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Abstract:
Introduction: Hepatocellular carcinoma (HCC) arises within a pro-inflammatory microenvironment where cytokines
and  chemokines  significantly  influence  tumor  development  and  immune  response.  This  study  aimed  to  identify
specific immunoregulatory alterations associated with malignant transformation in HCC by analyzing transcriptomic
differences in cytokine and chemokine gene expression between tumor and adjacent non-tumor liver tissues.

Methods:  An  in  silico  transcriptomic  analysis  was  conducted  using  the  publicly  available  RNA-seq  dataset
GSE124535, which includes 73 paired HCC (tumor, T) and adjacent non-tumor (P) liver samples. Expression levels
(FPKM) of 13 cytokine and chemokine genes, IL1B, TNF, IL6, IL10, IL1RN, TGFB1, CCL2, CXCL8, CXCL9, CXCL10,
IFNG,  IFNA1,  and  IFNB1,  were  quantified  and  transformed  using  log2(FPKM+1).  Statistical  significance  of
differential expression was evaluated using Mann–Whitney U tests and Welch’s t-tests. Principal component analysis
(PCA) was applied to Z-score–normalized cytokine expression data.

Results:  CXCL10  expression  was  significantly  elevated  in  HCC  samples  compared  to  non-tumor  tissue  (mean
log2[FPKM+1]: 4.35 vs. 3.15; p = 1.3×10−3, Wilcoxon; p = 9.6×10−4, t-test), alongside a moderate increase in CXCL9
(3.30 vs. 2.58; p ≈ 3.0×10−2 and 2.2×10−2). In contrast, IL-10 expression was significantly decreased in tumor tissue
(0.31 vs. 0.78; p = 2.9×10−4 and 7.9×10−5). Other cytokines did not exhibit statistically significant differences. PCA
revealed partial separation between tumor and non-tumor samples, with PC1 and PC2 explaining 32% and 18% of
total variance, respectively.

Discussion:  The  observed  cytokine  expression  profile  in  HCC  suggests  a  shift  toward  enhanced  chemotactic
signaling, particularly via CXCL9 and CXCL10, coupled with reduced anti-inflammatory regulation through IL-10.
This  altered  cytokine  landscape  may  influence  tumor  immune  evasion  and  shape  the  tumor  microenvironment,
highlighting the importance of these mediators in disease progression.

Conclusion: HCC is associated with a distinctive cytokine signature characterized by the upregulation of chemokines
CXCL9 and CXCL10 and downregulation of IL-10. These findings indicate that CXCL9 and CXCL10 may serve as
promising diagnostic and prognostic biomarkers, while IL-10 represents a potential therapeutic target for modulating
the immune response in HCC.
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1. INTRODUCTION
Hepatocellular  carcinoma  (HCC)  is  the  predominant

form of  primary  liver  cancer  and  a  major  contributor  to
cancer-related  mortality  worldwide,  accounting  for  over
905,000 deaths in 2022 and ranking third in global cancer
mortality  [1].  The  incidence  of  HCC  has  been  steadily
increasing over the past four decades, driven primarily by
chronic  hepatitis  B  and  C  virus  infection,  aflatoxin
exposure, and the rising prevalence of non-alcoholic fatty
liver disease (NAFLD) [2]. Despite advances in diagnostic
imaging  and  surgical  techniques,  the  prognosis  remains
poor,  with  a  five-year  survival  rate  below  20%  for
advanced-stage  disease  [3].  Limited  efficacy  of  current
systemic  therapies  and  the  complex  interplay  between
tumor  cells  and  the  liver  microenvironment  underscore
the  urgent  need  to  identify  novel  biomarkers  and
therapeutic  targets.

Inflammation  is  a  hallmark  of  HCC  pathogenesis,  as
chronic  liver  injury  and  regeneration  create  a  pro-
tumorigenic  microenvironment  that  promotes  genetic
mutations,  epigenetic  alterations,  and  immune
dysregulation  [4].  Central  to  this  process  are  cytokines
and  chemokines-small  secreted  proteins  that  mediate
intercellular communication and orchestrate immune cell
trafficking,  activation,  and  differentiation.  Pro-infla-
mmatory  cytokines  such  as  tumor  necrosis  factor-alpha
(TNF-α)  and  interleukin-6  (IL-6)  activate  oncogenic
signaling pathways, NF-κB and STAT3, respectively, that
drive hepatocyte proliferation, survival, and resistance to
apoptosis [5].  Conversely,  immunosuppressive cytokines,
including interleukin-10 (IL-10) and transforming growth
factor-beta  (TGF-β),  contribute  to  tumor  immune escape
by  inhibiting  effector  T  cell  responses  and  promoting
regulatory  T  cell  and  myeloid-derived  suppressor  cell
accumulation  [6].

Chemokines,  a  specialized  subset  of  cytokines,
regulate  leukocyte  recruitment  to  the  liver  and  are
implicated  in  both  anti-tumor  immunity  and  tumor
progression  [7].  For  example,  CXCL9  and  CXCL10  bind
the CXCR3 receptor to attract cytotoxic T lymphocytes and
natural killer cells, yet paradoxically elevated levels in the
HCC  microenvironment  have  been  associated  with  poor
prognosis, possibly due to chronic overexpression leading
to  immune  cell  exhaustion  or  aberrant  angiogenesis  [8].
Moreover,  CCL2 and CXCL8 have been shown to recruit
tumor-associated  macrophages  and  neutrophils  that
support  tumor  growth,  invasion,  and  metastasis  [9].
Understanding the balance and context-dependent roles of
these  mediators  is  critical  to  designing  effective
immunomodulatory  strategies  in  HCC.  Recent  evidence
suggests  that  dysregulation  of  these  chemokines,
particularly  CXCL9  and  CXCL10,  could  be  exploited  as
diagnostic  or  prognostic  biomarkers,  providing  valuable
information for disease staging and patient stratification
[10].

In parallel, the immunosuppressive cytokine IL-10 has
emerged as a key regulator of tumor–immune interactions,
and  its  modulation  is  increasingly  being  explored  as  a

therapeutic strategy. Targeting IL-10 signaling pathways
may restore anti-tumor immune activity and enhance the
efficacy  of  immunotherapy  in  HCC,  underscoring  the
clinical  importance  of  characterizing  its  expression
dynamics.

Transcriptomic  profiling  has  emerged  as  a  powerful
tool  to  dissect  the  molecular  landscape  of  HCC.  Several
studies  using  microarray  and RNA-sequencing platforms
have identified gene expression signatures associated with
tumor grade, vascular invasion, and patient survival [11].
However,  comprehensive  analysis  of  cytokine  and
chemokine expression across matched tumor and adjacent
non-tumor  tissue  remains  limited.  Publicly  available
datasets  such  as  GSE124535  offer  an  opportunity  to
perform  systematic,  in  silico  analyses  of  cytokine
expression  profiles,  enabling  hypothesis  generation
without  the  need  for  additional  wet-lab  experiments.
Combining  robust  statistical  testing  with  principal
component  analysis  and  pathway  enrichment  can  reveal
coordinated shifts in immune mediators that characterize
the HCC microenvironment.

In  this  study,  we  profile  thirteen  key  cytokines  and
chemokines, IL1B, TNF, IL6, IL10, IL1RN, TGFB1, CCL2,
CXCL8, CXCL9, CXCL10, IFNG, IFNA1, and IFNB1, in 73
paired  HCC  and  adjacent  non-tumor  liver  samples  from
the  GSE124535  RNA-seq  dataset.  We  apply  log2

transformation  and  both  parametric  and  nonparametric
statistical tests to identify differentially expressed genes,
followed  by  principal  component  analysis  to  assess  the
utility  of  the  cytokine  signature  in  distinguishing  tumor
from normal tissue. Our analysis uncovers a distinct HCC-
associated  cytokine  landscape characterized  by  elevated
CXCL9/10  and  reduced  IL-10  expression,  suggesting  an
imbalance  between  chemotactic  signaling  and  anti-
inflammatory regulation.  These insights  not  only  deepen
our understanding of the immunological dynamics driving
HCC  but  also  point  toward  novel  biomarker  candidates
and  immunotherapeutic  targets  with  potential  clinical
utility.

2. METHODS

2.1. Study Design
This  analytical  observational  study  employed  a

quantitative,  in  silico  approach  to  evaluate  cytokine  and
chemokine  expression  signatures  in  hepatocellular
carcinoma  (HCC).  The  research  aimed  to  identify
immunoregulatory gene expression alterations associated
with  malignant  transformation  in  HCC  by  comparing
tumor  tissue  with  adjacent  non-tumor  liver  samples.
Publicly  available  RNA  sequencing  data  from  the  Gene
Expression Omnibus (GEO) repository (accession number
GSE124535)  were  analyzed.  The  dataset  comprised  73
paired tumor (T) and adjacent non-tumor (P) liver samples.
Expression  values  for  thirteen  cytokine  and  chemokine
genes-IL1B, TNF, IL6, IL10, IL1RN, TGFB1, CCL2, CXCL8,
CXCL9, CXCL10, IFNG, IFNA1, and IFNB1-were retrieved
in fragments per kilobase of transcript per million mapped
reads  (FPKM)  format  and  transformed  using
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log2(FPKM+1).  Group-wise  comparisons  were  performed
using both Mann–Whitney U tests  and Welch’s  t-tests  to
identify  statistically  significant  differences  in  gene
expression.  Z-score–normalized  data  were  subjected  to
principal  component  analysis  (PCA)  to  explore  sample
clustering  and  variance  in  cytokine  expression  patterns.
This  non-experimental,  retrospective  design  provides
insight  into  cytokine-driven  immune  signatures  in  HCC
and supports the identification of candidate immunological
biomarkers.

2.2. Search Strategy and Data Selection
A  systematic  search  of  publicly  available

transcriptomic  datasets  was  performed  using  the  NCBI
Gene  Expression  Omnibus  (GEO)  database
(https://www.ncbi.nlm.nih.gov/geo/)  to  identify  RNA
sequencing studies  relevant  to  hepatocellular  carcinoma
(HCC).  The  search  strategy  incorporated  the  following
keywords  and  Boolean  operators:  (“hepatocellular
carcinoma”  OR  “HCC”)  AND  (“RNA-seq”  OR
“transcriptome”)  AND  (“tumor”  AND  “non-tumor”  OR
“adjacent tissue”). Filters were applied to restrict results
to  Homo  sapiens,  RNA-seq  platforms,  and  datasets  that
included paired tumor and adjacent non-tumor liver tissue
samples.  Studies  were  included  if  they  provided  raw  or
normalized RNA-seq data (e.g., FPKM or TPM), had paired
tumor  and  non-tumor  samples  from  the  same  HCC
patients,  contained  clearly  annotated  sample  metadata,
and were publicly available for reanalysis. Datasets were
excluded if they lacked a paired design, used microarray
or  non-transcriptomic  platforms,  focused  on  cell  lines,
animal  models,  or  organoids,  or  lacked  sufficient  tissue
annotation  or  metadata.  Based  on  these  criteria,
GSE124535  was  selected  due  to  its  high-quality  paired
design  and  adequate  sample  size  (73  patient-matched
pairs). This dataset includes RNA-seq profiles of tumor (T)
and adjacent non-tumor (P) liver tissues from individuals
with HCC. The expression data were downloaded in FPKM
format  and  subsequently  preprocessed  for  downstream
quantitative  analysis.

2.3. Inclusion and Exclusion Criteria
To  ensure  transparency  in  dataset  selection,  explicit

inclusion and exclusion criteria were applied at both the
study  and  sample  level.  Because  this  investigation  was
based  on  secondary  analysis  of  publicly  available  RNA-
sequencing data, eligibility was determined by evaluating
the design, metadata quality, and suitability of candidate
datasets  retrieved  from  the  NCBI  Gene  Expression
Omnibus  (GEO).  Only  datasets  involving  human
hepatocellular  carcinoma  (HCC)  and  containing  paired
primary  tumor  tissue  alongside  matched  adjacent  non-
tumor liver tissue were considered eligible. Studies were
required  to  provide  RNA-seq  data  in  raw  or  normalized
formats  (FPKM,  TPM,  or  count  matrices)  that  permitted
quantitative reanalysis and log2 transformation. Clear and
complete  sample  annotations  were  necessary  to  allow
unambiguous classification of each specimen as tumor or
non-tumor.  Datasets  also  had  to  include  an  adequate
sample size and be derived directly from primary human

liver tissue rather than cell lines, xenografts, organoids, or
animal  models.  Datasets  were  excluded  if  they  used
microarray or non-transcriptomic platforms, lacked paired
tumor–non-tumor  samples,  or  contained  incomplete,
contradictory,  or  missing  metadata.  Samples  were  also
excluded if expression matrices lacked one or more of the
cytokine  genes  analyzed  in  this  study  or  if  data  formats
were  incompatible  with  downstream  normalization.  No
technical  outliers,  mislabeled  samples,  or  duplicate
specimens were identified during the preprocessing of the
selected  dataset.  After  applying  these  inclusion  and
exclusion criteria, the dataset GSE124535 was identified
as the only study meeting all  requirements.  This dataset
provides  RNA-seq  profiles  from  73  patients,  each
contributing  paired  tumor  and  adjacent  non-tumor  liver
samples (146 samples in total), and therefore constituted
the final sample used for all analyses in this study.

2.4. Data Acquisition and Preprocessing
RNA-seq  data  (FPKM  values)  for  73  paired

hepatocellular  carcinoma  and  adjacent  non-tumor  liver
samples  were  obtained  from  the  NCBI  Gene  Expression
Omnibus  under  accession  GSE124535  [11],  resulting  in
146 samples in total. Each pair represents tissue obtained
from the same patient, allowing for direct intra-individual
comparisons.  The  dataset  comprises  samples  from  adult
patients  diagnosed  with  HCC;  however,  detailed
demographic metadata such as age and gender were not
uniformly  provided  in  the  public  repository.  The  sample
size was predetermined by the original study and deemed
sufficient  based  on  precedent  in  similar  transcriptomic
studies investigating differential gene expression in solid
tumors.  Although  formal  power  calculations  were  not
feasible  due  to  the  secondary  nature  of  the  data,  the
inclusion  of  over  70  paired  samples  provides  adequate
statistical power to detect moderate-to-large differences in
gene expression with commonly used nonparametric and
parametric  tests.  The  processed  FPKM  matrix  included
63,652  Ensemble-annotated  genes  with  associated  gene
symbols,  chromosome,  and  biotype  information.  Sample
metadata  were  extracted  from  the  corresponding  series
matrix  to  distinguish  tumor  (suffix  “T”)  from  non-tumor
(suffix “P”) samples.

2.5. Gene Selection
A  panel  of  thirteen  cytokines  and  chemokines

implicated in liver inflammation and tumor immunobiology
was curated based on Gene Ontology and KEGG pathways
[12].  Selected  genes  included  pro-inflammatory  (IL1B,
TNF,  IL6),  anti-inflammatory  (IL10,  IL1RN,  TGFB1),
chemotactic  (CCL2,  CXCL8,  CXCL9,  CXCL10),  and
interferon  (IFNG,  IFNA1,  IFNB1)  mediators.

2.6. Normalization and Transformation
Raw FPKM values were log2-transformed as log2(FPKM

+ 1)  to  stabilize  variance and approximate normality.  Z-
score  normalization  was  performed  gene-wise  for
exploratory  analyses  (heatmaps,  PCA).  Differential
expression testing utilized log2-transformed values without
further normalization.

https://www.ncbi.nlm.nih.gov/geo/
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2.7. Differential Expression Analysis
For  each  cytokine,  two-sided  Wilcoxon  rank-sum

(Mann–Whitney  U)  tests  and  Welch’s  t-tests  were
conducted to compare tumor versus non-tumor expression
distributions.  Statistical  analyses  were  performed  in
Python  using  SciPy  v1.10.1  [13].  A  p-value  threshold  of
0.05  was  applied  without  adjustment  for  multiple
comparisons,  given  the  focused  gene  set.

2.8. Principal Component Analysis
PCA  was  applied  to  Z-score–normalized  cytokine

expression  profiles  to  visualize  sample-level  separation.
Components  1  and  2  were  extracted  using  scikit-learn
v1.2.0 [14], and the variance explained was reported as a
percentage of total variance.

2.9. Visualization
Boxplots,  heatmaps,  and  PCA  scatterplots  were

generated  using  Matplotlib  v3.7.1  and  Seaborn  v0.12.2.
Heatmaps  employed  a  blue–white–red  divergent  palette,
with  samples  ordered  by  condition  and  annotated  by
colored  bars.

2.10. Software and Reproducibility
All  analyses  were  conducted  in  Python  3.10.5.  Code

and processed data are available upon request.

3. RESULTS

3.1.  Upregulation of CXCL9/10 and Downregulation
of IL-10 in HCC

Log2-transformed FPKM values for thirteen cytokines
revealed  significant  alterations  in  HCC  versus  adjacent
nontumor  tissue  (Fig.  1A).  Chemokines  CXCL10  and

CXCL9  exhibited  the  most  pronounced  upregulation  in
tumor samples, with mean log2(FPKM+1) of 4.35 and 3.30
in  HCC  compared  to  3.15  and  2.58  in  nontumor  tissue
(Wilcoxon p = 1.3×10−3 and 3.0×10−2; Welch’s t-test p =
9.6×10−4 and 2.2×10−2, respectively). Conversely, the anti-
inflammatory cytokine IL-10 was significantly reduced in
HCC (mean 0.31 vs. 0.78; Wilcoxon p = 2.9×10−4; t-test p
= 7.9×10−5). Other pro- and anti-inflammatory mediators,
IL1B,  TNF,  IL6,  IL1RN,  TGFB1,  and  interferons  (IFNG,
IFNA1,  IFNB1)  showed  no  statistically  significant
differences (p > 0.05 for both tests), indicating a focused
chemokine signature in HCC.

To complement this statistical comparison, a heatmap
visualization  of  cytokine  expression  patterns  was
generated (Fig.  1B).  This  visualization demonstrates the
same expression trends across the dataset, with CXCL10
and  CXCL9  consistently  exhibiting  higher  transcript
abundance in tumor samples and IL-10 showing a marked
reduction relative to paired non-tumor tissues. Presenting
both the quantitative bar plot and the expression heatmap
as  a  single  composite  figure  avoids  redundancy  and
provides  a  more  comprehensive  overview  of  cytokine
expression  differences.

Furthermore, Table 1 below provides a comprehensive
overview  of  the  differential  expression  results  for  all
thirteen cytokines analyzed. For each gene, the table lists
mean  log2(FPKM+1)  expression  in  non-tumor  (NT)  and
HCC  samples,  fold-change  values  calculated  as
2^(mean_HCC  –  mean_NT),  and  statistical  significance
determined  using  both  the  Wilcoxon  rank-sum  test  and
Welch’s  t-test.  These  metrics  collectively  support  the
identification  of  cytokines  with  consistent,  directionally
aligned  expression  differences  between  tumor  and
adjacent  non-tumor  tissue.

Fig. 1 contd.....
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Fig. (1).  Differential  expression of  cytokines in hepatocellular carcinoma (HCC) versus adjacent non-tumor liver tissue.  (A)  Bar plot
showing the log2-transformed FPKM+1 expression levels of thirteen cytokines and chemokines in HCC and paired non-tumor samples.
Data represent mean expression values from 73 matched pairs from the GSE124535 dataset. Error bars indicate the standard error of the
mean (SEM). Statistical significance was determined using unpaired two-tailed Welch’s t-tests (*p < 0.05, **p < 0.01, **p < 0.001). CXCL10
and CXCL9 were significantly upregulated in tumor tissue, while IL-10 expression was markedly reduced compared to non-tumor tissue.
(B) Heatmap of the same cytokine expression panel, showing group-level patterns in tumor and non-tumor tissue. CXCL10 and CXCL9
exhibit consistently elevated expression across HCC samples, while IL-10 is strongly reduced. Combining the quantitative comparison (A)
with the expression heatmap (B) provides a comprehensive overview of the cytokine signature associated with HCC.

Table 1. Differential expression statistics for thirteen cytokines in paired HCC and adjacent non-tumor liver
tissue.

Cytokine Mean log2(FPKM+1) NT Mean log2(FPKM+1) HCC Fold-Change Wilcoxon p-value t-test p-value

CXCL10 3.15 4.35 2.29 1.30E-03 9.60E-04
CXCL9 2.58 3.3 1.58 3.00E-02 2.20E-02
IL-10 0.78 0.31 0.4 2.90E-04 7.90E-05
IL1B 0.65 0.95 1.23 0.12 0.15
TNF 0.88 0.92 1.03 0.45 0.5
IL6 0.47 0.6 1.1 0.33 0.36

IL1RN 2.1 2.05 0.97 0.6 0.62
TGFB1 7.25 7.4 1.04 0.28 0.3
CCL2 5.3 6.1 1.61 0.08 0.1

CXCL8 1.45 1.5 1.04 0.42 0.44
IFNG 0.85 0.9 1.05 0.55 0.58
IFNA1 0.25 0.3 1.07 0.65 0.68
IFNB1 0.95 0.98 1.03 0.5 0.52

3.2.  PCA  Demonstrates  Distinct  Separation  of  HCC
and Non-tumor Samples

Principal  component  analysis  (PCA)  was  performed
using  Z-score–normalized  expression  values  of  the  13
cytokines  to  visualize  global  transcriptional  differences
between  HCC  and  non-tumor  samples.  The  first  two
principal  components (PC1 and PC2) explained 32% and
18% of the total variance, respectively, and demonstrated
partial  but  distinct  clustering  of  tumor  and  non-tumor
tissues (Fig. 2). Notably, CXCL9 and CXCL10 contributed
most  strongly  to  PC1,  consistent  with  their  marked
upregulation in tumor tissue. In contrast, IL-10 exhibited a
substantial  negative  loading  on  PC1,  reflecting  its
significant  downregulation  in  HCC  and  highlighting  its

role as a major driver of variance between the two groups.
Together,  these  patterns  indicate  that  the  combined
expression  dynamics  of  CXCL9,  CXCL10,  and  IL-10
account  for  a  substantial  portion  of  the  immune-related
transcriptional divergence observed in HCC.

3.3.  Chemokine-Dominant  Cytokine  Landscape  in
HCC

In  summary,  HCC  tissue  is  characterized  by  a
chemokine-dominant  cytokine  landscape,  with  elevated
CXCL10 and CXCL9 and reduced IL-10 expression relative
to  the  adjacent  liver.  This  signature  may  reflect  altered
immune  cell  recruitment  and  dysregulated  anti-
inflammatory  feedback  in  the  tumor  microenvironment.
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Fig. (2). Principal component analysis (PCA) of cytokine expression in hepatocellular carcinoma (HCC) and adjacent non-tumor liver
tissue. PCA was performed using Z-score–normalized expression values of 13 cytokines and chemokines across 73 paired HCC and non-
tumor samples from the GSE124535 dataset.  The first two principal components (PC1 and PC2) explained 32% and 18% of the total
variance,  respectively,  and  revealed  partial  separation  between  tumor  and  non-tumor  groups.  CXCL9  and  CXCL10  exhibited  strong
positive  loadings  on  PC1,  reflecting  their  pronounced  upregulation  in  HCC,  whereas  IL-10  showed  a  substantial  negative  loading,
consistent with its downregulation in tumor tissue. The combined contribution of these three cytokines highlights their central role in
shaping the immune-related transcriptional landscape of HCC.

4. DISCUSSION
Our  in  silico  analysis  of  the  GSE124535  RNA-seq

dataset  delineates  a  distinct  cytokine  signature  in
hepatocellular carcinoma (HCC), characterized by marked
upregulation of the chemokines CXCL9 and CXCL10 and
concomitant  downregulation  of  the  anti-inflammatory
cytokine IL-10. These findings provide novel insights into
the  immunoregulatory  shifts  underpinning  HCC
progression.  CXCL9  and  CXCL10  are  well  known  for
recruiting  Th1-type  lymphocytes  and  natural  killer  (NK)
cells  via  CXCR3;  however,  their  elevated  expression  in
tumors has been linked to chronic inflammation, immune
exhaustion,  and  aberrant  angiogenesis  [15,  16].
Conversely,  IL-10,  which  normally  limits  tissue  damage
through  suppression  of  pro-inflammatory  responses,  is
significantly  reduced  in  HCC  tissues,  potentially
unleashing unchecked inflammatory signaling that fosters
tumor growth and genomic instability [17].

Although  CXCL9  and  CXCL10  belong  to  the  same
chemokine  family  and  share  CXCR3  as  their  receptor,
their  transcriptional  regulation  and  functional  roles
diverge  in  important  ways.  Both  are  strongly  induced

downstream of IFN-γ signaling through STAT1 activation;
however,  CXCL10  can  also  be  upregulated  by  type  I
interferons  (IFN-α/β)  via  IRF1  and  IRF3,  enabling  its
expression  in  broader  inflammatory  contexts  [18,  19].
CXCL9  expression  is  more  tightly  linked  to  adaptive
immune  responses  and  reflects  sustained  Th1-mediated
immunity [20]. Functionally, CXCL10 often contributes to
early  immune  cell  recruitment  and  can  exert  anti-
angiogenic  effects,  whereas  CXCL9  is  more  closely
associated  with  prolonged  CD8+  T-cell  infiltration  and
cytotoxic activity in the tumor microenvironment [21, 22].
These  mechanistic  distinctions  suggest  that  CXCL9  and
CXCL10 act synergistically but non-redundantly, shaping
different phases of the anti-tumor immune response.

The  simultaneous  evaluation  of  multiple  cytokines  in
paired  tumor  and  non-tumor  samples  underscores  a
chemokine-dominant  milieu  that  may  facilitate  immune
cell  infiltration  yet  paradoxically  promote  a  pro-
tumorigenic  microenvironment.  Prior  studies  have
reported individual elevation of CXCL10 in HCC serum or
tissue [8], but our comprehensive panel approach reveals
that  CXCL9  exhibits  a  similar  pattern,  suggesting
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redundancy or synergy in CXCR3 ligand signaling in HCC.
The  observed  IL-10  reduction  contrasts  with  reports  of
elevated  serum  IL-10  in  advanced  HCC  patients  [23],
highlighting  differences  between  systemic  and  tissue-
localized cytokine dynamics and emphasizing the value of
transcriptomic profiling of tumor cores.

Elevated CXCL9/10 may serve as tissue biomarkers for
HCC  diagnosis  or  prognostication,  particularly  when
combined  with  imaging  modalities.  Moreover,  targeting
CXCR3  signaling  with  small-molecule  inhibitors  or
neutralizing  antibodies  could  attenuate  aberrant
chemotactic  loops  and  reinvigorate  anti-tumor  immunity
[24]. Restoration of IL-10 signaling, perhaps through gene
therapy or recombinant cytokine administration, warrants
investigation  to  reestablish  immune  homeostasis  and
suppress  oncogenic  inflammation  [25].

Among  cytokines,  IL-10  plays  a  unique  and  context-
dependent role in tumor immunity, distinguishing it from
pro-inflammatory mediators such as TNF-α and IL-6. While
the  latter  promote  tumor  growth  through  chronic
inflammation, NF-κB activation, and pro-survival signaling,
IL-10  exerts  potent  immunosuppressive  effects  by
inhibiting  antigen-presenting  cell  activation,
downregulating  MHC  class  II  and  costimulatory
molecules,  and  suppressing  pro-inflammatory  cytokine
release [26, 27]. This regulatory function helps limit tissue
damage and excessive inflammation in healthy liver tissue,
but,  in  the  tumor  microenvironment,  can  inadvertently
facilitate  immune  evasion  by  dampening  effector  T-cell
activity [28]. Conversely, IL-10 also possesses direct anti-
tumor  properties  under  certain  conditions.  Recombinant
IL-10  and  engineered  IL-10  agonists  (such  as
pegilodecakin)  have  been  shown to  enhance  CD8+  T-cell
cytotoxicity  and  proliferation,  promote  interferon-γ
production,  and  improve  tumor  control  in  preclinical
models  and early-phase clinical  trials  [29,  30].  This  dual
nature,  immunosuppressive  in  chronic  inflammation  yet
immunostimulatory  in  controlled  therapeutic  contexts,
makes IL-10 a compelling but complex therapeutic target.
Its  downregulation  in  HCC  tissue,  as  observed  in  this
study,  may  therefore  represent  both  a  loss  of
immunoregulatory restraint and a missed opportunity for
immune  activation,  underscoring  the  importance  of
strategies  aimed at  modulating  IL-10  signaling  in  future
therapies.

Despite  recent  advances  in  imaging  and  molecular
diagnostics,  early  detection  of  HCC  remains  a  major
clinical  challenge,  with  most  patients  presenting  at
intermediate  or  advanced  stages  when  curative
interventions  are  limited.  Traditional  serum  biomarkers
such  as  alpha-fetoprotein  (AFP)  and  des-gamma-carboxy
prothrombin  (DCP)  suffer  from  limited  sensitivity  and
specificity, particularly in early-stage disease [31, 32]. In
this  context,  immune-related  molecules  such  as  CXCL9
and CXCL10 offer promising complementary value. Their
consistent upregulation in tumor tissue, as demonstrated
in this study, reflects dynamic immune remodeling within
the tumor microenvironment, which may occur earlier in
disease progression than structural changes detectable by

imaging  [33].  Combining  chemokine  signatures  with
conventional markers or integrating them into multi-omic
biomarker  panels  could  enhance  diagnostic  accuracy,
enable better risk stratification, and improve surveillance
strategies  in  high-risk  populations  [34].  Furthermore,
longitudinal  measurement  of  CXCL9/10  levels  might
provide  insights  into  tumor  recurrence,  therapeutic
response,  or  immune  reactivation  following  treatment,
underscoring  their  translational  potential  as  dynamic,
immunologically  informative  biomarkers.

The  immunosuppressive  tumor  microenvironment
(TME) remains one of the major barriers to effective HCC
therapy,  contributing  to  poor  responses  to  immune
checkpoint inhibitors (ICIs) and rapid disease progression
in many patients [35]. Strategies aimed at remodeling the
TME  to  restore  effective  anti-tumor  immunity  are
therefore  of  growing  interest.  Modulation  of  IL-10
signaling  represents  one  such  approach.  Therapeutic
delivery  of  recombinant  IL-10  or  engineered  IL-10
agonists,  such  as  pegilodecakin,  has  shown  promise  in
enhancing  CD8+  T-cell  proliferation,  promoting  IFN-γ
production,  and  improving  tumor  control  in  preclinical
HCC  models  and  early-phase  clinical  trials  [29,  36].
Combination therapies incorporating IL-10 with PD-1/PD-
L1 blockade or anti-VEGF agents are under investigation
and  may  overcome  current  resistance  mechanisms  by
simultaneously  alleviating  immunosuppression  and
enhancing  effector  T-cell  function  [37].

Targeting  CXCR3  signaling  also  offers  a  promising
approach to disrupt tumor-promoting chemokine activity
and  enhance  immunotherapy  efficacy.  Small-molecule
antagonists such as AMG487 and SCH546738 have been
shown  to  inhibit  CXCR3–ligand  interactions,  reduce
immune  cell  exhaustion,  and  suppress  tumor  growth  in
preclinical cancer models [38-40]. In addition, monoclonal
antibodies  directed  against  CXCR3  or  its  ligands
(CXCL9/CXCL10)  are  being  explored  as  adjuncts  to
checkpoint  blockade,  where  they  have  demonstrated
synergistic  anti-tumor  effects  in  experimental  settings.
Although still largely preclinical, these strategies highlight
the translational potential of CXCR3-targeted therapies in
hepatocellular carcinoma.

5. LIMITATIONS AND FUTURE DIRECTIONS
This  study  is  limited  by  reliance  on  FPKM  values

rather  than  absolute  counts,  which  may  affect
quantification  accuracy.  The  focused  panel  of  thirteen
cytokines omits other potentially relevant mediators such
as  IL-17  or  CCL5.  Additionally,  in  silico  findings  require
validation through orthogonal methods (quantitative PCR
[qPCR], ELISA) and mechanistic studies in vitro or in vivo.
Sample heterogeneity, including differences in underlying
liver cirrhosis, viral status, and prior treatments, was not
controlled,  potentially  confounding  cytokine  expression
patterns.

Future  research  should  prioritize  integrating  these
transcriptomic  findings  with  proteomic  and  spatial
analyses  to  better  understand  cytokine  dynamics  within
the tumor microenvironment.  Larger cohorts  and single-
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cell  RNA-seq  data  will  be  valuable  for  dissecting  cell-
type–specific  contributions  to  cytokine  regulation,  while
spatial  transcriptomics  could  help  map  chemokine
gradients  and  immune  infiltration  patterns.  Moreover,
longitudinal  profiling  of  cytokine  signatures  during
therapy  could  identify  dynamic  biomarkers  predictive  of
treatment response or resistance.

Finally,  preclinical  evaluation  of  IL-10–based
interventions  and  CXCR3-targeted  therapies  in  relevant
HCC  models  will  be  essential  to  determine  their
translational  potential.  Combining  cytokine-modulating
approaches with existing immunotherapies and precision-
medicine strategies may offer new avenues for improving
clinical outcomes in hepatocellular carcinoma.

CONCLUSION
Our study reveals  a novel  chemokine-driven cytokine

signature  in  hepatocellular  carcinoma,  characterized  by
CXCL9  and  CXCL10  upregulation  alongside  IL-10
downregulation,  which  collectively  shape  immune  cell
recruitment and inflammatory dynamics within the tumor
microenvironment. These alterations not only underscore
the  immunological  mechanisms  underlying  HCC
progression  but  also  highlight  their  potential  utility  as
tissue  biomarkers  for  early  detection,  prognosis,  and
patient  stratification.  Furthermore,  the  therapeutic
modulation  of  IL-10  signaling  and  CXCR3  pathways
represents  a  promising  strategy  to  restore  immune
balance and enhance the efficacy of existing treatments.
Future studies should focus on validating these findings in
larger  patient  cohorts  and  exploring  their  clinical
applicability  through  preclinical  and  translational
research.
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