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Abstract: Signaling pathways are the major component in cellular networks, but most studies done recently on signaling 

pathways were either aimed to enhance various molecular predictions using pathways as contexts or focused to predict 

pathways indirectly. The former assumed that the pathways for the biomolecules (genes or proteins) used in the modelling 

were known. Although the latter was well suiting the biosciences researches at the systems level, the indirect predictions 

would more or less rely on the prediction accuracy of other systems. So far no work whatsoever has been done for study-

ing the direct correlation between signaling pathways and protein primary structures although acetylated proteins are one 

of the main players in metabolic signaling pathways. In order to investigate their correlation, the sequences of 76 experi-

mentally verified acetylated proteins were downloaded from NCBI. They cover three major metabolic pathways, i.e., bio-

synthesis, degradation, and metabolism. Without any a prior knowledge about how these three metabolic pathways are 

correlated with the primary structures of acetylated proteins, we proposed some classification models between the path-

ways. It has been found through computer simulations that the signaling pathways are indeed correlated with the primary 

structures in acetylated proteins, further demonstrating the well-known biological law that sequence determines structure 

and structure determines function. 

INTRODUCTION 

 Most cellular functions are based on the communications 
among signaling molecules [1]. Signals are travelling among 
cells delivering instructions for cell development, immunity 
development, and normal tissue homeostasis. Abnormal sig-
nals are the main course for altered cellular functions leading 
to disease development [2-4]. The most fundamental issue 
related with systems level biosciences or life sciences re-
searches [5] is that how we can effectively and accurately 
identify pathways in different organisms [6-8]. Because the 
identification made in wet-laboratories is time-consuming 
and labour-intensive, computational approaches are urgently 
required. Actually, many lines of evidences have indicated 
that computational approaches, such as structural bioinfor-
matics [9-13], molecular docking [14-18], pharmacophore 
modeling [19, 20], QSAR [21-26], protein cleavage site pre-
diction [27-30], protein subcellular location prediction [31-
35], identification of membrane proteins and their types [36], 
identification of enzymes and their functional classes [37], 
identification of G-protein coupled receptors (GPCR) and 
their types [38, 39], identification of proteases and their 
types [40], and signal peptide prediction [41, 42] can provide 
very useful information for drug design in a timely manner. 
It is equally important to provide proper functional annota-
tion of genome sequences and to accurately integrate pro-
teins into the signaling pathways [43]. In other words, the 
correlation pattern between signaling pathways and protein 
primary structures, if being revealed, will help fast, effective, 
and accurate identification of the pathways concerned.  
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 Bioinformatics studies involving signaling pathway are 
mainly using signaling pathways for genome annotation and 
signaling network analysis. For the former, the signaling 
pathway information was used for classifying gene expres-
sion data [44]. In that study, the classification of gene ex-
pression data with two or three classes related to diseases 
were enhanced by the pathway information. In the corre-
sponding data set, each gene is associated with a pathway 
with such classification that a pathway is ranked higher if the 
prediction error associated with the pathway is lower. The 
same research group [45] later published another related 
work on clustering pathways. 

 Some web-based tools were developed for the visualisa-
tion of pathways. For instance, PathExpress was developed 
for gene expression data with functional context extracted 
from KEGG ligand database [46]. ArrayXPath II was devel-
oped using the scalable vector graphics technique for gene 
expression data based on integrated biological pathway re-
sources [47]. Path-A was developed for metabolic pathway 
prediction, where machine learning algorithms and homol-
ogy alignment algorithms were used to build basic reaction 
classifiers. Based on the reaction predictions, pathways were 
then integrated [48]. In that work, the prediction if a query 
protein is a catalyst of a particular reaction was implemented 
using the support vector machine, hidden Markov models, 
and BLAST.  

 Because it is difficult to predict pathways in a completely 
automatic way, some work focused on identifying pathway 
fragments based on text mining [6]. In addition, database 
technology was employed to curate pathway data and for 
visualisation [49]. Because of incompleteness of pathway 
information in many databanks, identifying missing enzymes 
of pathways has also been an important research direction in 
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pathway analysis [50-52]. In these works, pathway context 
was used to guide the identification of missing enzymes in 
some specific pathways. Having built some pathway net-
works, it is very often for biologists to pin-point where a new 
sequenced protein is in the network, sequence similarity was 
therefore used in QPath (Querying pathway) for the predic-
tion of pathways in a pathway network [53]. 

 Although it is known that many essential pathways re-
main unknown or incomplete for newly sequenced proteins 
[6], very few work has been conducted to predict pathways 
for query sequences. To the best of our knowledge, the only 
one in the literature was predicting pathways implicitly [48], 
where catalytic reactions of various pathways were pre-
compiled. The prediction was conducted on individual reac-
tions. If a query protein turns out to exactly match the reac-
tions belonging to a pathway, the query protein was pre-
dicted to belong to the pathway. 

 There are two opposite chemical activities in cells [54]. 
The catabolic pathways are used to break down large mole-
cules to smaller molecules. Small molecules are then used as 
building blocks to form new molecules by the anabolic 
pathways. The anabolic pathways are referred to as biosyn-
thesis processes. The combination of the two is the metabo-
lism. Metabolism is a vital process of life maintenance 
through chemical reactions in living organisms [7, 55]. Deg-
radation is a process of breaking down molecules in living 
organisms [54]. 

 Acetylation is a reaction which introduces an acetyl func-
tional group into an organic compound and is also a major 
metabolic pathway. In some disease developments, it has 
been found that acetylation plays an important role. For in-
stance, the interplay of acetylation and methylation in gene 
transcription regulation is one of contributing factors in can-
cer development and has been investigated if patterns can be 
used for disease diagnosis [56]. Histone deacetylation inhibi-
tors, if properly designed, can be used for tumour radio-
sensitization [57]. 

 The relation between biosynthesis and acetylation can be 
seen as a cycle in which ATP generates S-adenosylmeth-
ionine for biosynthesis while acetyl-CoA is consumed in the 
acetylation [58]. GDP-N-acetyl-d-perosamine was found to 
be a precursor of the LPS-O-antigen biosynthesis in E. coli 
[59]. The acetylated polyamines induced by spermidine/ 
spermine N(1)-acetyltransferase increased in biosynthesis 

[60]. The naturally occurring proteins with acetylated NH2-
termninal will normally be degraded except for the involve-
ment of a conjugating enzyme (possibly a ubiquitin-protein 
ligase) [61]. It was shown that acetylated GATA-1 can be 
targeted for degradation. This is completed in the uniq-
uitin/proteasom pathway. It was suggested that acetylation 
may signal unquitination. From this, GATA-1 is led to deg-
radation [62]. In studying the inter-individual variability in 
5-fluoroiracil metabolism, it was found that N-acetylation 
played a more important role than hydrolysis [63]. In study-
ing oxidative hair dyes, it was found that N-acetylation is a 
predominant metabolism pathway [64]. In studying severe 
sulphonamide hypersensitivity reaction, it was found that N-
acetylation of parent compound is the important metabolic 
pathway [65] and patients with slow acetylators showed di-
verse reactions [66]. 

 The present study was initiated in an attempt to develop a 
computational approach by which one can predict the meta-
bolic pathways in which a query protein involved according 
to its primary sequence structure. 

MATERIALS AND METHODS 

Benchmark Dataset 

 Searching NCBI database for acetylated proteins led to 
1251 hits. The following rules were used to select proper 
data for the current study. First, a sequence without pathway 
annotation (denoted by [PATHWAY]) was discarded. Sec-
ond, a sequence without any experimentally verified acetyla-
tion residue was dropped. From this, the sequences with the 
annotation of [PATHWAY] contained five types of acetyla-
tions, i.e., lysine, serine, methionine, threonine, and valine. 
An experimentally verified acetylated residue was denoted 
by “/experiment=…” in the NCBI GenPept file. A computer 
program written in C language for these rules was used to 
scan the NCBI GenPept files downloaded from NCBI auto-
matically. This led to 87 sequences being kept and the re-
maining 1164 sequences discarded. To reduce the redun-
dancy and homology bias, the sequence identity was checked 
using the CD-HIT algorithm [67-69] to remove those se-
quences which have 90%  pairwise sequence identity to 
any other in a same subset. This further removed 11 se-
quences and finally we obtained 76 sequences in the bench-
mark dataset for the current study. The accession numbers 
and sequences of the 76 proteins are given in the Online 
Supporting Information A. 

Table 1. Breakdown of the 76 Proteins in the Benchmark Dataset According to their Five Involvement Modes with the Three  

Major Pathways 

Pathway 

Name Abbreviated Name 

Number of Sequences 

Biosynthesis BIO 12 

Degradation DEG 26 

Metabolism MET 21 

Metabolism + Biosynthesis MET+BIO 12 

Metabolism + Degradation MET+DEG 5 

Total 76 
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 The 76 sequences involve many sub-pathways of three 
major metabolic pathways, most of which occur only once in 
one protein sequence. This made the task of model construc-
tion very difficult. To simplify the problem, let us focus the 
following three major pathways: biosynthesis (BIO), degra-
dation (DEG), and metabolism (MET). Although some of the 
76 proteins may involve two of the three major pathways, 
none involves both BIO and DEG, or more than two of the 
three pathways. Therefore, according to the modes of their 
involvement with the three pathways, we can classify the 76 
proteins into the following five categories: (1) BIO, (2) 
DEG, (3) MET, (4) BIO+MET, and (5) DEG+MET. Listed 
in Table 1 are numbers of the 76 proteins among the five 
categories. Moreover, the 23 sub-pathways of BIO, 11 sun-
pathways of DEG, and 15 sub-pathways of MET are listed in 
Table 2. 

Experimental Design 

 The computer simulation was designed in several steps 
each of which was for a specific target. First, sequence data 
needed to be coded to fit the machine learning algorithms for 
classification model construction. The coded data were then 
fed to the machine learning algorithms for training the pre-
dictor. In order to have an automatic model construction 
process, the evolutionary algorithm was used to tune the pre-
dictor for optimizing its parameters. 

 Each protein sequence was coded as a 20-D (dimen-
sional) vector [70, 71] with each component representing the 
occurrence frequency of one of the 20 native amino acids. 
For instance, if there are 20 alanine in a sequence while the 

sequence length is 100 (with 100 residues), the frequency or 
the first component in this 20-D vector is 0.2. 

 The SVM (support vector machine) algorithm [72, 73] 
was used as the identification engine for the current study. 
SVM has been successfully used to predict protein subcellu-
lar locations, membrane protein types, and other protein at-
tributes (see, e.g., [74-76]). For a brief introduction of using 
SVM to classify protein attributes based on a discrete model, 
refer to [75]. The SVM

light
 package (http://svmlight.joach-

ims.org/) [72] was employed for model construction and 
evaluation. The package provides four kernel functions, i.e. 
the linear kernel, radial-basis function kernel, sigmoid func-
tion kernel and polynomial kernel. The radial basis function 
was found the best to fit this application and was used. The 
package needs the user to tune three hyper-parameters (C, J 
and ). The C parameter was designed for trading-off be-
tween training and testing error. The J parameter was intro-
duced for dealing with heavily imbalanced data. The  pa-
rameter is associated with the radial basis function to deter-
mine the sensitivity of the function. The combination of 
these three parameters sits in a very large space and finding 
the best one is actually a non-trivial problem. The evolution-
ary algorithm was therefore used for this optimization prob-
lem. Through many generations of multiple-solution compe-
tition, the final solution is believed to be most close to the 
best solution. 

RESULTS 

 In statistical prediction, the following three cross-
validation methods are often used to examine a predictor for 

Table 2. The Sub-Pathways for the Three Major Pathways 

Pathway Sub-pathways 

AMP biosynthesis via 

salvage pathway 

Carnitine biosynthesis Cholesterol biosynthesis Dopamine biosynthesis 

Ergosterol biosynthesis Estrogen biosynthesis Glycogen biosynthesis Homocysteine biosynthesis 

Lanosterol biosynthesis L-cysteine biosynthesis Malonyl-CoA biosynthesis Mevalonic acid biosynthesis 

Prostaglandin biosynthesis Protoporphyrin-IX biosynthe-

sis 

S-adenosyl-L-methionine 

biosynthesis 

 

Steroid biosynthesis Amine and polyamine biosyn-

thesis 

Amino-acid biosynthesis Carbohydrate biosynthesis 

 

Biosynthesis 

Catecholamine  

biosynthesis 

Glycan biosynthesis Metabolic intermediate 

biosynthesis 

Protein biosynthesis 

Ethanol degradation HMG-CoA degradation L-kynurenine degradation L-leucine degradation 

L-phenylalanine degrada-

tion 

Pectin degradation Sarcosine degradation Uric acid degradation 

 

Degradation 

Amine and polyamine 

degradation 

Amino-acid degradation Carbohydrate degradation  

Glyoxylate and dicarboxy-

late metabolism 

Propanoate metabolism Retinol metabolism Alcohol metabolism 

Carbohydrate metabolism Cofactor metabolism Glycan metabolism Lipid metabolism 

 

Metabolism 

Metabolic intermediate 

metabolism 

Nitrogen metabolism One-carbon metabolism Porphyrin metabolism 
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its effectiveness in practical application: independent dataset 
test, subsampling test, and jackknife test [77]. However, as 
elucidated in [34] and demonstrated by Eq.50 of [78], among 
the three cross-validation methods, the jackknife test is 
deemed the most objective that can always yield a unique 
result for a given benchmark dataset, and hence has been 
increasingly used by investigators to examine the accuracy 
of various predictors [1, 17, 79-102]. Accordingly, the jack-
knife test was also used to examine the success rates in iden-
tifying the pathway a query protein involves with. The opti-
mal C values are 4977, 865, 5782, 8205, 1039 for the BIO, 
DEG, MET, BIO+MET, and DEG+MET classifications, 
respectively. The optimal J values are 2685, 6748, 1530, 
1358, and 20021039 for the BIO, DEG, MET, BIO+MET, 
and DEG+MET classifications, respectively. The  values 
are 1.73, 1.11, 0.26, 1.87, and 1.10 for the BIO, DEG, MET, 
BIO+MET, and DEG+MET classifications, respectively. 

 Listed in Table 3 are the jackknife success rates by the 
current approach in identifying the five classes of pathways 
for the 76 proteins. As we can see from the table, the overall 
success rate is about 66%. Let us imagine: if the involve-
ments of the 76 proteins are completely randomly distributed 
among the 5 possible pathways, the overall success rate by 
random assignments would generally be 1/ 5 20%= ; if the 
random assignments are weighted according to the number 
of proteins in each pathway class (see column 2 of Table 3), 
then the overall success rate would be [103] 

1

762 122
+ 262

+ 212
+122

+ 52( ) = 24.8%
 

which is about 41% lower than the overall success rate by 
the current approach, indicating that the metabolic pathways 
are really correlated with the primary structure in acetylated 
proteins. 

CONCLUSION 

 It has been demonstrated through this study that there 
exists a correlation between the signaling pathways and the 
protein primary structures. This is a quite encouraging sign, 
indicating that it is possible to predict the pathway property 
or the involvement of a query protein, and hence its func-
tions at the systems level can be analyzed as well. Particu-
larly, for a protein known from some disease-related tissue, 
it is possible to use the current approach to explore which 
kinds of signaling pathways might be triggered for the dis-
ease development. It is instructive to point out that in the 

current approach, the simplest discrete model, i.e., the 20-D 
vector was adopted to express the protein samples. It is an-
ticipated that if using more sophisticated discrete models 
[78], such as the pseudo amino acid (PseAA) composition 
approach [104] or functional domain (FunD) approach [36], 
or the hybridization approach by fusing FunD with the se-
quential evolution information [40], the success rates in pre-
dicting protein metabolic pathways will be further enhanced. 
The bioinformatics tool thus established will be very useful 
for studying biomedicine at the systems level. 
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