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Abstract:

Introduction: Genotype imputation improves the resolution of genetic data, but traditional methods are
computationally intensive or compromise privacy. Deep learning alternatives are often too large for client-side
deployment. In this study, Fastimpute, a workflow for creating lightweight, reference-free imputation models, was
developed that enables real-time, accessible genetic risk assessment on edge devices.

Methods: Using whole-genome sequencing data from 2,504 individuals in the 1000 Genomes Project, linear and
logistic regression models were trained to impute single-nucleotide polymorphisms (SNPs) used in the breast cancer
polygenic risk score PRS313 BC. Models used SNPs from commercial genotyping arrays, and performance was
evaluated against sequencing data and benchmarked against Beagle.

Results: The polygenic risk score (PRS) calculated with our linear model correlated strongly with the PRS from true
sequencing data (R? = 0.86), significantly outperforming no imputation and minor allele frequency imputation (R? =
0.38). Our logistic model correctly identified 4 of 6 individuals in the top 1% of breast cancer risk, matching Beagle’s
performance.

Discussion: Our approach balances performance and efficiency, enabling deployment on personal devices and
preserving user privacy through local data processing. This approach democratizes access to genetic risk assessment
using direct-to-consumer data. However, this proof of concept requires validation across other genomic contexts
before clinical use.

Conclusion: The FastImpute pipeline demonstrates that lightweight models can enable real-time genetic risk
assessment on edge devices.

Keywords: Genotype imputation, Reference-free methods, Fastlmpute, Breast cancer, PRS313, Client-side
imputation, Web technologies, Polygenic risk score, Direct-to-consumer test.
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1. INTRODUCTION

Genotype imputation enhances genetic data by
predicting missing single nucleotide polymorphisms (SNPs)
using reference haplotype information [1, 2]. Traditional
methods leverage linkage disequilibrium (LD), inferring
untyped single nucleotide polymorphism (SNP) genotypes
by assuming similar LD structures between genotyped
target sets and fully sequenced reference panels [2].
However, these methods often rely on external services like
the Michigan Imputation Server [3], which can compromise
data privacy or require downloading entire reference
genomes, which is computationally inefficient.

Recently, deep learning-based methods [4-7], utilizing
advanced architectures such as Transformers and
Recurrent Neural Networks, have emerged as a promising
alternative, representing the state-of-the-art for raw
imputation accuracy. These methods predict missing
genotypes using pre-trained models, enhancing privacy and
accessibility. This approach aligns with the increasing
preference for FAIR computational solutions (findable,
accessible, interoperable and reusable) in epidemiology [8,
9]. (We refer to these pre-trained models as “reference-free
methods,” since they do not require end users to download
reference genomes locally or upload data to an external
server housing reference genomes. We stress, however,
that these models are trained on a set of reference
genomes, even if the reference genomes are not required
for model deployment.)

Despite their promise, previous reference-free methods
face a critical trade-off: high accuracy comes with a
significant computational cost. They often target specific
genomic regions, such as the major histocompatibility
complex (MHC) region, due to its high degree of
polymorphism and structural variation [10]. Their large
model sizes and computational intensity make them
inefficient or unsuitable for client-side deployment.
Furthermore, retraining these models for different regions
requires substantial computational resources.

The accompanying open-source in-browser application,
FastImpute, addresses these limitations by providing a
baseline for zero-footprint client-side imputation methods.
Our pipeline produces models that can be implemented
using web technologies, primarily coded in JavaScript,
leveraging advanced computational resources available in
modern web browsers. This approach, including access to
libraries like TensorFlow via Web Assembly, has been
demonstrated to be feasible for estimating cancer risk in
user-facing applications [11, 12].

2. METHODS

2.1. Study Design

This study employed a quantitative, observational
study design to develop and validate a computational
pipeline, Fastlmpute. The research involved gathering
publicly available genomic data, selecting relevant SNP
subsets, training predictive models, and evaluating their
performance against a gold standard and an established
imputation tool. The primary research goal was to create a
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lightweight, client-side imputation method and assess its
accuracy for calculating polygenic risk scores.

2.2. Data Source and Sample Size

The primary dataset was the Whole Genome Sequencing
(WGS) data from the 1000 Genomes Project (Phase 3,
GRCh37), which includes 2,504 individuals from 26 diverse
populations. The samples for the 1000 Genomes Project are
anonymous and do not have associated phenotypic or
medical data. More details can be found in the original
paper [13]. To define the SNP panel for a common direct-to-
consumer (DTC) platform, we analyzed 119 23andMe V5
chip data files from users who made their data public on
OpenSNP.org [14]. It is important to note the distinct roles
of these datasets: the large and diverse 1000 Genomes
Project data was used for all model training and validation,
while the 119 23andMe files were used solely for the
technical purpose of defining a representative list of input
SNPs found on the consumer chip. For model development,
the 1000 Genomes Project data was randomly split into a
training set of 2,003 individuals (80%) and a testing set of
501 individuals (20%).

2.3. The FastImpute Pipeline

The FastImpute pipeline provides a complete workflow
for creating the lightweight, reference-free, and privacy-
preserving imputation models that are central to this
work. This versatile pipeline is designed to predict various
genomic regions across different genotyping chips. To
showcase its application in detail, we used the calculation
of a polygenic risk score for breast cancer, PRS313 BC
(PGS Catalog entry PGS000004) [15], using genotyping
data available on a commercial genotyping chip, the
23andMe V5 Gene Panel [16], as a running case study
throughout the paper. PRS313 BC comprises 313 SNPs
used for breast cancer risk prediction, most of which are
not present on the V5 gene chip and must be imputed from
nearby observed genotypes.

As shown in Fig. (1), the Fastlmpute pipeline
comprises four key steps:

[1] Gather Whole Genome Sequencing (WGS) data (e.g., from
the 1000 Genomes Project [13]).

[2] Subset the panel SNPs from WGS data to include only
those present on the input genotyping platform (in our
example, the 23andMe V5 Gene Panel).

[3] Use LDlink to identify a subset of SNPs in the raw input
that are in LD with the target SNPs (PRS313) [17].

[4] Train the model to predict the target SNPs using the
input SNPs.

To establish a baseline, we trained two models: a
logistic regression model on phased data and a linear
regression model on unphased data. We deployed the linear
regression model, which processes unphased data, using
web technologies (Web-stack) [18, 19]. This approach offers
superior reusability and privacy compared to native appli-
cations, enhancing user data protection by processing all
information locally within the browser.
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Fig. (1). The FastImpute pipeline illustrated with PRS313 BC as an example. The pipeline comprises four key steps. Step 1: Gather
Whole Genome Sequencing (WGS) data (e.g., from the 1000 Genomes Project). Step 2: Subset the panel SNPs from WGS data to include
only those present in platforms like 23andMe and AncestryDNA, and a region of interest like PRS313. This subset serves as the raw input
and target (output) for the model. Step 3: Using LDIink, identify a subset of SNPs in the raw input that are in linkage disequilibrium (LD)
with the target SNPs (PRS313). These SNPs in LD with the target SNPs serve as the input for model training. Step 4: Train the model to

predict the target SNPs using the input SNPs.

3. RESULTS

The implementation of Fastlmpute will be described
here in detail for imputing the SNPs of PRS313 BC from
SNPs available on the 23andMe V5 chip [15].

3.1. Preparing the Data: Determining the 23andMe
SNPs on the V5 SNP Chip

We filtered 23andMe files generated from 2022
onwards on OpenSNP [14], ensuring they contained
between 600,000 and 700,000 positions and shared at least
60% of SNPs with a reference V5 chip file. This process
yielded 119 23andMe files. Due to quality control measures,
SNPs sampled from the same V5 chip can vary slightly,
necessitating a method to ensure consistency across
different datasets. Consequently, as shown in Fig. (2), while
70 out of the total 77 PRS313 BC SNPs present in the
23andMe chip are found in over 75% of the user data, there
are 7 PRS313 BC SNPs that appear only sporadically.

3.2. Steps 1, 2, and 3: Preparing the Training Dataset

We downloaded the 1000 Genomes Project Data
GrCh37 (Step 1, Fig. 1) and subsetted the PRS313 BC

SNPs and the 23andMe panel SNPs (Step 2, Fig. 1). Using
LDProxy, with all populations of the 1000 Genomes Project
as the reference panel, we obtained LD data for each
PRS313 BC SNP (Step 3, Fig. 1), focusing on 23andMe
SNPs with an R” value greater than 0.01. For multiallelic
SNPs not found in NCI's LD Proxy service, we included all
SNPs within a 500K base pair window, resulting in 17,551
positions used for training and evaluation.

We processed these positions to retrieve allele dosages,
converting multiallelic variants to binary format. We created
two versions of this data: one summing allele dosages to
simulate unphased data, and another maintaining the
phased data format.

3.3. Step 4: Model Training

Since the models are designed to capture LD patterns,
inter-chromosomal information is unnecessary for predicting
SNP dosages. Therefore, we split the 23andMe panel data by
chromosome, allowing us to construct separate models for
each chromosome (excluding X and Y, since they are not a
part of PRS313). Hence, we developed 44 models: 22 logistic
regression models for phased data and 22 linear regression
models for unphased data.



4 The Open Bioinformatics Journal, 2026, Vol. 19

Ge et al.

Distribution of PRS313 SNP Presence Across 119 23andMe Files

200 q

—

w

o
L

Number of SNPs
=
[=]

504

2

3 2

0-25%

25-50%

50-75%

75-100%

Percentage of 23andMe Files

Fig. (2). Distribution of PRS313 BC SNP Presence Across 119 23andMe Files from OpenSNP [14]. The bar chart shows the distribution of
the presence of PRS313 BC SNPs across 119 23andMe V5 chip files. In total, 77 SNPs were found to be present within the 23andMe V5
chip. The x-axis represents the percentage of 23andMe files containing each SNP, divided into five ranges: 0%, 0-25%, 25-50%, 50-75%,
and 75-100%. The y-axis indicates the number of SNPs within each range. A significant number of SNPs (236) are not present in any of the
files (0%), while 70 SNPs are present in 75-100% of the files. The other ranges (0-25%, 25-50%, and 50-75%) contain very few SNPs, with
counts of 2, 3, and 2, respectively. This distribution highlights the variability and inconsistency in SNP presence across different 23andMe

V5 chip datasets.

Each of these models was trained to impute all
PRS313 BC SNPs on their respective chromosome,
regardless of whether the SNP was present on the V5 chip
or not. This was done to ensure that any 23andMe user
could get a PRS score regardless of which SNPs on the
chip were missing. For each target PRS313 BC SNP on a
given chromosome, we used all the V5 SNPs on that same
chromosome that were in LD (R* > 0.01 via LDProxy) with
the target SNP as input features to train the prediction
model. Since most of the SNPs in the V5 chip were not in
LD with the PRS313 BC SNPs, they were not used as
input to our model. These models were implemented using
PyTorch [20] and included L1 regularization [21] to
prevent overfitting.

The logistic regression models output probabilities for
each allele, which were thresholded at 0.5 to assign binary
predictions (0 or 1) for each chromosome. These binary
predictions were then summed to derive discrete genotypes
(0, 1, or 2). In contrast, the linear regression models
directly predicted continuous dosage values (ranging from 0
to 2), which were rounded to the nearest integer to assign
discrete genotypes. For polygenic risk score (PRS)
calculation, we used the “best-guess” genotypes (rounded
dosages) rather than allele dosage (expected allele count

based on posterior probabilities). Both models ultimately
converted probabilities or continuous dosages into discrete
genotypes for PRS calculation.

We used an 80/20 simple random data split for training
(n=2003) / testing (n=501) and employed Optuna for
hyperparameter tuning with 10-fold cross-validation across
50 trials for each chromosome [22].

3.4. Benchmarking Beagle

To benchmark the performance of Beagle 5.4 [23], we
left out the same 501 samples that we used to evaluate our
previously trained models from the 1000 Genome Project to
serve as the test set. We then ran Beagle 5.4 on the full
23andMe panel data, excluding the overlapping PRS313 BC
SNPs that are already present in the panel, using the
remaining 2003 samples from the 1000 Genomes Project as
the reference genome.

3.5. Deployment

We deployed our linear regression (unphased) model on
GitHub at https://aaronge-2020.github.io/Fastimpute/,
enabling users to conveniently and privately calculate their
PRS313 BC scores on any device, including smartphones
(Fig. 3).
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Fig. (3). The PRS313 BC Scores Calculator interface. This website displays the results of the PRS calculations for various breast cancer
phenotypes based on user's 23andMe genotype data. Users can upload their 23andMe data file and specify the number of simulation trials
to process their PRS313 BC scores. The results section displays the processing status and the calculated PRS scores for five breast cancer
phenotypes: Overall Breast Cancer, ER-positive, ER-negative, hybrid ER-positive, and hybrid ER-negative. Each phenotype panel includes
statistical summaries of the PRS scores, such as mean, median, standard deviation, minimum, and maximum values, along with a
histogram showing the distribution of PRS scores across the simulation trials.
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To calculate the PRS from a user's 23andMe genotype
data, we first converted the data from genotypes to allele
dosages using the 1000 Genomes Project as a reference for
alleles at each position [13]. Due to varying missing data
across users, we imputed missing input array SNP values
using simulations, taking independent draws based on minor
allele frequency (MAF) data from the 1000 Genomes project.
This imputation of missing V5 chip SNPs was performed
before applying the imputation models to ensure complete
input data. We then calculated PRS313 BC risk scores
across multiple simulations, generating a distribution of
potential risk scores. Users can specify the number of
simulations, balancing accuracy and computational time.

For each simulation, two random draws were conducted
for each allele, with the probability based on the MAF, to
determine the dosage. The simulated data was then passed
into the imputation model to impute the PRS313 BC SNPs.
We used the imputed dosages (or actual dosages for already
genotyped locations) to calculate PRS scores. Beta values for
each SNP, corresponding to different breast cancer
phenotypes, were retrieved from an external dataset. PRS
scores were computed by multiplying the imputed dosages
by their respective beta values and summing these products
for each phenotype.

Results from these simulations were aggregated, and
statistical summaries (mean, median, standard deviation,

Ge et al.

minimum, and maximum values) were computed for each
phenotype. Finally, results were visualized using binned
histograms to display the distribution of PRS scores,
providing a variance estimate for the PRS score. This
process typically takes less than 10 seconds for 1,000
simulations, though time may vary based on the user's
machine.

3.6. Evaluation

The performance of different genotype imputation
methods was evaluated at the SNP level using R’
(coefficient of determination) between the imputed and
actual allele count in the testing data, imputation quality
score (IQS) [15], area under the receiver operating
characteristic curve (AUC), and accuracy to determine
their effectiveness in genotype imputation and predicting
PRS. R’ was calculated using the Scikit-learn library to
indicate the proportion of variance in the true genotypes
explained by the imputed dosages [24]. AUC was
computed using PyTorch to assess the discriminative
ability of the imputed dosages [20]. Our analysis,
presented in Figs. (4-7), has shown that although Beagle
consistently performed the strongest across various
metrics and PRS phenotypes, the baseline linear models
do not fall significantly behind [23].

Median Imputation Performance Metrics Across 22 Chromosomes
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Fig. (4). Median PRS313 BC Imputation Metrics Across 22 Chromosomes for Different Methods. These bar plots display the median
evaluation metrics (R’ IQS, Accuracy, and AUC) across 22 chromosomal models for three genotype imputation methods: Linear
Regression trained on unphased data, Logistic Regression trained on phased data, and Beagle using phased data. The metrics for each
chromosome model were first calculated, and then the median values across all 22 chromosomes were determined. Error bars represent

the standard deviation of the metrics across the different chromosomes.
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3.6.1. Evaluation of Genotype Imputation Models

Since imputing allele dosages is a multi-class
classification problem (with allele dosages of 0, 1, or 2),
we calculated the one-vs-all AUC for each class for the
linear regression model trained with unphased data. We
then computed the mean AUC of the three classes. In
cases where there were no positive classes for a genotype,
resulting in an undefined AUC value, these undefined
values were excluded when calculating the mean AUC.

For each chromosome, the model was evaluated on its
corresponding test set, and performance metrics were
calculated by aggregating predictions across all SNPs
(micro-averaged for classification metrics like AUC-ROC).
The median values of these chromosome-level metrics
across all 22 chromosomes are reported in Fig. (4). As
shown in Fig. (4), Beagle consistently achieves the highest
median values. When assessed using IQS, accuracy, and
AUC, logistic Regression (phased) and linear Regression
(unphased) perform comparably to Beagle. While the

Logistic Regression (phased) achieved a median IQS of
0.888 +/- 0.041 and the Linear Regression (unphased) had
an IQS of 0.824 +/- 0.047, Beagle has a median IQS of
0.923 +/- 0.031. However, when assessed using R, Beagle
performs much stronger than the linear methods, with an
R’ of 0.910 +/- 0.047, compared to 0.828 +/- 0.058 of
logistic regression and 0.836 +/- 0.058 of linear
regression.

The R? of each individual SNP within PRS313 BC was
computed for both the linear regression and logistic
regression models. The distributions of these R* values are
plotted in Fig. (5) and compared with the R* values of
Beagle. This distribution further illustrates the perfor-
mance differences between imputation methods. Beagle
exhibits a high proportion of SNPs with R* > 0.9,
significantly outpacing Linear Regression (unphased),
which only achieves this threshold for 18.53% of SNPs.
Similarly, logistic Regression (phased) reaches this level
for 31.57% of SNPs, highlighting its stronger performance
over the unphased model.
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Fig. 5 contd.....
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Fig. (5). R* Score Distributions for SNP Genotype Imputation Models across Chromosomes. A shows the R scores of SNPs imputed using
the Linear Regression model trained on unphased data vs. Beagle results imputed using phased data. The violin plots illustrate the
distribution across 22 chromosomes. The Beagle model shows a higher proportion of SNPs with R’ > 0.9 (72.84%) compared to the Linear
Regression model (18.53%). B shows the R” scores of SNPs imputed using the Logistic Regression trained on phased data vs. Beagle
results imputed using phased data. Similar to (A), the Beagle model outperforms the linear method, with 72.84% of SNPs exceeding R* >

0.9, compared to 31.57% for Logistic Regression.

3.6.2. Evaluation of PRS Scores Accuracy with
Imputed Genotypes

The R’ values, depicted in Fig. (6), compare PRS
scores calculated using imputed input genotypes to those
calculated with real genotypes. Beagle achieves the
highest R” values across all phenotypes, with an R* of 0.95
for overall breast cancer, indicating a strong correlation
between imputed and actual genotypes. However, it is
noteworthy that the baseline models-Logistic Regression
(phased) and Linear Regression (unphased)-also perform
surprisingly well. For instance, Logistic Regression
achieves an R® of 0.86 for overall breast cancer, only
slightly lower than Beagle. These models significantly
outperform the PRS score calculated without imputation
and the Imputation with MAF method, both with an R? of
0.38.

The confusion matrices in Fig. (7) illustrate the
agreement between true and predicted quantiles for

overall breast cancer risk using PRS313 BC scores. As
shown in Fig. (7), out of the six test-set subjects in the top
1% of PRS scores, both the logistic regression model and
Beagle correctly classified 4 out of 6. The linear regression
model correctly classified 3 out of 6, while imputing with
MAF only led to 1 out of 6 being correctly classified. For
the misclassified patients in the top 1% of PRS scores,
Beagle, linear regression, and logistic regression placed
all of them in the next highest score quantile (1-5%). In
contrast, imputing with MAF placed 2 out of 6 patients in
the 5-10% quantile and 1 out of 6 in the 10-20% quantile.

The difference in performance becomes even more
apparent in the 1-5% quantile, where imputing with MAF
correctly classified only 4 out of 20 patients, with almost
half (8 out of 20) falling outside the top 20% quantile.
Beagle correctly classified 15 out of 20, and both linear
and logistic regression models correctly classified 12 out
of 20, with misclassified samples mostly found within
adjacent quantiles.
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Fig. (6). Comparison of the R* of the PRS score Across Different Models. The R* values were calculated by comparing the PRS scores
calculated using imputed genotypes versus the PRS scores calculated using the real genotypes obtained from the WGS data. Due to
quality control measures, although there are 77 SNPs present within the 23andMe genotyping panel, user data may have varying numbers
of PRS313_BC. (A) R’ values when the PRS scores are calculated using all 77 known SNP positions and imputed dosages for the remaining
SNPs. (B) R’ values when the PRS scores are calculated using only imputed dosages (assuming the user data has none of the PRS313 BC

SNPs). The difference between (A) and (B) highlights the impact of the imputation process on the PRS calculation accuracy.
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PRS Confusion Matrices: Overall Breast Cancer
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Fig. (7). Confusion Matrices for Overall Breast Cancer Risk Prediction. The figure shows confusion matrices comparing the performance
of different imputation methods for predicting overall breast cancer risk using PRS313 BC scores. The matrices display the agreement
between true quantiles and predicted quantiles across various imputation techniques. Each confusion matrix's x-axis represents the
predicted quantiles, while the y-axis represents the true quantiles. Darker shades indicate a higher number of test-set samples falling into
the respective quantile categories, highlighting the distribution of prediction accuracy across the different methods. Numbers in the

matrix represent the number of test-set samples in each bin.

4. DISCUSSION

4.1. Advantages of The FastImpute Pipeline

Traditional reference-based genotype imputation
methods offer high accuracy but are computationally
intensive and limited by reference panel accessibility. The
size of the GRCh37 1000 Genome Project files can be
prohibitive for many researchers, necessitating reliance on

services like the Michigan Impute Server [3]. These
services lack real-time genotype imputation capabilities
and can cause delays in research and clinical decision-
making due to server downtimes and long queue times.
Additionally, these methods may underperform when
target sets differ from discovery panels [25]. This could
explain the variability in Beagle's R* in our results,
particularly at a few specific PRS313 BC SNPs. This
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variability could lead to inconsistent genetic risk
assessments in underrepresented patient populations.
Reference-free approaches [4-7, 26] have been developed
to address these issues. However, they are often too large
for browser-based imputation and require computationally
expensive retraining for imputing on different regions,
limiting their practical clinical application.

This study introduces a lightweight, client-sided
genotype imputation model that enhances both the accuracy
and accessibility of polygenic risk score calculations through
a serverless architecture - the first of its kind. A central
pillar of this contribution is its open-source nature; the
entire FastImpute ecosystem is publicly available
(Application:  https://aaronge-2020.github.io/FastImpute/,
Code: https://github.com/aaronge-2020/FastImpute). This
commitment to open-source ensures full transparency and
reproducibility, enhances user privacy by processing all data
locally on the user's device, and democratizes access to
genetic risk assessment by removing computational and
financial barriers. Our approach addresses key challenges in
existing imputation methods by implementing a simple yet
effective baseline linear regression model that balances
performance, computational efficiency, and privacy. With
significantly lower retraining costs compared to deep neural
networks, the model's adaptability suits various genomic
regions and pipelines while enabling real-time data
processing on edge devices like smartphones, representing a
significant advancement in point-of-care genetic testing and
personalized medicine.

4.2. Clinical Significance

FastImpute offers a novel approach to genetic risk
assessment with its efficient, client-side processing,
demonstrating particular potential in the realm of direct-to-
consumer (DTC) genetic data. The increasing popularity of
DTC genetic testing has resulted in a wealth of readily
available data. However, this data is often underutilized in
terms of comprehensive risk assessment. While established
clinical workflows often utilize targeted sequencing or other
methods, FastImpute provides a valuable alternative for
analyzing existing DTC array data, making it possible to
extract further insights from this readily available resource.
As demonstrated by our PRS313 BC case study for breast
cancer risk assessment, FastImpute can empower
individuals to explore their genetic predispositions using
their DTC data and may facilitate more informed
discussions about personalized risk with healthcare
providers.

The baseline models trained using the FastImpute
pipeline performed comparably in identifying high-risk
individuals to more complex methods like Beagle when
applied to 23andMe data. This is particularly relevant for
breast cancer risk stratification, where Mavaddat et al.
(2019) showed that women in the top 1% of the PRS313 BC
distribution have a predicted risk approximately four times
larger than those in the middle quintile, aligning with the
UK NICE definition of high risk for breast cancer [15]. Our
logistic regression model using phased data performed
similarly to Beagle in identifying these high-risk individuals,
with the linear regression model misclassifying only one
additional patient (Fig. 7).
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Moreover, Fastimpute's ability to perform genetic risk
assessments on edge devices such as smartphones
enhances accessibility. Individuals can leverage their DTC
data to gain insights into their risk profiles, potentially
leading to more proactive discussions with healthcare
providers. While not a replacement for comprehensive
clinical evaluations, Fastimpute serves as a valuable tool
for individuals to better understand their genetic pre-
dispositions and seek further guidance if needed.

Furthermore, by processing data on edge devices,
FastImpute addresses some of the computational and
privacy barriers associated with traditional imputation
methods. This approach could potentially extend genetic
risk assessment to areas where computational resources
and infrastructure are limited, or where individuals are
hesitant to share their data with external servers.

While this on-device approach is a major step for
individual access and privacy, bridging the gap to formal
clinical utility requires overcoming several hurdles. There
is a need for standardized guidelines to interpret PRS
results and a clear path for integrating such tools into
established clinical workflows. Critically, this process must
involve genetic counselors to help patients navigate the
probabilistic nature of PRS, ensuring the information is
empowering rather than alarming. Therefore, we position
FastImpute as a tool for risk exploration: one that enriches
patient-provider discussions rather than serving as a
standalone diagnostic instrument. Its current role as an
exploratory tool highlights the need for extensive
validation before it can be considered for clinical practice.

5. LIMITATIONS

While our study demonstrates the potential of
FastImpute, we acknowledge certain limitations. First, our
reconstruction of the 23andMe V5 panel relied on a
sample of 119 users from openSNP.org [14]. Though this
sample represents nearly half of the publicly available V5
data from 2020 onwards, larger, more representative
datasets would enhance the generalizability of our
findings. We were only trying to present a case study, so
there is minimal impact on the validity of our results.
Future collaborations with consumer genetic testing
companies could provide access to more comprehensive
data, allowing for a more robust analysis of various
genotyping chips.

Second, our methodological choices were guided by
our primary goal of creating a lightweight and portable
pipeline. For instance, our data selection method focuses
on regions within a +/- 500K base pair window with LD,
following the default values provided by LDProxy. This
window may overlook informative, long-range LD patterns
and could potentially exclude some ancestry-specific
information relevant for PRS accuracy. This choice was a
deliberate compromise to maintain a small model size and
ensure rapid, client-side processing. Future studies,
however, could evaluate the impact of expanding this
window to capture additional genetic variation, balancing
imputation accuracy against computational cost.

Similarly, our study relies on linear and logistic
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regression models, which may not capture complex, non-
linear genetic associations as effectively as deep learning
methods could. This decision was guided by our feature
selection strategy, which curated input SNPs based on
strong linear correlation (R?), and by our primary goal of
ensuring client-side deployability. While our preliminary
tests showed that more complex models offered minimal
performance gains for this feature set, they came at a
prohibitive computational cost. Nonetheless, we acknow-
ledge that this approach may not be optimal for all
genomic contexts. Future work could explore hybrid
models that incorporate non-linear effects while pre-
serving a lightweight architecture.

Third, our proof-of-concept focused on a single
polygenic risk score, PRS313 BC. Because this score is
composed of 313 SNPs distributed across all autosomes, it
served as a rigorous benchmark that inherently tests our
workflow’s performance across a diverse set of genomic
regions. However, the generalizability of our pipeline to
polygenic risk scores developed for other diseases and
traits, which may have different genetic architectures, has
yet to be experimentally verified.

Finally, the PRS calculated in our web application is
not calibrated based on the user's superpopulation. As we
are only presenting an illustrative example, we believe this
is beyond the scope of the current project. However, we
recognize that this calibration is important, as the genetic
distance between the user and our training dataset can
influence the predictive power of our models. While out of
scope for this initial proof-of-concept, future research
should prioritize training superpopulation-specific models
to enhance imputation accuracy and normalize PRS scores
for clinical relevance.

CONCLUSION

This study introduces FastImpute, a reference-free, light-
weight genotype imputation model that enhances privacy
and accessibility. By leveraging client-side deployment,
FastImpute addresses the computational inefficiencies and
privacy concerns of traditional methods and reference-free
approaches.

Our PRS313 BC case study for breast cancer risk
assessment shows that FastImpute can perform comparably
to Beagle in identifying high-risk individuals, demonstrating
its potential for real-time genetic risk assessments in clinical
settings on devices like smartphones. This advancement
could lead to earlier disease detection and more
personalized treatments.

Future research could focus on expanding the training
dataset to include more diverse genotyping chips and
genomic regions, implementing superpopulation-specific
calibration, and exploring more complex models to enhance
imputation accuracy while maintaining the benefits of client-
side deployment.
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