding distance criteria (number of features, classification accuracy).

Datasets Before FS
MOGA-FS MOALO-FS
2016 [1330, 96.6] [51, 98] [21,95.5
2017 [1330, 97.44] [52, 99] [25,98.5
2018 [1330, 97.79] [55, 99.5] [53,99.6
2019 [1330, 97.25] [52, 99.4] [50, 99.7
2020 [1330, 96.45] [52, 99.4] [50, 99.7
2021 [1330, 97.99] [50, 99.6] [50, 99.7
2022 [1330, 97.7] [44, 99.6] [44, 99.7

Further analysis of specific datasets reveals additional
remarkable results. For instance, the 2016 dataset
managed with only 18 features reached an accuracy of
96.1%, closely approximating the actual model
performance. In 2017, both MOQBHHO and BMOCO
achieved excellent results, but BMOCO’s 99.7% accuracy
with 41 features stands out, showcasing its efficiency in
feature reduction without compromising accuracy.

As discussed in the study, the Crowding Distance (CD)
metric has been employed as the primary criterion for
selecting the best non-dominated solutions at the end of
an optimization process. This metric helps identify the
most effective solutions that balance multiple objectives
without bias, ensuring a fair comparison across all
methods. Table 4 summarizes the best solutions selected
based on the CD criterion, underscoring the superior
performance of BMOCO in achieving high accuracy with
fewer features across multiple datasets.

The detailed analysis of solutions presented in Table 4
highlights BMOCO'’s exceptional ability to minimize the
number of features while maximizing classification
accuracy. For example, in the 2019 and 2020 datasets,
BMOCO achieves nearly the highest accuracy with
significantly fewer features than other methods,
demonstrating its effectiveness in feature optimization and
model efficiency. This performance indicates BMOCO’s
robust strategy formulation and adaptation to the
complexities of high-dimensional feature spaces. These
results substantiate the potential of BMOCO in improving
feature selection methodologies in complex, data-driven
fields.

3.2. Performance Comparison based on Objective
Function Metrics

It evaluates the performance of Binary Multi-Objective
Cheetah Optimization (BMOCO) compared to other
benchmark methods based on objective function metrics,
average feature size, and classification accuracy. These
metrics provide insights into each method’s efficiency in
reducing feature set dimensionality while maintaining or
improving the model’s predictive accuracy.

Table 5 presents a detailed analysis of the average
feature sizes and classification accuracy values obtained

After FS
NSGA-II-FS MOQBHHO-FS BMOCO-FS
[47,97.3] [30, 96] [18, 96.1]
[47,99.3] [18,99.2] [41, 99.7]
[47, 99.5] [56, 99.8] [38,99.7]
[46, 99.5] [60, 99.8] [37,99.7]
[41, 99.2] [50, 99.8] [37,99.7]
[43,99.2] [36, 99.4] [41, 99.7]
[43,99.2] [42, 99.6] [18,99.2]

after 30 iterations of feature selection. Notably, BMOCO
consistently achieves lower average feature sizes while
maintaining competitive classification accuracies, empha-
sizing its efficiency in simplifying models without significant
loss in performance. For instance, in the 2016 and 2020
datasets, BMOCO significantly reduces the number of
features while achieving the highest classification accuracy
among the compared methods. Additionally, in 2017, NSGA-
IT identified a more significant feature subset and achieved
slightly higher accuracy than BMOCO, highlighting a trade-
off between feature reduction and accuracy. However,
BMOCO achieves near-optimal accuracy with considerably
fewer features across all datasets, illustrating a substantial
improvement in balancing model complexity and
performance.

3.3. Performance Comparison based on Multi-
objective Performance Measures

It assesses the efficacy of Binary Multi-Objective
Cheetah Optimization (BMOCO) relative to other
established multi-objective feature selection algorithms.
The evaluation is grounded on four critical performance
metrics: Generational Distance (GD), Inverted Generational
Distance (IGD), Hypervolume (HV), and Spread, which
collectively offer a comprehensive view of each method'’s
capability to handle trade-offs between conflicting
objectives effectively.

Analysis from Table 6 summarizes that BMOCO
demonstrates superior or competitive performance across
multiple datasets. Notably, BMOCO consistently exhibits
the lowest GD and IGD values for the 2016, 2018, and 2019
datasets, suggesting a closer approximation to the actual
Pareto fronts than other methods. Furthermore, BMOCO’s
spread values are exceptionally high, indicating a
comprehensive coverage across the objective space, which
is essential for effectively exploring diverse solutions. For
instance, in the 2022 dataset, BMOCO reached the highest
spread of 1.03, significantly outperforming other methods
for exploring extensive regions of the solution space.
Additionally, the HV values of BMOCO are commendable,
with consistently high marks, underscoring its ability to
maintain a balance between convergence and diversity in
solution quality.



14 The Open Bioinformatics Journal, 2026, Vol. 19

3.4. Performance Comparison based on the Wilcoxon
Signed-rank Test

Our study assesses the statistical significance of the
performance differences between the proposed Binary
Multi-Objective Cheetah Optimization (BMOCO) Feature
Selection (FS) approach and other benchmark methods.
To ensure robustness in the comparisons, we employ the

Piri et al.

Wilcoxon signed-rank test on Inverted Generational
Distance (IGD) values collected from 20 distinct runs of
each method. This nonparametric test helps determine
whether two related paired samples come from the same
distribution, an essential aspect of verifying the statistical
superiority or equivalence of the proposed method relative
to others.

Table 5. Comparison of average feature size and classification accuracy across datasets.

Datasets Methods Average Feature Size Average Classification Accuracy(%)
- MOGA-FS 39 96.92
- MOALO-FS 35.25 96.27
2016 NSGA-II-FS 46.33 97.3
- MOQBHHO-FS 34.66 96.46
- BMOCO 30.5 97.93
- MOGA-FS 42.25 97.92
- MOALO-FS 37 99.17
2017 NSGA-II-FS 47.66 99.33
- MOQBHHO-FS 28.66 98.3
- BMOCO 25.5 99.23
- MOGA-FS 44.75 98.87
- MOALO-FS 44.5 99.22
2018 NSGA-II-FS 47.66 99.5
- MOQBHHO-FS 42.5 99.6
- BMOCO 22.6 98.82
- MOGA-FS 48.75 98.9
- MOALO-FS 45.25 99.32
2019 NSGA-II-FS 46 99.5
- MOQBHHO-FS 43.75 99.6
- BMOCO 21.8 98.82
- MOGA-FS 46 98.9
- MOALO-FS 43 99.34
2020 NSGA-II-FS 46.33 99.33
- MOQBHHO-FS 39.2 99.15
- BMOCO 24.25 99.3
- MOGA-FS 41 98.95
- MOALO-FS 44 99.47
2021 NSGA-II-FS 47 99.25
- MOQBHHO-FS 42.25 99.5
- BMOCO 245 98.8
- MOGA-FS 39 98.9
- MOALO-FS 41 99.4
2022 NSGA-II-FS 47 99.25
- MOQBHHO-FS 40.33 99.56
- BMOCO 22 98.5
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Table 6. Multi-objective performance measure values.

15

Datasets Methods GD IGD HV Spread
- MOGA-FS 0.09 0.09 0.23 0.56
- MOALO-FS 0.09 0.09 0.24 0.66
2016 NSGA-II-FS 0.18 0.22 0.26 0.31
- MOQBHHO-FS 0.20 0.18 0.29 0.75
- BMOCO 0.09 0.09 0.24 0.62
- MOGA-FS 0.09 0.10 0.23 0.52
- MOALO-FS 0.09 0.09 0.23 0.59
2017 NSGA-II-FS 0.18 0.22 0.27 0.38
- MOQBHHO-FS 0.23 0.18 0.30 0.90
- BMOCO 0.10 0.09 0.24 0.72
- MOGA-FS 0.11 0.13 0.23 0.50
- MOALO-FS 0.11 0.13 0.23 0.49
2018 NSGA-II-FS 0.20 0.26 0.27 0.38
- MOQBHHO-FS 0.11 0.12 0.24 0.65
- BMOCO 0.06 0.06 0.20 0.72
- MOGA-FS 0.11 0.15 0.22 0.28
- MOALO-FS 0.11 0.13 0.22 0.38
2019 NSGA-II-FS 1.15 1.21 0.10 0.00
- MOQBHHO-FS 0.12 0.12 0.24 0.63
- BMOCO 0.07 0.06 0.20 0.72
- MOGA-FS 0.11 0.14 0.22 0.37
- MOALO-FS 0.06 0.08 0.19 0.35
2020 NSGA-II-FS 0.22 0.25 0.27 0.42
- MOQBHHO-FS 0.06 0.06 0.20 0.57
- BMOCO 0.14 0.11 0.24 0.72
- MOGA-FS 0.09 0.11 0.22 0.43
- MOALO-FS 0.09 0.11 0.22 0.34
2021 NSGA-II-FS 0.43 0.44 0.32 0.41
- MOQBHHO-FS 0.09 0.11 0.22 0.38
- BMOCO 0.12 0.09 0.25 0.82
- MOGA-FS 0.08 0.11 0.22 0.35
- MOALO-FS 0.08 0.11 0.22 0.32
2022 NSGA-II-FS 0.42 0.45 0.32 0.41
- MOQBHHO-FS 0.19 0.22 0.27 0.34
- BMOCO 0.25 0.17 0.33 1.03

As presented in Table 7, the Wilcoxon test results
exhibit statistically significant superiority ('++’) of the
BMOCO method over most of the compared methods
across most datasets. Specifically, BMOCO consistently
outperforms others in datasets ranging from 2016 to 2021,
except for 2022, where MOGA-FS shows superior
performance as indicated by the ’-’ in the significance

column. These results provide substantial statistical
evidence that BMOCO is generally more effective at
optimizing the trade-off between feature reduction and
classification accuracy. Table 7 also highlights instances
('==") where the performance between methods is
statistically equivalent, providing a nuanced view of the
competitive landscape in multi-objective feature selection.
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Table 7. Wilcoxon signed-rank test results.
BMOCO vs MOGA-FS MOALO-FS NSGA-IL-FS MOQBHHO-FS
- p-value signf p-value signf p-value signf p-value signf
2016 3.651x10-4 ++ 6.453%10-7 ++ 2.098x10-3 ++ 6.712x10-2 ++
2017 7.812x10-2 ++ 2.115%10-6 ++ 3.167x10-3 ++ 2.651x10-6 ++
2018 1.128x10-3 ++ 2.026x10-2 ++ 6.712x10-5 ++ 3.185x10-4 ++
2019 7.802x10-4 ++ 1.812x10-3 ++ 3.832x10-5 ++ 2.873x10-3 ++
2020 5.231x10-2 ++ 0.082 == 3.724x10-3 ++ 0.078 ==
2021 1.874x10-2 ++ 4.843x10-4 ++ 3.954x10-2 ++ 5.325%10-5 ++
2022 4.161x10-3 - 1.000 == 5.143%10-3 ++ 2.901x10-5 ++
Table 8. Comparison of execution duration (in minutes).
Datasets BMOCO MOGA MOALO NSGA-II MOQBHHO
2016 15.71 21.25 23.18 27.37 16.92
2017 13.17 16.24 17.50 24.47 13.75
2018 13.05 15.21 15.33 25.67 14.09
2019 11.95 11.25 13.67 13.87 11.63
2020 10.21 13.52 14.07 19.39 11.25
2021 9.87 10.95 12.41 14.07 10.02
2022 8.32 10.28 13.35 13.35 7.85

3.5. Performance Evaluation based on Execution
Time

This evaluation assesses the computational efficiency
of five multi-objective Feature Selection (FS) methods by
analyzing the average execution times across seven
datasets. The proposed Binary Multi-Objective Cheetah
Optimization Algorithm (BMOCO) demonstrates superior
performance due to its selective participation mechanism
in the evolutionary process and dynamic adjustment
between exploration and exploitation phases based on
heuristic cues.

Table 8 presents that BMOCO often requires less time
to complete its iterations than its counterparts. This is
particularly notable in complex datasets where efficient
execution is critical. The NSGA-II method, known for its
rigorous merging of populations and generation of non-
dominated fronts, consistently shows longer execution
times. In contrast, BMOCO efficiently leverages its
adaptive exploration and exploitation phases, reducing
overall computational overhead. MOQBHHO also shows
competitive execution times, benefiting from a similar
mechanism that adjusts based on the situational needs of
the algorithm. The results underscore BMOCO'’s potential
in applications where execution time and solution quality
are paramount.

3.6. Computational Complexity Analysis

The computational complexity of the proposed Binary
Multi-Objective Cheetah Optimization (BMOCO) used for

feature selection in a K-Nearest Neighbours (KNN)
classifier framework is determined by several parameters:
number of training samples (X), maximum number of
iterations (MaxlIt), population size (N), number of objective
functions (J), and feature dimension (L). The total
computational complexity of the BMOCO algorithm is
represented by the following equation: (Eq. 11)
Time Complexity (BMOCO)
Time Complexity (Initialization )+
Muazit x [Time Complexity (Position Update)
Time Complexity (Fitness Calculation)+ an
Time Complexity (Arranging Repository based on CD) |4
Time Complexity (Output)

The computational effort required for initialization and
each fitness calculation, when X training samples are
involved, primarily depends on these parameters: the
dimension of the features and the number of bits for the
transfer function selection (L + 3). Typically, the
complexity of fitness calculation using a KNN classifier is
O(X x L). Thus, the initialization complexity is
approximated by the following equation: (Eq. 12)

Time Complexity (Initialization)
Nx[NL+3)+O0X = L) = N=xOX = L)

Each iteration involves updating positions, calculating
fitness, and rearranging the repository based on crowding
distance, which is computed by O( x N log N) [17],
considering N potential solutions and J objective functions
that must be sorted as represented by the following
equation: (Eq. 13)

12)
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Time Complexity (BMOCO) N« O(X = L)+
Mazlt x [ON = L)+ N « OX x L)+ O(J x NlogN)] = (13)
Mazlt = [N = O[X = L)+ O(J = Nlog N}|

This analysis underlines the BMOCO’s efficiency,
especially in handling high-dimensional data through
evolutionary operations and intelligent exploitation of
feature space, resulting in a time complexity of
approximately O(N log N).

4. DISCUSSION

4.1. Analysis of Selected Features

The analysis of features selected from various datasets
highlights several critical determinants of infant survival:
maternal education, prenatal care, pre-existing maternal
conditions such as diabetes, maternal smoking during
pregnancy, maternal Body Mass Index (BMI), infant birth
weight, and breastfeeding practices. These factors
collectively contribute to the varying rates of infant
mortality observed across different socio-economic and
demographic groups.

4.1.1. Maternal Education

Improved maternal education has been strongly
associated with lower infant mortality rates. Higher levels
of education among mothers often correlate with better
economic status and access to healthcare resources,
thereby enhancing the quality of prenatal and postnatal
care. Studies have shown that infants born to well-
educated mothers exhibit higher survival rates due to
better healthcare practices and increased awareness of
health-promoting behaviours [48].

4.1.2. Prenatal Care

Frequent and effective prenatal visits are pivotal for
identifying and managing potential complications during
pregnancy, such as diabetes [49]. Prenatal care includes
routine check-ups, gestational diabetes management, and
counselling, which significantly reduce risks associated
with pregnancy and childbirth.

4.1.3. Diabetes Before Pregnancy

Mothers with pre-existing diabetes have a higher risk
of complications that can lead to increased infant mortality
if not properly managed. Effective control of blood sugar
levels during pregnancy minimizes risks such as
macrosomia (large body size of babies) and congenital
anomalies [50].

4.1.4. Smoking During Pregnancy

Smoking during pregnancy is detrimental to fetal
development, often leading to reduced growth, preterm
birth, and increased risk of respiratory and cardiovascular
diseases in infants. The presence of harmful substances
like carbon monoxide in tobacco smoke significantly
impairs fetal oxygen supply [51].

4.1.5. Maternal BMI

High maternal BMI is linked to various adverse
outcomes, including preterm births, low birth weight, and

complications during labour, which can escalate the risk of
infant mortality. This association highlights the
importance of nutritional management before and during
pregnancy [52].

4.1.6. Infant Birth Weight

Low birth weight is a critical factor in infant mortality,
often associated with developmental issues and infection
vulnerability. Babies with low birth weight require
immediate and intensive care to mitigate risks of severe
health complications [9].

4.1.7. Breastfeeding

Initiating breastfeeding shortly after birth is crucial for
infant survival. Breast milk provides essential nutrients
and antibodies vital for immune development, protecting
newborns from common infectious diseases [53].

These findings underscore the multifaceted nature of
infant mortality, highlighting the interplay among
biological, environmental, and socio-economic factors. The
selected features from the datasets reflect the direct
influences on infant health and emphasize some broader
public health implications. Addressing these determinants
through targeted health policies and education can
significantly enhance infant survival rates globally.

4.2. Positive Aspects of the Proposed Feature-
Selection Method

Evaluating the proposed Binary Multi-Objective
Cheetah Optimization (BMOCO) across various metrics
and tests has revealed several advantages that make it a
robust feature selection method for medical data analytics,
particularly in infant health. These advantages underscore
BMOCO'’s capability to efficiently navigate the complex
landscape of feature selection by leveraging its unique
algorithmic strategies.

4.2.1. Optimal Trade-off in Fitness Assessment

BMOCO excels at finding the optimal trade-off between
two critical fitness assessment criteria. This capability
allows it to outperform existing multi-objective methods,
making it particularly effective for identifying features that
significantly impact infant health.

4.2.2. Effective Population Diversity Management

A key strength of BMOCO lies in its ability to manage
population diversity effectively. It selects the best
candidates from the repository using the crowding distance
metric in each iteration, ensuring a wide variety of genetic
material is maintained for subsequent generations.

4.2.3. Superior Classification Accuracy

By incorporating transfer function optimization,
BMOCO achieves the best classification accuracy with the
smallest feature size across all evaluated datasets. This
demonstrates its effectiveness in optimizing feature sets for
precise health data analysis.

4.2 4. Utilization of KNN Classifier
Using the K-Nearest Neighbors (KNN) classifier as a
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wrapper supports robust classification and reduces
computational costs compared to other methods. KNN’s
simplicity and effectiveness enhance the overall efficiency
of BMOCO in feature selection tasks.

4.2.5. Convergence Rate

BMOCO exhibits a higher convergence rate than other
methods. This is evidenced by lower Generational Distance
(GD) and Inverted Generational Distance (IGD) values of
its Pareto fronts, indicating a closer approximation to the
actual Pareto front.

4.2.6. Comprehensive Coverage in Objective Space

The spread of BMOCO’s non-dominated solution set is
significantly large across all datasets, indicating the most
extensive coverage in the objective space, which is crucial
for thoroughly exploring potential solutions.

4.2.7. Efficiency in Execution Time

As highlighted in Table 8, BMOCO consistently
requires less execution time than other evaluated
methods. This efficiency makes it suitable for large-scale
and time-sensitive applications.

Combining these features makes BMOCO a highly
effective tool for feature selection in medical data
analytics, particularly in applications where reducing
feature dimensionality without sacrificing accuracy is
critical.

While the current study focused on comparisons with
evolutionary multi-objective methods, future work will also
include evaluations against conventional filter-based and
embedded feature selection techniques to further
benchmark the generalizability and efficiency of the
proposed BMOCO framework.

CONCLUSION AND FUTURE WORK

This study introduces the Binary Multi-Objective
Cheetah Optimization (BMOCO) with an enhanced transfer
function optimizer designed for feature selection tasks.

It has been applied to an extended U.S. infant birth
and mortality dataset. The main adaptation involved
optimizing eight additional transfer functions to suit the
binary nature of the feature selection problem. The
proposed BMOCO algorithm was evaluated for its ability
to reduce feature dimensions and its effectiveness in
classification accuracy using the K-Nearest Neighbors
(KNN) classifier.

Compared to established multi-objective optimization
methods such as MOGA, MOALO, NSGA-II, and
MOQBHHO, BMOCO demonstrated superior performance
in reducing feature count while enhancing classification
accuracy. This was quantitatively supported by evaluating
the quality of the Pareto fronts generated by BMOCO,
which exhibited higher quality metrics across various
performance indicators. BMOCO’s stability and efficacy
were further validated using the Wilcoxon signed-rank test
on multiple runs’ Inverted Generational Distance (IGD)
values.

The significance of BMOCO'’s findings for biology and
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public health is further reinforced by the analysis of the
selected features. Key determinants of infant survival,
such as maternal education, prenatal care, pre-existing
diabetes, maternal smoking, Body Mass Index (BMI),
infant birth weight, and breastfeeding practices, were
consistently identified, aligning closely with established
clinical evidence. This convergence between compu-
tational outcomes and biomedical understanding
highlights the practical value of the proposed method. By
effectively surfacing medically validated risk factors,
BMOCO demonstrates its potential as a reliable tool for
guiding healthcare decision-making and informing
targeted intervention strategies.

Despite its strengths, the current solution selection
process in BMOCO relies solely on crowding distance,
which, while effective, may be sensitive to the distribution
of solutions and potentially overlook knee points, solutions
that represent optimal trade-offs between objectives.
Future work could incorporate knee-point detection
strategies to better guide the selection of solutions that
offer meaningful compromises. Additionally, BMOCO'’s
framework could be expanded to address more complex
multi-objective problems by incorporating objectives related
to feature relevance (e.g., correlation, mutual information),
scalability, and computational efficiency. The applicability
of BMOCO also extends beyond feature selection; future
research could explore its adaptation to other binary
optimization problems across domains [54].

Although our preprocessing steps include normali-zation
to address scaling issues, the current version of BMOCO
has not been explicitly evaluated under conditions of noisy,
incomplete, or poor-quality data. This is a common
challenge in real-world medical datasets and represents a
limitation of the current study. In future work, we plan to
assess the robustness of BMOCO by introducing synthetic
noise and simulating missing values to better approximate
real-world data imperfections and to evaluate the
algorithm’s stability and resilience under such conditions.

It is also worth noting that the experimental analysis
was primarily conducted on U.S. datasets, which may limit
the generalizability of results across countries with varying
healthcare infrastructures and socio-economic conditions.
Therefore, future studies should investigate the algorithm’s
performance using datasets from diverse regions and
settings. Moreover, although BMOCO demonstrated robust
performance on the current dataset, its behavior under
noisy, incomplete, or imbalanced data, a frequent scenario
in real-world clinical environments, was not extensively
analyzed and warrants future investigation. While this study
focused on wrapper-based optimization techniques,
including comparisons with filter-based and embedded
feature selection approaches could provide a more
comprehensive view of the method’s relative strengths.

Finally, as MOQBHHO also yielded competitive results,
future research could explore a hybridization of BMOCO
with MOQBHHO to harness complementary strengths.
Another promising direction is integrating filter-based
methods into the BMOCO framework, introducing
objectives such as correlation and mutual information. Such
a hybrid filter-wrapper approach could enhance both the
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convergence speed and the robustness of the BMOCO
algorithm in high-dimensional, noisy feature selection
scenarios [55].
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