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Abstract: Genome-scale microarray datasets are noisy. We have previously reported an algorithm that yields highly spe-

cific genome-scale discovery of states of genetic expression. In its original implementation, the algorithm computes pa-

rameters by globally fitting data to a function containing a linear combination of elements that are similar to the Hill equa-

tion and the Michaelis-Menten differential equation. In this essay, we show that approximation by cubic splines yields 

curves that are closer to the datasets, but, in general, the first derivatives of the cubic splines are not as smooth as the de-

rivatives obtained by global fitting. Nonetheless, little variation of the first derivative is seen in the area of the curve 

where the Cutoff Rank is computed. The results demonstrate that piece-wise approximation by cubic splines yields sensi-

tivity and specificity equal to those obtained by global fitting.  

INTRODUCTION 

 The genomes of several organisms have recently been 

sequenced [1-3]. Microarray studies are increasingly being 

used to explore biological causes and effects and even to 

diagnose diseases; however, the data resulting from microar-

ray analysis is very noisy and the patterns of expression and 

molecular signatures of microarrays are not always repro-

ducible [4-6].  

 MASH is a mathematical algorithm that yields highly 

accurate predictions of states of genetic expression (up or 

down-regulation) from the genome-scale profiling of two 

samples [7]. “Accuracy” in this context refers to the very 

low incidence of false discovery rates delivered by the pro-

cedure; the term “false discovery rate” indicates the number 

of false positives (i.e. genes whose states of genetic expres-

sion are falsely discovered to be differentially expressed) 

divided by the total number of true negatives (i.e. genes 

whose states of expression are truly not differentially ex-

pressed between samples). Specifically, the false discovery 

rates of MASH and MIDAS (http://www.tm4.org/midas. 

html) in same-to-same comparisons using 19K microarrays 

are 1/192,000 versus 1,347/192,000 measurements, respec-

tively (see [7]).  

 MASH computes parameters by globally fitting the data 

to a function including a linear combination of elements that 

are similar to the Hill equation and the Michaelis-Menten 

differential equation. The term “global fitting” is used in the 

sense of fitting the entire dataset to a single equation. We 

will refer to this function as “the equation” (see Fig. 1). The 

Hill equation describes the fraction of the enzyme saturated 

by the ligand as a function of ligand concentration. It is of  
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reaction velocity, a constant, and substrate concentration.  

 Approximation by polynomials would be much simpler, 

but we found that global determination of something like (1) 

using a polynomial required a very large number of parame-

ters and the resulting curve fits were poor (i.e. not close to 

the datasets). There is another, well-known alternative, how-

ever; approximation by piecewise polynomials (spline ap-

proximation for example).  

 Our goal in the present essay is to use piecewise polyno-

mial approximation in place of (1) and to compare the results 

to the MASH algorithm. An advantage of piecewise poly-

nomial approximation is that it can be implemented more or 

less automatically. The disadvantage at the outset is that 

many more parameters are needed to determine such an ap-

proximation. We swill show that both methods have advan-

tages but that the final predictions by either are virtually 

identical. 

MATERIALS AND METHODS 

Microarrays  

 Normal brain RNA is obtained by pooling RNA from 

human occipital lobes harvested from 4 individuals with no 

known neurological disease whose brains are frozen less 

than 3 hours postmortem [7-10]. The quality of RNA is as-

sayed by gel electrophoresis and only high quality RNA is 

processed. Microarray chips whose trade names are 1.7K and 
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19K are purchased from the Ontario Cancer Institute (On-

tario, Canada). The 1.7K and 19K microarrays contain 1,920 

and 19,200 cDNAs spotted in duplicates, respectively. The 

experimental design, which includes dye swapping as de-

scribed later, generates four replicate measurements per gene 

and sample [8, 9]. Each slide contains two replicate adjacent 

spots. The Cy3/Cy5 design generates two ratios. The 

Cy5/Cy3 design generates two additional ratios. The total is 

four replicate ratios with dye-swapping. RNA used in spike-

in experiments is transcribed from the same Arabidopsis 

cDNA spotted on the microarray slides.  

Software Specifications 

 The mathematical analysis, to be described presently, is 

performed using functions written in Matlab including the 

spline and optimization toolboxes (Mathworks, Natick, MA). 

The outcome is a new piece of software called MASH2 that 

uses smoothing splines (called MASHsm below). It is freely 

available to academics for noncommercial use. To obtain 

executable software, please send a request by e-mail. The 

datasets may be downloaded from http://www.rushu.rush. 

edu/neurosci/Fathallah.html. 

RESULTS AND DISCUSSION  

Definitions  

 The state of genetic expression of a spot in sample A vs. 

sample B assayed by cDNA arrays is measured by the ratio 

of the background-subtracted intensities of sample A divided 

by background-subtracted intensities of sample B. A ratio r > 

1 (log2(r) > 0) is taken to mean upregulation of the gene in 

sample A as compared to B. The terms ‘genes,’ ‘spots,’ 

‘symmetrical,’ and ‘rank,’ are defined in terms of the 1.7K 

arrays; these terms are also applicable to other microarrays. 

As mentioned above, the 1.7K microarray contains 1,920 

cDNAs or controls, here referred to as genes, spotted in du-

plicated to a total of 3,840 spots. The term symmetrical im-

age refers to the two images, corresponding to the Cy3 and 

Cy5 fluorescent dyes, generated from a single microarray 

slide. Background-subtracted spot intensities are sorted in 

ascending order, thereby assigning a Rank to every spot. For 

instance, a spot whose rank is 3000 has a higher background-

subtracted spot intensity than do all spots whose ranks are 

less than 3000.  

 Dye swapping refers to experiments where the Cy3 and 

Cy5 dyes are swapped between the 2 samples; this is done to 

annul confounding variables introduced by heterogeneous 

fluorescence of the Cy5 and Cy3 molecules. Each microarray 

slide generates a set of symmetrical Cy3/Cy5 images that 

yield 2 replicate ratios. Thus, each dye swapping dataset 

generates 4 replicate ratios. 

The Datasets and Rationale 

 The true negative datasets are assembled by comparing 

the pool of brain RNA to itself (same-to-same). The goal of 

the same-to-same comparisons is to form an appreciation of 

the experimental noise, generated in the main by technical 

artifacts, independent of biological heterogeneity. In this 

phase of the experiment, normalized expression ratios  1 

(log2  0) are false positive (noise) because the Cy3/Cy5 

symmetrical images contain identical genetic information. 

The artifactual measurements may be caused by several fac-

tors including slide-to-slide differences, variations in the 

reverse transcription reactions, hybridization, labeling, and 

variations due to the laser. The datasets are normalized by a 

nonlinear method described elsewhere [7].  

 The same-to-same comparisons include 18 and 20 ex-

periments that generate a total of 9 and 10 dye swapping data 

sets using the human 1.7K and 19K microarrays, respec-

tively. The experiments are paired by consecutive order. The 

goal is to filter the largest number of non-zero same-to-same 

expression ratios originating from technical noise.  

 The 1.7K microarray includes 64 genes of Arabidopsis 

cDNA. The true positive datasets include 4 sets of spike-in 

dye swapping experiments using 1.7K microarrays, where 1 

ng of Arabidopsis RNA is added to one sample but not the 

other. In this design, all 64 genes of Arabidopsis cDNA 

serve as true positives. MASH, in its original implementa-

tion, detects the states of genetic expression of 26/64 Arabi-

dopsis cDNA; its sensitivity is thus 41% [7].  

Approximation and Computing the CR 

 Fig. (1a) is a typical plot of the expression ( )g x that ap-

proximates the log-transformed and sorted background-

subtracted spot intensities [7]. The equation fits not only our 

data of 60/60 1.7K data sets, 200/200 human 19K data sets 

(38,400 spots on 2 separate slides P1 and P2), but also mi-

croarray datasets acquired in independent laboratories. Spe-

cifically, ( )g x fits all 266 curves resulting from the 133 pub-

licly available arrays from the lymphoma study by Alizadeh 

et al. (R-square > 0.99) [11] (see [7] for details). Each curve-

fit generates a unique set of parameters   
(a

1
,...,a

19
)  which 

determine the function in (1). The parameters are obtained 

via lsqcurvefit (MATLAB, optimization toolbox), which 

solves the nonlinear curve-fitting problem in the least 

squares sense.  

 The equation is constructed to fit the microarray datasets 

that consist of 3 parts: 1) an initial segment where spot inten-

sities rise rapidly, 2) a second almost ‘linear’ section associ-

ated with small increments, and 3) a final ‘exponentially-

growing’ phase (see [7] for details on the construction of the 

equation and the curve fits). The rate of increase of the first 

segment is maximal at the point of inflection that corre-

sponds to the maximum of '( )g x  in that segment (Fig. 1b). 

The 1.7K chips contain ‘buffer’ spots containing no cDNA, 

which are expected to generate the lowest intensities caused 

by nonspecific binding of the probes to glass or buffer. The 

y-coordinate at the Inflection Rank corresponds to a small 

background-subtracted intensity, ranging from 50–150, most 

probably generated by non-specific probe binding. We tenta-

tively conclude that the majority of intensities whose ranks 

are smaller than the point of inflection are likely caused by 

nonspecific binding of the probe. 

 Let n be the total number of spots. The Cutoff Rank (CR) 

is defined as the rank such that: 

( )
'( ) *

optimal

g n
g CR

n
=   

where optimal = 0.36 has been established empirically to op-

timize sensitivity without lowering specificity [7]. The CR is 
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located approximately at the junction of the second and third 

segments of the curves (see Fig. 1).  

Outline of the MASH Procedure 

 MASH first computes the Cutoff Rank (CR) from the 

derivative of the equation. MASH includes two filters, F1 

and F2 (Fig. 2). A spot is sensitive to F1 if both its symmet-

rical ranks in SO1 and SO2 are less than the CR. To be resis-

tant to F1, either Cy3 or Cy5 images of the spot must contain 

enough signals so that at least one of the symmetrical ranks 

is larger than the CR [7].  

 The second filter (F2) of MASH consists of two rules. 

The first Rule (F2a) requires that all four replicate ratios 

consistently show up- or down-regulation; i.e. all 4 replicate 

log2(ratios) > 0 or all four < 0. Recall that each dye-

swapping experiment generates 4 replicate spot. The second 

rule of F2 (F2b) demands that all unfiltered log2 (ratios) must 

be outside the interval whose endpoints are + 3 * the largest 

of the four replicate standard deviations of F1-resistant 

log2(ratios). Genes filtered by F1 or F2 have their mean 

log2(ratio) reset to 0. 

Approximation by Splines 

 An alternative to determining the approximation rendered 

by the function displayed in (1), is to use standard approxi-

mation procedures on the same-to-same and spike-in 

datasets. Lagrangian interpolation, projection methods, fi-

nite-element approximation, etc. (see [12]) all come to mind 

as plausible alternatives to the generalized Padé-type ap-

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Typical plot and computing the CR. (a) shows a plot of the function:  
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that approximates the log-transformed and sorted background-subtracted expression levels. (b) shows the plot of its first derivative (see [7]). 

Here, the independent variable x refers to rank. Single arrows point to the point of inflection and the double arrows point to the region of the 

curve where the CR is located.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Diagram summarizing the filters. MASH computes the CR from the derivative of the function in (1). MASHls and MASHsm com-

pute the CR from the derivatives of smoothing splines and least square approximation by splines, respectively. All the other steps in the three 

procedures are the same.  
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proximation represented by the form (1). A little experimen-

tation convinces one that interpolation is not a good idea. 

This is because the data is rather noisy and the MASH test 

for gene expression relies on the derivative of the approxi-

mation. Finite element methods using relatively smooth ele-

ments appear on the surface to have a better chance of pre-

dicting as well as does using MASH with (1). For the present 

investigation, we fixed on cubic splines for our finite-

element space. We used both minimizing the sum of squares 

of the Euclidean distance as the approximation criteria (least-

square, LS, approximation) and demanding maximal 

smoothness of the approximation (smoothing cubic applies 

or Sm approximation). The use of splines together with these 

more global optimizing criteria appears to be a good com-

promise between the desire for pointwise accuracy and the 

demand that the approximation have a well-behaved deriva-

tive. 

 

 

 

 

 

 

 

 

 

Fig. (3). Norms of the difference: spline curves are closer to the data. Let n be the total number of spots on the microarray. Let f(x) repre-

sent a line connecting all the log-transformed and sorted background-subtracted expression levels in a dataset. Let F(x) be function that ap-

proximates the data. Then: 

1L

1

F- f F( ) f( )

n

x x dx= . 

The approximation F is given by the function (1) (blue, (a) and (b)), by splines using least square approximation (red, (a)), or smoothing 

splines (red, (b)). The averages of the L1 norms of the differences between f and the F generated by the function (1), least square approxima-

tion splines, and smoothing splines are 199.1, 76.4, and 64.4, respectively. The x-axis refers to eighty 19K images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Plots of the first derivatives: the curves of the first derivatives of the spline approximations are not as smooth as those of the ap-

proximation generated by (1). The same dataset is approximated globally by (1) (black line), splines using least square approximation (a-c, 

red), or smoothing splines (d-f, red). The graphs (b-c) and (e-f) show zoom-ins of (a) and (d), respectively. Notice that the plots show varia-

tions of the first derivatives of the splines in low and high ranks around the curves of the derivatives of equation (1). In addition, variation is 

more pronounced for splines generated by least square approximation as compared to smoothing splines (b and e). Nonetheless, little varia-

tion is seen in the area of the curve where the CR is computed (red arrow).  
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 As compared to the use of (1), the curves generated by 

the Sm and Ls procedures are closer to the data as evidenced 

by smaller errors of difference. Fig. (3) shows the averages 

of the L1-norms of the errors made using (1), splines gener-

ated by least square approximation, and smoothing splines to 

be 199.1, 76.4, and 64.4, respectively. However, the graphs 

depicting the derivatives of (1) are smoother than those of 

spline approximations in the sense of having fewer small-

scale oscillations (see Fig. 4). Specifically, the plots show 

variations of the curves of the first derivatives of the splines 

at low and high ranks. Fortunately, little variation is seen in 

the area of the curve where the CR is computed (see again 

Fig. 4).  

MASH2 

  Next, we carry out the same methods as MASH except 

for the step of approximating the data where we use smooth-

ing cubic splines and least square approximation by cubic 

splines instead of (1); the algorithms are abbreviated 

MASHsm and MASHls, respectively (Fig. 2). The goal is to 

compare the specificity and sensitivity of MASHsm and 

MASHls to the original implementation of MASH.  

Table 1. Approximation by Splines Yields Highly Specific 

Discovery 

 BRAIN vs. BRAIN (19K) BRAIN vs. Brain (1.7K) 

MASH 1/192000 1/17280 

MASHls 1/192000 2/17280 

MASHsm 0/192000 0/17280 

 

 The false discovery rate is computed from nine 1.7K and 

ten 19K same-to-same dye-swapping experiments. The re-

sults reveal that the false discovery rates of MASH, 

MASHsm, and MASHls are similar (Table 1). Sensitivity is 

assayed by the percent Arabidopsis genes discovered from 

the best of four replicate spike-in- experiments, where 1 ng 

Arabidopsis RNA is added to one RNA sample but not the 

other. MASHsm sensitivity is equal to MASH (41%, 26/64); 

MASHls has a sensitivity of 39% (25/64). Receiver Operat-

ing Characteristics (ROC) is the standard approach to evalu-

ate the sensitivity and specificity of diagnostic procedures 

(see [13]). The ROC curve plots the sensitivity vs. (1 - 

specificity) for a binary classifier system as its 

discrimination threshold is varied. The ROC can also be 

represented by plotting the fraction of true positives vs. the 

fraction of false positives (false discovery rate). MASH, 

MASHls, and MSHsm generate the empiric ROC areas of 

0.703, 0.695, and 0.703, respectively. All 3 have an accuracy 

rate of 99.8% (Table 2). MASHsm is also applied to analyze 

four same-to-same datasets from an independent laboratory 

[14]. Each dataset includes 710 “genes” spotted in duplicates 

to a total of 1420 spots. The false discovery rate is 0 per 

2,840 genes.  

DISCUSSION 

 Cubic splines generate curves that are closer to the 

datasets (Fig. 3), but their first derivatives are not as smooth 

as the derivatives of the equation (1) (see again Fig. 4). The 

findings also reveal that piece-wise approximation by cubic 

splines generates the same sensitivity and specificity as 

global approximation by the equation. On retrospect, this is 

not surprising because the CR is located in segments where 

the derivatives show little variation (Fig. 4). The specificity 

of MASHsm, MASHls, and MASH are significantly better 

than other state-of-the-art methods (see [7]). Specifically, 

MIDAS (http://www.tm4.org/midas.html) specificity is 

1,347/192000 and 170/1728 for the same 19K and 1.7K mi-

croarray datasets, respectively, whereas its sensitivity is the 

same as MASH (41%). MIDAS includes the Locfit 

(LOWESS) normalization [15, 16], standard deviation regu-

larization [17], iterative linear regression normalization [15], 

iterative log mean centering normalization [18], ratio statis-

tics normalization and confidence interval checking (confi-

dence range at 99%) [19], low intensity filter, slice analysis 

[15, 16], and flip dye consistency checking [15, 17]. Despite 

all these safeguards, MASH, MASHsm, and MASHls have 

the same sensitivity as MIDAS [7]. Finally, to belabor the 

obvious, accurate, affordably obtained, knowledge of states 

of genetic expression is a powerful tool that has many appli-

cations in biology and medicine [8-10, 20-22].  
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