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Abstract: With the avalanche of gene products in the postgenomic age, the gap between newly found protein sequences
and the knowledge of their 3D (three dimensional) structures is becoming increasingly wide. It is highly desired to de-
velop a method by which one can predict the folding rates of proteins based on their amino acid sequence information
alone. To address this problem, an ensemble predictor, called FoldRate, was developed by fusing the folding-correlated
features that can be either directly obtained or easily derived from the sequences of proteins. It was demonstrated by
the jackknife cross-validation on a benchmark dataset constructed recently that FoldRate is at least comparable with
or even better than the existing methods that, however, need both the sequence and 3D structure information for
predicting the folding rate. As a user-friendly web-server, FoldRate is freely accessible to the public at
www.cshio.sjtu.edu.cn/bioinf/FoldRate/, by which one can get the desired result for a query protein sequence in around 30

seconds.
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1. INTRODUCTION

A protein can function properly only if it is folded into a
very special and individual shape or conformation, i.e., has
the correct secondary, tertiary and quaternary structure [1].
Failure to fold into the intended 3D (three-dimensional)
structure usually produces inactive proteins or misfolded
proteins [2] that may cause cell death and tissue damage [3]
and be implicated in prion diseases such as bovine spongi-
form encephalopathy (BSE, also known as “mad cow dis-
ease™) in cattle and Creutzfeldt-Jakob disease (CJD) in hu-
mans. All prion diseases are currently untreatable and are
always fatal [4].

Since each protein begins as a polypeptide translated
from a sequence of mMRNA as a linear chain of amino acids,
it is interesting to study the folding rates of proteins from
their primary sequences. Actually, protein chains can fold
into the functional 3D structures with quite different rates,
varying from several microseconds [5] to even an hour [6].
Since the 3D structure of a protein is determined by its pri-
mary sequence, we can assume the same is true for its fold-
ing rate. In view of this, we are challenged by an interesting
question: Given a protein sequence, can we find its folding
rate? Although the answer can be found by conducting vari-
ous biochemical experiments, doing so is both time-
consuming and expensive. Also, although a number of pre-
diction methods were proposed [7-12], they need the input
from the 3D structure of the protein concerned, and hence
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the prediction is feasible only after its 3D structure has been
determined. Particularly, the newly-found protein sequences
have been increasing explosively. For instance, in 1986 the
Swiss-Prot databank (www.ebi.ac.uk/swissprot) contained
merely 3,939 protein sequence entries, but the number has
jumped to 428,650 according to version 57.0 of 24-March-
2009, meaning that the number of protein sequence entries
now is more than 108 times the number about 23 years ago.
In contrast, as of 5-May-2009, the RCSB Protein Data Bank
(http://www.rcsb.org/pdb) contains only 57,424 3D structure
entries, meaning that the structure-known proteins is about
1.34% of sequence-known proteins. Facing the avalanche of
protein sequences generated in the post-genomic age and
also considering the huge gap between the numbers of
known protein sequences and 3D structures, it is highly de-
sired to develop an automated method that can rapidly and
approximately predict the folding rates of proteins according
to their sequence information alone.

The present study was initiated in an attempt to address
this problem in hopes that our approach can play a comple-
mentary role to the existing methods [13, 14]. Below, let us
first clarify the meaning of the protein folding rates as usu-
ally observed by experiments.

Il. THE PROTEIN FOLDING RATE

Since the prediction object in the current study is the pro-
tein folding rate, a clear understanding of its implication is
necessary. The folding rate of a protein chain observed by
experiments is usually measured by the “apparent folding
rate constant” [15], as denoted by K,. It is instructive to un-

ravel its relationship with the detailed rate constants, as
given below.
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The apparent folding rate constant K, for a protein chain
is defined via the following differential equation:

dPunfold (t) —

=-K.P t
dt f unfold( ) (1)
dP. . (t
%O = Kf Punfold )

where P .. (t) and P, ,(t) represent the concentrations of

its unfolded state and folded state, respectively. Suppose the
total protein concentration is C,, and initially only the un-

folded protein is present; i.e., P .. (t)=C, and P, ,(t)=0

when t =0. Subsequently, the protein system is subjected to
a sudden change in temperature, solvent, or any other factor
that causes the protein to fold. Obviously, the solution for
Eq.1is:

Punfold (t) = C0 exp (_Kft)
Pfold ®= Co [l_ EXp (_ Kft):'

It can be seen from the above equation that the larger the
K, . the faster the folding rate will be. Given the value of

@

K;. the half-life of an unfolded protein chain can be ex-
pressed by:

In(1/2
T,,=- ”(K ) _0.603/K, )

f

which can also be used to reflect the time that is needed for a
protein chain to be half folded. However, the actual folding
process is much more complicated than the one as described
by Eq. 1 even if the reverse rate for the folding system con-
cerned can be ignored. As an illustration, let us consider the
following three-state folding mechanism:

Punfold P

(b)

S+ky,

S+Kky,
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k

Punfold L) Piter =2 Proia (4)

u inter

where P

inter

ate state between the unfolded and folded states, k, is the

(t) represents the concentration of an intermedi-

rate constant for P

unfold

converting to P

inter ?

and k,, the rate
constant for P

inter

converting to P, . Thus we have the fol-
lowing kinetic equation:

—d Pun:;tld (t) = _k12 I:)unfold (t)

dp.__(t

%U = k12 I:’unfold (t) - k23 Pinter (t) (5)
drP,_ . (t

%U = k23 Pinter (t)

Egs.4 and 5 can be expressed via an intuitive diagram
called “directed graph” or “digraph” G [15, 16] as shown in
Fig. (1a). To reflect the variation of the concentrations of the
three protein states with time, the digraph G is further trans-

formed to the phase digraph G [15, 16] as shown in Fig.
(1b), where S is an interim parameter associated with the
following Laplace transform:

Proiotd (8) = [ Prators (1) €Xp (—t5 )t
Prier (8) = || P (t) &P (15 )l (6)

Praa (8) = [ Pros (1) exp (~ts )l

P

inter

and P

fold
respectively. Thus, according to the

where P

unfold *

IDunfold’ P and P

inter fold *

are the phase concentrations of

Fig. (1). (a) The directed graph or digraph G [15, 16] for the three-state protein folding mechanism as schematically expressed by Eq. 4 and

formulated by Eq. 5. (b) The phase digraph G obtained from G of panel (a) according to graphic rule 4 for enzyme and protein folding
kinetics [15, 16] that is also called “Chou’s graphic rule for non-steady-state Kinetics” in literatures (see, e.g., [17]). The symbol S in the

phase digraph G is an interim parameter (see the text for further explanation).
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phase digraph G of Fig. (1b) and using the graphic rule 4
[15, 16], which is also called “Chou’s graphic rule for non-
steady-state kinetics” in literatures (see, e.g., [17]), we can
directly write out the following phase concentrations:

b (5)= (s+ky3)SC,  (s+ku)C, G, (7.2)
unfold 177 S[(5+ky)s+kys+Kyky | T (5+ky)(5tky) sk,

B (S) klZSC klZC (7_2)
et s[(s+kz3)s+kzs+k12kz3] (5+ky, )(5+Kyg)

P (s)= Ki2K25Co kioK25Co (7.3)
fold S[(s+Ky3)s+kyy5+K, Ky s(s+k12)(s+k23)

Through the above phase concentrations and using
Laplace transform table (see, e.g., [18] or any standard
mathematical tables), we can immediately obtain the desired

concentrations for P .., P, and P, of Eqg. 5, as given
by:
t
unfold(t) C e 12
KipCo [ —kpt —kyt
P ()= et ®)
23 12
C, —kyot
S e LTI S Rl

Accordingly, it follows from the above equation that:

APy (1) klzkzsco ( ‘klzt _e_kz3t ) _ KioKa 1— e_(k23_k12 )t P
dt k _ k ) unfold

©)

Comparing Eq. 9 with Eqg. 1, we obtain the following
equivalent relation:

K, & KoK |:l— e_(kza_klz )t} (10)
Ky =k,

meaning that the apparent folding rate constant K_ is a func-

tion of not only the detailed rate constants, but also t. Ac-
cordingly, K, is actually not a constant but will change with

time. Only when k,, >k, and k,, >1, can Eq. 10 be re-
ducedto K, =k, and Eq. 9 to:

d I:’folded (t) ~
dt

and K, be treated as a constant.

k 2Punfold (t) = Kf F)unfold (t) (11)

Even for a two-state protein folding system when the
reverse effect needs to be considered, i.e., the system de-
scribed by the following scheme and equation:

K

Punfold T Pfold (12)
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dP, g (t
M = _k12 Punfold (t) + k21pfo|d (t)
dt (1)

= k12 Punfold t)- kzlpfold t)

where k,, represents the reverse rate constant converting
Poq Packto P ... With the similar derivation by using the

non-steady state graphic rule [15, 16] as described above, we
have now the following equivalent relation:

iy (Kip +Ky1 ) exp[ —(ky, +ky, )t]}

K. &
! {kﬂ +kyp exp[ = (K, +kyy )t ]
(14)

indicating once again that, even for the two-state folding
system of Eq. 12, the apparent folding rate constant K, can

be treated as a constant only when k,, > k,, and k, >1.

It can be imagined that for a general multi-state folding
system, K, will be much more complicated. It is important

to keep this in mind to avoid confusion of the apparent rate
constants with the detailed rate constants.

We can also see from the above derivation that using the
graphic analysis to deal with kinetic systems is quite effi-
cient and intuitive, particularly in dealing with complicated
kinetic systems. For more discussions about the graphic
analysis and its applications to kinetic systems, see [19-25].

I11. MATERIALS AND METHODS

To develop an effective statistical predictor, the follow-
ing three things are indispensable: (1) a valid benchmark
dataset; (2) a mathematical expression for the samples that
can effectively reflect their intrinsic correlation with the ob-
ject to be predicted; and (3) a powerful prediction algorithm
or engine. The three necessities for establishing the current
protein folding rate predictor were realized via the following
procedures.

1. Benchmark Dataset

The dataset recently constructed by Ouyang and Liang
[12] was used in the current study. It contains 80 proteins
whose apparent folding rate constants (K,) have been ex-

perimentally determined. However, it is instructive to point
out that, when the experimentally measured K, is a constant

independent on time t, the conditions as mentioned in Sec-
tion 11 (see Egs.10 and 14 and the relevant texts) must be
satisfied. Accordingly, the folding kinetic mechanisms for all
these 80 proteins can be approximately described by Eq. 1,
and hence there is no need here to specify which proteins
belong to the two-state folding and which ones to the three-
state or other multiple-state as done in [12]. Furthermore,
although the experimental 3D structures of the 80 proteins
are known, none of this kind of information will be used here
because we are intending to develop a statistical predictor
purely based on the experimental K. values of proteins and

their sequence information alone. If the success rates thus
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Table 1.

The Apparent Folding Rate Constant K. (sec™®) of the 80 Proteins in the Benchmark Dataset Shens

h

Chou and Shen

and their Half-Folding

Time T,,, (sec) (cf. Eq. 3)

Number PDB Code InK; K, (sec”) T, (sec)
1 1APS -1.47 2.299 x 10 3.015
2 1BA5 5.91 3.687 x 10? 1.88 x 107
3 1BDD 11.69 1.194 x 10° 6.0 x 10°
4 1C8C 6.95 1.043 x 10° 6.64 x 10
5 1C90 7.20 1.339 x 10° 5.17 x 10*
6 1CSP 6.54 6.92 x 107 1.001 x 107
7 1DIV_ ¢ 0.0 1.000 6.932 x 10
8 1DIV_n 6.61 7.425 x 10? 9.34 x 10
9 1E0L 10.37 3.1888 x 10* 22x10°
10 1E0M 8.85 6.974 x 10° 9.9x10°
11 1ENH 10.53 3.742 x 10* 1.9x10°
12 1FEX 8.19 3.604 x 10° 1.92 x 10*
13 1FKB 1.45 4.263 1.626 x 10
14 1FMK 4.05 5.7440 x 10" 1.208 x 107
15 1FNF_9 -0.92 3.985 x 10 1.739
16 1G6P 6.30 5.446 x 10? 1.273 x 107
17 1HDN 2.69 1.473 x 10° 4705 x 107
18 1IDY 8.73 6.186 x 10° 1.12 x 10*
19 1IMQ 7.28 1.451 x 10° 478 x 10*
20 1K8M -0.71 4.916 x 10™ 1.410
21 1K9Q 8.37 4.316 x 10° 1.61 % 10*
22 L2y 12.40 2.428 x 10° 3.0x10°
23 1LMB 8.50 4.915 x 10° 1.41 % 10*
24 1MJC 5.23 1.868 x 107 3.711 x 107
25 1N88 3.0 2.009 x 10* 3.451 x 107
26 INYF 454 9.369 x 10* 7.398 x 107
27 1PGB_b 12.0 1.628 x 10° 40x10°
28 1PIN 9.37 1.173 x 10 59x10°
29 1PKS -1.06 3.465 x 10™ 2.001
30 1PRB 12.90 4,003 x 10° 2.0x10°
31 1PSE 1.17 3.222 2.151 x 10™
32 1QTU -0.36 6.977x10" 9.935 x 107
33 1RFA 7.0 1.097x10° 6.32 x 10
34 1SHG 2.10 8.166 8.488 x 107
35 1TEN 1.06 2.886 2.402 x 10
36 1URN 5.76 3.173x107 2.184 x 107
37 vl 11.51 9.971x10* 7.0x10°
38 IWIT 0.41 1.507 46 % 10™
39 2A3D 12.7 3.277x10° 2.0x10°
40 2ACY 0.84 2.317 2.992 x 10
41 2AIT 421 6.736x10" 1.029 x 107
42 2CI2 3.87 4.794x10" 1.446 x 107
43 2HQI 0.18 1.197 5.790 x 10
44 2PDD 9.69 1.616x10* 43x10°
45 2PTL 4.10 6.034x10" 1.149 x 107
46 2ABD 6.48 6.520x107 1.063 x 107
47 2CRO 5.35 2.106x10? 3.291 x 107
48 1uzc 8.68 5.884x10° 1.18 x 10*
49 1CEI 5.8 3.303x10° 2.099 x 107
50 1BRS 3.37 2.908x10" 2.384 x 107
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(Table 1). Contd.....

Number PDB Code InK; K, (sec”) T, (sec)
51 2A5E 350 3.312x10" 2.093 x 107
52 1TIT 36 3.660x10" 1.894 x 107
53 1FNF_1 5.48 2.399x10? 2.890 x 107
54 1HNG 1.8 6.050 1.146 x 10
55 1ADW 0.64 1.897 3.654 x 10
56 1EAL 1.3 3.669 1.889 x 10
57 1IFC 3.4 2.996x10" 2.313 x 107
58 10PA 1.4 4.055 1.709 x 10
59 1HCD 1.1 3.004 2.307 x 10
60 1BEB -2.20 1.108x10* 6.256
61 1B9C -2.76 6.329x107 1.095 x 10*
62 111B -4.01 1.813x1072 3.822 x 10*
63 1PGB_a 6.40 6.018x107 1.152 x 107
64 1UBQ 5.90 3.650x107 1.899 x 107
65 1GXT 439 8.064x10" 8.596 x 107
66 1SCE 417 6.472x10" 1.071 x 107
67 1HMK 2.79 1.628x10" 4.257 x 107
68 3CHY 1.0 2718 2.550 x 10
69 1HEL 1.25 3.490 1.986 x 10
70 1DK7 0.83 2.293 3.022 x 10
71 1JO0 0.30 1.350 5.135 x 10
72 2RN2 1.41 4.096 1.692 x 10
73 1RA9 -2.46 8.543 x 107 8.113
74 1PHP ¢ -3.44 3.207 x 107 2.162 x 10*
75 1PHP_n 2.30 9.974 6.949 x 107
76 2BLM -1.24 2.894 x 10 2.395
77 1QOP_a 25 8.209 x 107 8.444
78 1QOP_b -6.9 1.008 x 107 6.878 x 107
79 1BTA 1.11 3.034 2.284 x 10
80 1L63 4.10 6.034 x 10* 1.1487 x 10

obtained can be comparable or about the same as those by
the method of Ouyang and Liang where the 3D structure
information was needed as an input [12], the new predictor
will have the advantage of being able to also cover those
proteins whose 3D structures are unknown yet. This is par-
ticularly useful due to the huge gap between the number of
known protein sequences and the number of known protein
3D structures, as mentioned in Section I.

For readers’ convenience, the benchmark dataset, de-
noted as S, . is given in Appendix A which can also be
downloaded from the web-site at
www.csbio.sjtu.edu.cn/bioinf/FoldRate/. As we can see
there, InK, (where In means taking the natural logarithm
for the number right after it) ranges from —6.9 to 12.9; i.e.,
K, ranges from e°°=1.01x10"° to e"°=4.00x10°
(where e=2.718 is the natural number, sometimes called
Euler’s number), meaning that the apparent folding rate con-

stants of the 80 proteins span more than eight orders of mag-
nitude (cf. Table 1).

2. Sample Expression or Feature Extraction

As shown in [12], the features extracted from the 3D
structures of proteins are very useful for predicting their
folding rates. However, for the majority of proteins, their 3D
structures are unknown yet. To enable the prediction model
to cover as many proteins as possible, here let us focus on
those features that can be derived from the amino acid se-
quential information alone, either directly or indirectly. Ow-
ing to the fact that smaller proteins usually (although far
from always) fold faster than larger ones [26], and that o-
helix and 3-sheet are the two most major structural elements
[27], our attention should be particularly focused on the size
of proteins as well as the effects of a-helices and 3-strands.

(a) Protein Size or Length Effect

In protein science, the length of a protein chain is usually
measured by L, the number of amino acids it contains.
Many lines of evidences (see, e.g., [12, 13]) have indicated
that the length of a protein chain is correlated with its folding

rate, suggesting that L, as well as its various functions,
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could be useful for representing protein samples in predict-
ing their folding rates. Our preliminary studies showed that

In(L) was particularly remarkable in this regard and hence
will be used in the current study.

(b) Predicted a-Helix Effect and the Effective Folding
Chain Length

Driven by the short-range interaction, a-helices can be
formed independently in a much faster pace than the entire
structural frame. These helices can be treated as rigid blocks
so as to reduce the original chain length L counted accord-
ing to the number of amino acids. The effective folding

. o . . . .
chain length Leff thus considered is given by [13]:

L =L—L, +AN

eff =

(15)

h-block

where L, is the total number of amino acids in the helix

blocks that can be easily predicted by using PSIPRED [28]

for a given protein sequence; N,,,. the number of pre-

dicted helix blocks; and A the pseudo length of a helix block
that was set at 3 in the current study, meaning that each helix
block is equivalent to 3 amino acid units in length. Again,
our preliminary studies showed that among various functions

of L7, In(L;) was particularly remarkable in correlation

with the protein folding rates, and hence will be used in the
current study.

(c) Effect of S-Sheet Propensity

It was hinted in some previous studies (see, e.g., [29, 30])
that the folding of a protein is strongly correlated with those
amino acids that have a high propensity to form B-strands
[31, 32]. To reflect the overall B-sheet propensity of a pro-
tein chain, let us take the following consideration. Suppose a
protein chain is formulated by:

P=R,R,R,R,R.R,R,--R, (16)

where the i-th residue R, (i=1,2, ---, L) can be one of

the 20 different types of amino acids each having its own
propensity to form B-strand [31]. The overall 3-sheet pro-
pensity of the protein concerned is defined by:

L
Y,
2i=1 B.i (17)
L
where \}’ﬁi is the pB-strand propensity for the i-th
(i=12,-

fore substituting the values of B-strand propensity into Eq.
17, they are subject to a Max-Min normalization as given by:

0
Y o= p
B.i 0 H 0
Max{‘I’ﬁ}— Mln{‘Pﬁ}

where ‘PZ . represent the original f-strand propensity value

PF =

-,L) amino acid in the protein P. Note that be-

(18)

for R,in Eq. 16 and can be obtained from [31] because it
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must be one of the 20 native amino acids, Max{lP;} means

taking the maximum value among the 20 original B-strand
propensities, and Min{\Pz} the corresponding minimum
one. For reader’s convenience, the converted B-strand pro-
pensity value obtained through the Max-Min normalization

procedure (cf. Eq. 18) for each of the 20 native amino acids
is given in Table 2, from which one can easily derive its

overall B-sheet propensity, @, for any given protein se-
quence.

The values of In(L),In(L%), and @” for the 80

proteins in the benchmark dataset S are given in

bench

Appendix B.
3. Prediction Algorithm

According to the above discussion, we have the follow-
ing three quantitative features extracted from a protein se-
quence: In(L),In(L%), and @”. Each of these features

derived from a protein may be correlated with its folding rate
K, through the following equations.

In(K®)=a,+bIn(L) (19.1)
In(K®)=a,+b,In(L%) (19.2)
In( Kf(s’) =a,+b®’ (19.3)

where K& (i=1, 2, 3) are the protein folding rate con-
stants predicted based on the length of protein, its a-helix
related effective length, and its overall (-sheet propensity,
respectively; while @, and bi are the corresponding parame-

ters that can be determined through a training dataset by the
following regression procedure [33].

First, let us just use the 80 proteins in the benchmark
dataset S, . (Appendix A) as the training data. Suppose the
length, effective folding chain length, and overall (3-sheet
propensity for the K-th protein in the dataset are denoted by
L(k), L% (k), and ®"(Kk), respectively. In order to deter-

mine the coefficients of Eq. 19, let us define three objective
functions given by:

bench

-5 sl o]
A® Zi{[aﬁbzl” '—fﬁ(k)]"”[Kf(k)J}z -~
0= [ o co]-n[x, 0]

where K, (k) is the observed folding rate for the k-th pro-

tein in the dataset S_____as given in Appendix A. The process

bench
of determining these coefficients is actually a process of



Protein Folding Rate Prediction

Table 2.
cedure of Eq. 18
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The B-Strand Propensity Values for the 20 Native Amino Acids Converted According to the Max-Min Normalization Pro-

Amino Acid Code Propensity to form B-Strand
Single Letter Numerical Index u Original \P(/)i,u Max-Min Normalized \Pﬁ‘u
A 1 0.83 0.34
c 2 119 0.61
D 3 0.54 0.12
E 4 0.37 0.00
F 5 1.38 0.75
G 6 075 0.28
H 7 0.87 0.37
[ 8 1.60 0.92
K 9 0.74 0.27
L 10 1.30 0.69
M 1 1.05 051
N 12 0.89 0.39
P 13 055 0.13
Q 14 1.10 0.54
R 15 0.93 042
S 16 075 0.28
T 17 119 061
Y 18 1.70 1.00
w 19 1.37 0.75
Y 20 147 0.82
finding the minimum of A (i=1,2,3), and hence can be oAV (k)
easﬂy obtained by the following equation: Bai‘(k) (=123 k=1 2, - 80) (24)
a w g
aii” (i=1,2,3) (21) k)
Fa. 0 The results thus obtained for [a(k), b(K)],

Substituting Eq. 20 into Eq. 21, followed by using the
data provided in Appendix A and the data derived therefrom
as given in Appendix B, we can easily determine the coeffi-
cients in Eq. 19, as given below:

a, =32.4216, b =—-6.4077
a,=26.6906, b, =—55966 (22)
a,=30.7239, b, =-58.0109

However, as explained below, the accuracy of a predictor
is usually examined by the jackknife cross-validation in
which the query sample should be in term excluded from the
training dataset. Thus, instead of Egs. 20-21, we should
have:

2009= > {[a,00+ o L®]-In[ K, )]}
AD(K) = i{[%(k)+ b,( L%, ()]~ In[ K, (i)}}z (k=1 2, -, 80)
AO(K) = i{[a?(kw— b(k)In®? (i) ]~ In[ K, (i)}}2

izk

(23)

[az(k), bz(k)], and [ag(k), b3(k)] are given in Appendix
C.

All the above three formulae (Egs. 19.1 — 19.3) can be
used to predict the protein folding rates but they each reflect
only one of the three features described above. To incorpo-

rate all these features into one predictor, let us consider the
following equation:

3 .

INK; =) w InK? (25)
i=1

where W, is the weight that reflects the impact of the i-th

formula on the protein folding rate. If the impacts of the
three formulae were the same, we should have w, =1/3
(i=1,2,3). Since they are actually not the same, it would be
rational to introduce some sort of statistical criterion to re-
flect their different impacts, as formulated below.

Given a system containing N statistical samples, we can
define a cosine function as formulated by [34, 35]:
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oo gl

where X; and Y; are, respectively, the observed and pre-

dicted results for the i-th sample. Obviously, the cosine
function is within the range of —1 and 1 [36]. When and only
when all the predicted results are exactly the same as the
observed ones, we have ® =1. Suppose the value of the
cosine function yielded with the i-th predictor in Eq. 19 on

the benchmark dataset S .. by the self-consistency test [37]

bench

is @(In Kf(‘)) , which turned out to be

O(InK®)=0.8938, O(INK?)=09276, O(InK?)=0.7145

@7)
Then the weight W; in Eq. 25 can be formulated as:
w, =% (i=1 2,3 (28)
j=1 f
which yields
w, =0.3525, w,=0.3658, w,=0.2817 (29)

Substituting Eq. 29 as well as Egs. 19 and 22 into Eq. 25, we
finally obtain

INK, =29.8470 - 2.2587 In(L) — 2.0472In(L% ) — 16.3417d*
(30)

However, when the accuracy of Eq. 25 is examined by
the jackknife cross-validation, by following the similar pro-
cedures in treating Eq. 19, we should instead have

InK, (k) = A(k) + B(k)In(L) + C(k) In(L;;; ) + D(k)®”

(1)
where the values for A(k), B(k), C(k), and
D(k) (k=1, 2, ---, 80) are given in Appendix D.

The ensemble predictor formed by fusing the three indi-
vidual predictors of Eq. 19 as formulated by Eq. 25 or Eq. 30
or Eq. 31 is called the FoldRate, which can yield much bet-
ter prediction quality than the individual predictors as shown
below.

IV.RESULTS AND DICSUSSIONS

In statistics the independent test, sub-sampling test, and
jackknife test are the three cross-validation methods often
used to examine the quality of a predictor [38]. To demon-
strate the quality of FoldRate, we adopted the jackknife

cross-validation on the benchmark dataset S, (see the

Appendix A). During the jackknife cross-validation, each of
protein samples in the benchmark dataset is in turn singled
out as a tested protein and the predictor is trained by the re-
maining proteins. Compared with the other two cross-
validation test methods, the jackknife test is deemed more
objective that can always yield a unique result for a given
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benchmark dataset [37, 39], and hence has been increasingly
used by investigators to examine the accuracy of various
predictors (see, e.g., [40-54]).

In the current study, two kinds of scales are used to
measure the prediction quality. One is the Pearson correla-
tion coefficient (PCC) (see wikipedia.org/wiki/Correlation)
and the other is the root mean square deviation (RMSD).
They are respectively formulated as follows:

3 (%-%)(y, )

PCC — i=1 (32)

J{Z(x _W}Li(y‘ —7)2}

RMSD =

(33)

where X;, Y; and N have the same meanings as Eq. 26,

while X and Y the corresponding mean values for the N

samples. The meaning of RMSD is obvious; i.e., the smaller
the value of RMSD, the more accurate the prediction. PCC is
usually used to reflect the correlation of the predicted results
with the observed ones: the closer the value of PCC is to 1,
the better the correlation is. When all the predicted results
are exactly the same as the observed ones, we have PCC=1
and RMSD=0.

Listed in Table 3 are the PCC and RMSD results ob-
tained by the ensemble predictor FoldRate on the bench-

mark dataset S, via the jackknife cross-validation. For

facilitating comparison, the corresponding results obtained
by individual predictors are given in Table 3 as well.

As we can see from Table 3, the overall PCC value
yielded by the ensemble predictor of Eq. 25 is 0.88, which is
the closest to 1 in comparison with those by the individual
predictors in Eg. 19. Such an overall PCC value is even
higher than 0.86 obtained for the same benchmark dataset by
the method in which, however, the 3D structural information
is needed [12]. Although the method developed recently by
Ouyang and Liang could also be used to predict the protein
folding rate without using the 3D structural information, the
overall PCC value thus obtained would drop to 0.82 [12].

Moreover, it can be seen from Table 3 that the overall
RMSD value for the ensemble predictor is the lowest one in
comparison with those by the individual predictors. The
highest correlation and lowest deviation results indicate that
the FoldRate ensemble predictor formed by fusing individ-
ual predictors is indeed a quite promising approach.

V. CONCLUSIONS

FoldRate is developed for predicting protein folding
rate. It is an ensemble predictor formed by fusing three indi-
vidual predictors with each based on the size of a protein, its
o-helix effect, and its B-sheet effect, respectively. Given a
protein, all these effects can be derived from its sequence.
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Table3. Comparison of the Jackknife Cross-Validation Tested Results by Using Different Predictors on the Benchmark Dataset

Sbench
Predictor Overall PCC (cf. Eq. 32) Overall RMSD (cf. Eq. 33)
In(Kf‘”) (cf. Eq. 19.1) 0.79 267
In(Kf‘Z)) (cf. Eq. 19.2) 0.85 2.23
In(Kf“)) (cf. Eq. 19.3) 0.27 417
In Kf) (cf. Eq. 25) 0.88 2.03

Therefore, FoldRate can be used to predict the folding rate ACKNOWLEDGEMENTS
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APPENDIX A

The benchmark dataset S

bench

consists of 80 proteins. The PDB codes listed below are just for the role of identity. In this

study, only the protein sequences and their In (K, ) values are used for developing the current predictor. See the text for further

explanation.
1. PDB: 1APS, In(K,)=-1.47
TARPLKSVDYEVFGRVQGVCFRMYAEDEARK I GVVGWVKNTSKGTVTGQVQGPEEKVNSM

KSWLSKVGSPSSRIDRTNFSNEKT I SKLEYSNFSVRY
2. PDB: 1BAS5, In(Kf)=5.91

KRQAWLWEEDKNLRSGVRKYGEGNWSK I LLHYKFNNRTSVMLKDRWRTMKKL
3. PDB: 1BDD, In(Kf)=11.69

ADNKFNKEQQNAFYE I LHLPNLNEEQRNGF 1QSLKDDPSQSANLLAEAKKLNDAQAPKA
4. PDB: 1C8C, In(K,)=6.95

ATVKFKYKGEEKQVD I SK IKKVWRVGKM I SFTYDEGGGKTGRGAVSEKDAPKELLQMLAKQ
KK

5. PDB: 1C90, In(K,)=7.20
QRGKVKWFNNEKGYGF I EVEGGSDVFVHFTAIQGEGFKTLEEGQEVSFE IVQGNRGPQAA
NVVKL

6. PDB: 1CSP, In(K,)=6.54
LEGKVKWFNSEKGFGF I EVEGQDDVFVHFSAI QGEGFKTLEEGQAVSFE I VEGNRGPQAA
NVTKEA

7. PDB: 1DIV_c, In(K,)=0.0
AAEELANAKKLKEQLEKLTVT I PAKAGEGGRLFGS 1 TSKQ I AESLQAQHGLKLDKRK I EL
ADAIRALGYTNVPVKLHPEVTATLKVHVTEQK

8. PDB: 1DIV_n, In(K,)=6.61

KV IFLKDVKGKGKKGE IKNVADGYANNFLFKQGLAIEATPANLKALEAQKQKEQR
9. PDB: 1EOL, In (Kf )=10 .37

ATAVSEWTEYKTADGKTYYYNNRTLESTWEKPQELK
10. PDB: 1EOM, In (Kf )=8 .85

MGLPPGWDEYKTHNGKTYYYNHNTKTSTWTDPRMSS
11. PDB: 1ENH, |In (Kf)=10.53

PRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQ IKIWFQNKRAKI
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12. PDB: 1FEX, In(Kf)=8.19

RIAFTDADDVAILTYVKENARSPSSVTGNALWKAMEKSSLTQHSWQSLKDRYLKHLRG
13. PDB: 1FKB, In(K,)=1.45

VQVET ISPGDGRTFPKRGQTCVVHY TGMLEDGKKFDSSRDRNKPFKFMLGKQEV IRGWEE
GVAQMSVGQRAKLT I SPDYAYGATGHPG I IPPHATLVFDVELLKLE

14. PDB: 1FMK, In(K,)=4.05

TFVALYDYESRTETDLSFKKGERLQIVNNTEGDWWLAHSLSTGQTGY IPSNYVAPS
15. PDB: 1FNF_9, In(K,)=-0.92
DSPTGIDFSDITANSFTVHWIAPRAT I TGYR IRHHPEHFSGRPREDRVPHSRNS I TLTNL
TPGTEYVVS IVALNGREESPLL 1GQQSTV

16. PDB: 1G6P, In(K,)=6.30

RGKVKWFDSKKGYGF I TKDEGGDVFVHWSA I EMEGFKTLKEGQVVEFE I QEGKKGPQAAH
VKVVE

17. PDB: 1HDN, In(K,)=2.69

FQQEVT I TAPNGLHTRPAAQFVKEAKGFTSE I TVTSNGKSASAKSLFKLQTLGLTQGTVV
T1SAEGEDEQKAVEHLVKLMAELE

18. PDB: 1IDY, In(K,)=8.73

EVKKTSWTEEEDR I LYQAHKRLGNRWAE I AKLLPGRTDNA IKNHWNSTMRRKV

19. PDB: 1IMQ, In(K,)=7.28

ELKHS I SDYTEAEFLQLVTT ICNADTSSEEELVKLVTHFEEMTEHPSGSDL 1YYPKEGDD
DSPSG I VNTVKQWRAANGKSGFKQG

20. PDB: 1K8M, In(K,)=-0.71

GQVVQFKLSD 1GEG IREVTVKEWYVKEGDTVSQFDS I CEVQSDKASVT I TSRYDGV IKKL
YYNLDDIAYVGKPLVD IETEALKDLE

21. PDB: 1K9Q, In(K,)=8.37

EIPDDVPLPAGWEMAKTSSGQRYFLNHIDQTTTWQDPRK
22. PDB: 1L2Y, In(Kf)=12.4O

LY 1QWLKDGGPSSGRPPPS
23. PDB: 1LMB, In(K,)=8.50

LTQEQLEDARRLKA I YEKKKNELGLSQESVADKMGMGQSGVGALFNG INALNAYNAALLA
KILKVSVEEFSPS1ARE I YEMYEAVS

24. PDB: 1MIC, In(K,)=5.23

GKMTG I VKWFNADKGFGF I TPDDGSKDVFVHFSA I QNDGYKSLDEGQKVSFT I ESGAKGP
AAGNVTSL

25. PDB: IN88, In(K,)=3.0

KTAYDV I LAPVLSEKAYAGFAEGKY TFWVHPKATKTE I KNAVETAFKVKVVKVNTLHVRG
KKKRLGRYLGKRPDRKKA 1VQVAPGQK I EALEGL I

26. PDB: INYF, In(K,)=4.54
TLFVALYDYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGY IPSNYVAPV
27. PDB: 1PGB_b, In(K,)=12.0

TYKLILNGKTLKGET

28. PDB: 1PIN, In(K,)=9.37

LPPGWEKRMSRSSGRVYYFNH I TNASQWERP

29. PDB: 1PKS, In(K,)=-1.06

GYQYRALYDYKKEREED IDLHLGDILTVNKGSLVALGFSDGQEARPEEIGWLNGYNETTG
ERGDFPGTYVEYIGR

30. PDB: 1PRB, In(Kf)=12.90

IDQWLLKNAKEDATAELKKAG I TSDFYFNAINKAKTVEEVNALKNE I LKAHA
31. PDB: 1PSE, In(Kf)=1.17

IERGSKVKILRKESYWYGDVGTVASIDKSGI 1YPVIVRENKVNYNGFSGSAGGLNTNNFA
EHELEVVG

Chou and Shen
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32. PDB: 1QTU, In(K,)=-0.36
SMAGEDVGAPPDHLWVHQEG I YRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSH
LLTSQLPLMWQLYPEERYMDNNSRLWQ1QHHLMVRGVQELLLKLLPDDRSPGIH

33. PDB: 1RFA, In(K,)=7.0

NT IRVFLPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWN
TDAASL IGEELQVDFLD

34. PDB: 1SHG, In(K,)=2.10

ELVLALYDYQEKSPREVTMKKGD I LTLLNSTNKDWWKVEVNDRQGFVPAAYVKKLD
35. PDB: 1TEN, In(K,)=1.06
DAPSQIEVKDVTDTTAL I TWFKPLAE IDGIELTYGIKDVPGDRTT IDLTEDENQYS IGNL
KPDTEYEVSL I SRRGDMSSNPAKETETT

36. PDB: 1URN, In(Kf)=5.76

VPETRPNHT 1Y INNLNEK I KKDELKKSLHAIESRFGQILD ILVSRSLKMRGQAFV I FKEV
SSATNALRSMQGFPFYDKPMRIQYAKTDSD I 1AKM

37. PDB: 1VII, In(K,)=11.51

LSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF
38. PDB: 1WIT, In(K,)=0.41

KPKILTASRK 1K IKAGFTHNLEVDF I GAPDPTATWTVGDSGAALAPELLVDAKSSTTSIF
FPSAKRADSGNYKLKVKNELGEDEAIFEVIVQ

39. PDB: 2A3D, In(K,)=12.7
GSWAEFKQRLAAIKTRLQALGGSEAELAAFEKE I AAFESELQAYKGKGNPEVEALRKEAA
AIRDELQAYRHN

40. PDB: 2ACY, In(K,)=0.84

EGDTL I SVDYE I FGKVQGVFFRKYTQAEGKKLGLVGWVQNTDQGTVQGQLQGPASKVRHM
QEWLETKGSPKSHIDRASFHNEKV 1VKLDYTDFQIVK

41. PDB: 2AIT, In(K,)=4.21
TTVSEPAPSCVTLYQSWRYSQADNGCAETVTVKVVYEDDTEGLCYAVAPGQI TTVGDGY I
GSHGHARYLARCL

42. PDB: 2CI2, In(K,)=3.87
LKTEWPELVGKSVEEAKKV 1LQDKPEAQI IVLPVGT IVTMEYR I DRVRLFVDKLDN IAEV
PRVG

43. PDB: 2HQI, In(K,)=0.18
TQTVTLAVPGMTCAACP I TVKKAL SKVEGVSKVDVGFEKREAVVTFDDTKASVQKLTKAT
ADAGYPSSVKQ

44. PDB: 2PDD, In(K,)=9.69

IAMPSVRKYAREKGVD IRLVQGTGKNGRVLKED IDAFLAGGA
45. PDB: 2PTL, In (Kf )=4. 10

VT IKANL I FANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLN IKFAG
46. PDB: 2ABD, In(K,)=6.48
QAEFDKAAEEVKHLKTKPADEEMLF I'YSHYKQATVGD INTERPGMLDFKGKAKWDAWNEL
KGTSKEDAMKAY I DKVEELKKKYG

47. PDB: 2CRO, In(K,)=5.35

QTLSERLKKRR IALKMTQTELATKAGVKQQS I QL I EAGVTKRPRFLFE I AMALNCDPVWL
QYGT

48. PDB: 1UZC, In(K,)=8.68
PAKKTYTWNTKEEAKQAFKELLKEKRVPSNASWEQAMKM I INDPRYSALAKLSEKKQAFN
AYKVQTEK

49. PDB: 1CEl, In(K,)=5.8

KNS I SDYTEAEFVQLLKE I EKENVAATDDVLDVLLEHFVK I TEHPDGTDL I'YYPSDNRDD
SPEG I VKE I KEWRAANGKPGFKQG

50. PDB: 1BRS, In(K,)=3.37

INTFDGVADYLQTYHKLPDNY I TKSEAQALGWVASKGNLADVAPGKS IGGD I FSNREGKL
PGKSGRTWREAD INYTSGFRNSDRILYSS
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51. PDB: 2A5E, In(Kf)=3.50

EPAAGSSMEPSADWLATAAARGRVEEVRALLEAGALPNAPNSYGRRP IQVMMMGSARVAE
LLLLHGAEPNCADPATLTRPVHDAAREGFLDTLVVLHRAGARLDVRDAWGRLPVDLAEEL
GHRDVARYLRAAAGGTRGSNHARIDAAEGPSDIPD

52. PDB: 1TIT, In(K,)=3.6
IEVEKPLYGVEVFVGETAHFE I ELSEPDVHGQWKLKGQPLTASPDCE I IEDGKKHILILH
NCQLGMTGEVSFQAANAKSAANLKVKEL

53. PDB: 1FNF_10, In(K,)=5.48

DVPRDLEVVAATPTSLL ISWDAPAVTVRYYRITYGETGGNSPVQEFTVPGSKSTAT ISGL
KPGVDYT I TVYAVTGRGDSPASSKPISINYRT

54. PDB: 1HNG, In(K,)=1.8

SGTVWGALGHG INLNI1PNFQMTDD I DEVRWERGSTLVAEFKRKMKPFLKSGAFE I LANGD
LKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRI

55. PDB: 1ADW, In(K,)=0.64
THEVHMLNKGESGAMVFEPAFVRAEPGDV INFVPTDKSHNVEA IKE I LPEGVESFKSKIN

ESYTLTVTEPGLYGVKCTPHFGMGMVGLVQVGDAPENLDAAKTAKMPKKARERMDAELAQ
VN

56. PDB: 1EAL, In(Kf)=1.3
FTGKYEIESEKNYDEFMKRLALPSDAIDKARNLKI I SEVKQDGQONFTWSQQYPGGHSITN

TFTIGKECDIET IGGKKFKATVQMEGGKVVVNSPNYHHTAEIVDGKLVEVSTVGGVSYER
VSKKLA

57. PDB: 1IFC, In(Kf)=3.4
FDGTWKVDRNENYEKFMEKMG INVVKRKLGAHDNLKLT ITQEGNKFTVKESSNFRN IDVV

FELGVDFAYSLADGTELTGTWTMEGNKLVGKFKRVDNGKEL IAVREISGNELIQTYTYEG
VEAKRIFKKE

58. PDB: 10PA, In(Kf)=1.4
KDQNGTWEMESNENFEGYMKALD IDFATRKIAVRLTQTKI 1VQDGDNFKTKTNSTFRNYD

LDFTVGVEFDEHTKGLDGRNVKTLVTWEGNTLVCVQKGEKENRGWKQWVEGDKLYLELTC
GDQVCRQVFKKK

59. PDB: 1HCD, In(Kf)=1.1
GNRAFKSHHGHFLSAEGEAVKTHHGHHDHHTHFHVENHGGKVALKTHCGKYLS I GDHKQV
YLSHHLHGDHSLFHLEHHGGKVS IKGHHHHY I SADHHGHVSTKEHHDHDTTFEEI 11
60. PDB: 1BEB, In(Kf)=—2.20

TMKGLD IQKVAGTWYSLAMAASD I SLLDAQSAPLRVYVEELKPTPEGDLE I LLQKWENGE

CAQKK T ITAEKTKIPAVFKIDALNENKVLVLDTDYKKYLLFCMENSAEPEQSLVCQCLVRT
PEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQC

61. PDB: 1B9C, In(Kf)=—2.76
EELFTGVVP ILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTF
VQCFSRYPDHMKQHDFFKSAMPEGYVQERT I SFKDDGNYKTRAEVKFEGDTLVNRIELKG

IDFKEDGN I LGHKLEYNYNSHNVY I TADKQKNG I KANFKIRHNIEDGSVQLADHYQQNTP
IGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGIT

62. PDB: 111B, In(Kf)=—4.01
RSLNCTLRDSQQKSLVMSGPYELKALHLQGQDMEQQVVFSMSFVQGEESNDKIPVALGLK

EEKNLYLSCVLKDDKPTLQLESVDPKNYPKKKMEKRFVFENKIEINNKLEFESAQFPNWY I
STSQAENMPVFLGGTKGGQD I TDFTMQFVSS

63. PDB: 1PGB_ab, In(Kf)=6.4O
TYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
64. PDB: 1UBQ, In(Kf)=5.90

QIFVKTLTGKTITLEVEPSDT IENVKAKIQDKEG IPPDQQRL IFAGKQLEDGRTLSDYNI
QKESTLHLVLRLRGG
65. PDB: 1GXT, In(Kf)=4.39

TSCCGVQLRIRGKVQGVGFRPFVWQLAQQLNLHGDVCNDGDGVEVRLREDPETFLVQLYQ
HCPPLARIDSVEREPFIWSQLPTEFTIR

Chou and Shen
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66. PDB: 1SCE, In(K,)=4.17

PRLLTASERERLEPFIDQIHYSPRYADDEYEYRHVMLPKAMLKAIPTDYFNPETGTLRIL
QEEEWRGLGITQSLGWEMYEVHVPEPHILLFKREKD

67. PDB: 1HMK, In(Kf)=2.79

EQLTKCEVFQKLKDLKDYGGVSLPEWVCTAFHTSGYDTQATVQNNDSTEYGLFQINNKIW
CKDDQNPHSRNICNISCDKFLDDDLTDD IVCAKKILDKVG INYWLAHKALCSEKLDQWLC
68. PDB: 3CHY, In(K,)=1.0

DADKELKFLVVDDFSTMRRIVRNLLKELGFNNVEEAEDGVDALNKLQAGGYGFV I SDWNM
PNMDGLELLKT IRADGAMSALPVLMVTAEAKKEN I IAAAQAGASGYVVKPFTAATLEEKL
NKITFEKLGM

69. PDB: 1HEL, In(Kf)=1.25

VFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSR
WWCNDGRTPGSRNLCNIPCSALLSSD I TASVNCAKK 1VSDGNGMNAWVAWRNRCKGTDVQ
AWIRGCRL

70. PDB: 1DK7, In(Kf)=O.83

GMQFDRGYLSPYFINKPETGAVELESPFILLADKKISNIREMLPVLEAVAKAGKPLLIITA
EDVEGEALATLVVNTMRG IVKVAAVKAPGFGDRRKAMLQD IATLTGGTVISEEIGMELEK
ATLEDLGQAKRVVINKDTTTI1DGV
71. PDB: 1J0O, In(Kf)=O.3O

TSTKKLHKEPATLIKAIDGDTVKLMYKGQPMTFRLLLVDTPETKHPKKGVEKYGPEASAF
TKKMVENAKKIEVEFDKGQRTDKYGRGLAY 1 YADGKMVNEALVRQGLAKVAYVYKPNNTH
EQLLRKSEAQAKKEKLN IWSEDNADSGQ

72. PDB: 2RN2, In(Kf)=1.41

LKQVEIFTDGSCLGNPGPGGYGAILRYRGREKTFSAGYTRTTNNRMELMAAIVALEALKE
HCEVILSTDSQYVRQG I TQWIHNWKKRGWKTADKKPVKNVDLWQRLDAALGQHQ IKWEWV
KGHAGHPENERCDELARAAAMNPTLEDTGYQVEV

73. PDB: 1RA9, In(Kf)=—2.46

ISL IAALAVDRV I GMENAMPWNLPADLAWFKRNTLDKPV IMGRHTWES I GRPLPGRKNI 1
LSSQPGTDDRVTWVKSVDEA I AACGDVPE IMV 1 GGGRVYEQFLPKAQKLYLTHIDAEVEG
DTHFPDYEPDDWESVFSEFHDADAQNSHSYCFE I LERR

74. PDB: 1PHP_c, In(K,)=-3.44

VLGKALSNPDRPFTAI IGGAKVKDKIGV IDNLLEKVDNL I IGGGLAYTFVKALGHDVGKS
LLEEDKIELAKSFMEKAKEKGVRFYMPVDVVVADRFANDANTKVVP IDAIPADWSALDIG
PKTRELYRDV IRESKLVVWNGPMGVFEMDAFAHGTKATAEALAEALDTYSVIGGGDSAAA
VEKFGLADKMDH I STGGGASLEFMEGKQLPGVVALEDK

75. PDB: 1PHP_n, In(Kf)=2.3O

NKKT IRDVDVRGKRVFCRVDFNVPMEQGAITDDTRIRAALPTIRYLIEHGAKVILASHLG
RPKGKVVEELRLDAVAKRLGELLERPVAKTNEAVGDEVKAAVDRLNEGDVLLLENVRFYP
GEEKNDPELAKAFAELADLYVNDAFGAAHRAHASTEGIAHYLPAVAGFLMEKEL

76. PDB: 2BLM, In(Kf)=—1.24

DFAKLEEQFDAKLGIFALDTGTNRTVAYRPDERFAFAST IKALTVGVLLQQKSIEDLNQR
ITYTRDDLVNYNPITEKHVDTGMTLKELADASLRYSDNAAQNL I LKQ IGGPESLKKELRK
IGDEVTNPERFEPELNEVNPGETQDTSTARALVTSLRAFALEDKLPSEKRELL IDWMKRN
TTGDAL IRAGVPDGWEVADKTGAASYGTRNDIAI IWPPKGDPVVLAVLSSRDKKDAKYDD
KL TAEATKVVMKALNMNGK

77. PDB: 1QOP_a, In(Kf)=—2.5

ERYENLFAQLNDRREGAFVPFVTLGDPGIEQSLKI IDTLIDAGADALELGVPFSDPLADG
PTIQNANLRAFAAGVTPAQCFEMLAT IREKHPTIP IGLLMYANLVFNNG IDAFYARCEQV
GVDSVLVADVPVEESAPFRQAALRHNIAPIFI1CPPPNNAADDDLLRQVASYGRGYTYLLS
RSGVTGAENRGPLHHL IEKLKEYHAAPALQGFG I SSPEQVSAAVRAGAAGAL SGSATVKI
I EKNLASPKQMLAELRSFVSAMKAASR

78. PDB: 1QOP_b, In(Kf)=—6.9

TLLNPYFGEEFGGMYVPQILMPALNQLEEAFVSAQKDPEFQAQFADLLKNYAGRPTALTK
CONITAGTRTTLYLKREDLLHGGAHKTNQVLGQALLAKRMGKSE I IAETGAGQHGVASAL
ASALLGLKCRI'YMGAKDVERQSPNVFRMRLMGAEV I PVHSGSATLKDACNEALRDWSGSY
ETAHYMLGTAAGPHPYPT IVREFQRMIGEETKAQ I LDKEGRLPDAV IACVGGGSNAIGMF
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ADFINDTSVGL IGVEPGGHG IETGEHGAPLKHGRVG 1 YFGMKAPMMQTADGQIEESYSIS
AGLDFPSVGPQHAYLNSIGRADYVSITDDEALEAFKTLCRHEG I IPALESSHALAHALKM
MREQPEEKEQLLVVNLSGRGDKDIFTVHDIL

79. PDB: 1BTA, In (Kf )=1. 11
KAVINGEQIRSISDLHQTLKKELALPEYYGENLDALWDCLTGWVEYPLVLEWRQFEQSKQ
LTENGAESVLQVFREAKAEGCDITIILS

80. PDB: 1L63, In (Kf )=4. 10
NIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKD

EAEKLFNQDVDAAVRG I LRNAKLKPVYDSLDAVRRAAL INMVFQMGETGVAGFTNSLRML
QQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYK

APPENDIX B.
The values of the three special features derived from the 80 protein sequences in the benchmark dataset Spanen of Appendix
A. See the text for further explanation.

PDB Code In(L) (cf. Eq. 16) |n(|_f:ﬁ) (cf. Eq. 15) ®F (Eq.17)
1APS 4.6052 4.3438 0.4810
1BA5 3.9703 3.0445 0.4683
1BDD 4.1109 3.3673 0.3994
1C8C 4.1589 3.8067 0.4415
1C90 4.1897 4.1744 0.4798
1CSP 4.2047 4.1897 0.4482

1DIV_¢c 45326 4.1744 0.4517
1DIV_n 4.0254 3.5553 0.4450
1E0L 3.6109 3.5835 0.4426
1E0M 3.6109 3.5835 0.4386
1ENH 3.9890 3.1781 0.4490
1FEX 4.0775 2.9444 0.4645
1FKB 46728 45747 0.4654
1FMK 4.0604 3.9890 0.4816
1FNF_9 4.4998 4.4886 0.4807
1G6P 4.1897 4.1744 0.4561
1HDN 4.4543 3.9703 0.4669
1IDY 3.9890 2.9957 0.4455
1IMQ 4.4543 3.6889 0.4321
1K8M 4.4659 4.4543 0.5021
1K9Q 3.6889 3.6636 0.4363
1L2Y 2.9957 2.9444 0.3965
1LMB 4.4659 2.8904 0.4519
1MIC 4.2341 4.2195 0.4580
1N88 45643 4.2767 0.4909
INYF 4.0604 4.0073 0.4625
1PGB_b 27726 2.7081 0.4997
1PIN 3.5264 3.4340 0.4453
1PKS 43438 4.2905 0.4466
1PRB 3.9703 2.5649 0.4543
1PSE 4.2485 4.1744 0.5045
1QTU 47449 45747 0.4757
1RFA 4.3567 4.1744 0.4879
1SHG 4.0431 3.9890 0.4835
1TEN 4.4886 4.4773 0.4507
1URN 45643 4.2905 0.4874
i 3.5835 2.3026 0.4479
IWIT 45326 45109 0.4537
2A3D 4.2905 2.7081 0.4005
2ACY 45850 4.3438 0.4955
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PDB Code In(L) (cf. Eq. 16) In( L%, ) (F.Eq. 15) @” (Eq.17)
2AIT 4.3041 41744 0.5049
2CI2 41744 3.9703 0.5081
2HQI 4.2767 3.9318 0.4906
2PDD 3.7612 3.1781 0.4660
2PTL 41431 3.8067 0.4727
2ABD 4.4659 3.5264 0.4093
2CRO 41744 3.2581 0.5014
1uzC 4.2341 3.2581 0.4213
1CEl 4.4427 3.6889 0.4309
1BRS 4.4998 4.2195 0.4549
2A5E 5.0499 45109 0.4155
1TIT 4.4886 4.4543 0.4532

1FNF_1 45326 45218 0.4975
1HNG 4.5643 4.4427 0.4846
1ADW 4.8122 45951 0.4414
1EAL 4.8442 4.7185 0.4708

1IFC 4.8828 4.7536 0.4741
10PA 4.8903 4.7707 0.4794
1HCD 47791 4.7362 0.4397
1BEB 5.0562 4.9053 0.4573
1B9C 5.4116 5.3083 0.4706
111B 5.0239 5.0039 0.4607

1PGB_a 4.0254 3.6636 0.4692
1UBQ 4.3307 4.0943 0.4776
1GXT 4.4998 4.2485 0.5071
1SCE 45747 4.2627 0.4451
1IHMK 4.8122 4.4067 0.4880
3CHY 4.8675 4.3307 0.4590
1HEL 4.8598 4.4188 0.4828
1DK7 4.9836 4.6347 0.4800
1JO0 5.0039 4.7185 0.4387
2RN2 5.0434 4.6250 0.4637
1RA9 5.0689 4.8598 0.4617

1PHP_c 5.3891 4.9053 0.4588

1PHP_n 5.1648 4.6821 0.4529
2BLM 5.5607 5.0876 0.4491

1QO0P_a 5.5910 4.9488 0.4657

1QOP_b 5.9713 5.4848 0.4552
1BTA 4.4998 3.4657 0.4785
1L63 5.0876 4.3694 0.4831

APPENDIX C

The values of [al(k), bl(k)], [az(k), bz(k)], and [as(k), b3(k)] determined according to Egs. 23-24 by excluding

(jackknifing) the k-th protein sample in term from S of Appendix A. See the text for further explanation.

bench

k PDB Code a,(k) by (k) a, (k) b, (k) a;(k) b, (k)
1 1APS 32.346 -6.378 26.619 -5.567 30.032 -56.397
2 1BA5 32.536 -6.430 27.196 -5.709 30.824 -58.293
3 1BDD 31.978 -6.324 26.324 -5.519 28.039 -52.327
4 1C8C 32.340 -6.393 26.623 -5.585 30.341 -57.233
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k POBCose | (k) b (k) (k) b, (k) a(k) b,(K)
5 1C90 32.318 -6.389 26.687 -5.608 31.371 -59.530
6 1CsP 32.357 -6.396 26.694 -5.608 30.460 -57.491
7 1DIV ¢ 32411 -6.396 26.693 -5.587 31.231 -58.983
8 1DIV_n 32.423 -6.408 26.704 -5.599 30.426 -57.413
9 1E0L 32.225 -6.367 26.431 -5.545 29.669 -55.877
10 1E0M 32,500 -6.424 26.537 -5.566 29.881 -56.286
11 1ENH 32.042 -6.333 26.498 -5.554 29.920 -56.433
12 1FEX 32.259 -6.377 26.990 -5.664 30.754 -58.197
13 1FKB 32.390 -6.398 26.707 -5.602 30.689 -57.873
14 1FMK 32.631 -6.448 26.698 -5.597 30.935 -58.503
15 1FNF_9 32.436 -6.398 26.602 -5.567 30.128 -56.619
16 1G6P 32.375 -6.399 26.688 -5.605 30579 -57.754
17 1HDN 32.436 -6.408 26.734 -5.602 30.696 -57.925
18 1IDY 32.228 -6.370 26.860 -5.634 30.067 -56.696
19 1IMQ 32.381 -6.408 26.620 -5.583 30.238 -57.006
20 1K8M 32.466 -6.405 26.613 -5.570 29.875 -56.111
21 1K9Q 32.490 -6.422 26.559 5571 29.960 -56.440
22 L2y 32.690 -6.465 26.367 -5.524 27525 -51.232
23 1LMB 32.376 -6.411 27.003 -5.667 30.285 -57.170
24 1MIC 32.425 -6.408 26.700 -5.606 30.666 -57.916
25 1NS8S 32.420 -6.407 26.693 -5.598 30.916 -58.448
26 INYF 32,588 -6.440 26.685 -5.596 30.716 -58.012
27 1PGB_b 33.447 -6.629 26.607 5578 34.256 -65.939
28 1PIN 32513 -6.427 26.525 -5.562 29.953 -56.466
29 1PKS 32,611 -6.434 26.644 5573 31.663 -59.880
30 1PRB 31.788 -6.282 26,578 5571 29.976 -56.627
31 1PSE 32.631 -6.443 26.692 -5.590 30.612 -57.760
32 1QTU 32.316 -6.377 26.625 -5.576 30.334 -57.073
33 1RFA 32.344 -6.397 26.687 -5.607 31.767 -60.394
34 1SHG 32.830 -6.487 26.741 -5.602 30.617 -57.764
35 1TEN 32435 -6.403 26.671 -5.590 31.151 -58.838
36 1URN 32.446 -6.421 26.729 -5.616 31.459 -59.603
37 il 32.038 -6.327 27.236 -5.723 29.724 -56.035
38 IWIT 32412 -6.397 26.651 -5.584 31.095 -58.704
39 2A3D 32.081 -6.353 26.482 -5.549 27.409 -50.996
40 2ACY 32.392 -6.395 26.662 -5.585 30.381 -57.236
4 2AIT 32.448 -6.412 26.690 -5.599 31.824 -60.470
42 2CI12 32,542 -6.430 26.705 -5.598 31.851 -60.524
43 2HQI 32.647 -6.445 26.821 -5.614 30.196 -56.810
44 2PDD 32.217 -6.366 26.598 -5.576 30.849 -58.446
45 2PTL 32551 -6.432 26.746 -5.606 30.790 -58.177
46 2ABD 32.395 -6.409 26.727 -5.604 30.992 -58.577
47 2CRO 32.443 -6.412 27.028 -5.670 32.064 -61.014
48 1ze 32.236 -6.376 26.666 -5.501 29.746 -55.965
49 1CEI 32.395 -6.407 26.705 -5.599 30.701 -57.964
50 1BRS 32422 -6.407 26.692 -5.598 30.803 -58.155
51 2ASE 32.783 -6.499 26.769 -5.622 32.188 -61.088
52 iTIT 32422 -6.408 26.749 -5.617 30.806 -58.165
53 1FNF_1 32.428 -6.415 26.852 -5.649 31.889 -60.633
54 1HNG 32.409 -6.401 26.690 -5.596 30.565 -57.645
55 1ADW 32.367 -6.393 26.675 -5.592 31.662 -59.916
56 1EAL 32.416 -6.406 26.754 -5.615 30.586 -57.654
57 1IFC 32,584 -6.451 26.912 -5.661 30.741 -58.053
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k POBCose | (k) b (k) (k) b, (k) a(k) b,(K)
58 10PA 32.445 -6.414 26.788 -5.625 30,503 -57.491
59 1HCD 32.386 -6.398 26.750 -5.614 31.653 -59.907
60 1BEB 32.185 -6.348 26.568 -5.562 31.108 -58.665
61 1B9C 32.330 -6.386 26.726 -5.606 30.331 -56.990
62 111B 31.997 -6.300 26.429 -5.524 30.951 -58.283
63 1PGB_a 32.443 -6.412 26.678 -5.594 30.870 -58.406
64 1UBQ 32.377 -6.401 26.669 -5.598 31.096 -58.896
65 1GXT 32.419 -6.409 26.702 -5.604 32.017 -60.895
66 1SCE 32434 -6.413 26.703 -5.604 30.852 -58.267
67 1HMK 32.491 -6.427 26.710 -5.604 30.810 -58.208
68 3CHY 32.406 -6.403 26.666 -5.586 30.860 -58.221
69 1HEL 32.419 -6.407 26.671 -5.590 30.462 -57.404
70 1DK7 32.453 -6.416 26.695 -5.598 30.413 -57.281
71 1J00 32.416 -6.406 26.692 -5.597 31.892 -60.399
72 2RN2 32,557 -6.442 26.722 -5.606 30.724 -57.946
73 1RA9 32.159 -6.342 26.535 -5.552 30.846 -58.099
74 1PHP ¢ 32.187 -6.351 26.463 -5.532 31.069 -58.551
75 1PHP_n 32.805 -6.502 26.796 -5.628 30.942 -58.423
76 2BLM 32.844 -6.509 26.749 -5.613 31.529 -59.590
77 1QOP_a 32.622 -6.455 26.555 -5.559 30.612 -57.599
78 1QOP_b 32.089 -6.330 26.230 -5.474 31.610 -59.620
79 1BTA 32.429 -6.402 27.207 -5.704 30.469 -57.408
80 1L63 32.905 -6.529 26.731 -5.612 30.978 -58.600
APPENDIX D

The values of A(k), B(k), C(k),and D(k) (k=1, 2, ---, 80) determined according to Egs. 31 by excluding (jackknif-

ing) the k-th protein sample in term from S of Appendix A. See the text for further explanation.

bench

k PDB Code AK) B(k) C(k) D(k)

1 1APS 29.5992 -2.2482 -2.0364 -15.8870
2 1BA5 30.1004 -2.2666 -2.0884 -16.4211
3 1BDD 28.8002 -2.2292 -2.0189 -14.7405
4 1C8C 29.6856 -2.2535 -2.0430 -16.1225
5 1C90 29.9914 -2.2521 -2.0514 -16.7696
6 1CSP 29.7511 -2.2546 -2.0514 -16.1952
7 1DIV_c 29.9869 -2.2546 -2.0437 -16.6155
8 1DIV_n 29.7684 -2.2588 -2.0481 -16.1732
9 1EOL 29.3855 -2.2444 -2.0284 -15.7406
10 1EOM 29.5810 -2.2645 -2.0360 -15.8558
11 1ENH 29.4162 -2.2324 -2.0317 -15.8972
12 1FEX 29.9076 -2.2479 -2.0719 -16.3941
13 1FKB 29.8320 -2.2553 -2.0492 -16.3028
14 1FMK 29.9829 -2.2729 -2.0474 -16.4803
15 1FNF_9 29.6518 -2.2553 -2.0364 -15.9496
16 1G6P 29.7888 -2.2556 -2.0503 -16.2693
17 1HDN 29.8601 -2.2588 -2.0492 -16.3175
18 11IDY 29.6556 -2.2454 -2.0609 -15.9713
19 1IMQ 29.6699 -2.2588 -2.0423 -16.0586
20 1K8M 29.5951 -2.2578 -2.0375 -15.8065
21 1K9Q 29.6077 -2.2638 -2.0379 -15.8991
22 L2y 28.9221 -2.2789 -2.0207 -14.4321
23 1LMB 29.8215 -2.2599 -2.0730 -16.1048
24 1MJC 29.8353 -2.2588 -2.0507 -16.3149
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k PDB Code AK) B(k) C(k) D(k)

25 1N88 29.9014 -2.2585 -2.0477 -16.4648
26 INYF 29.9013 -2.2701 -2.0470 -16.3420
27 1PGB_b 31.1728 -2.3367 -2.0404 -18.5750
28 1PIN 29.6014 -2.2655 -2.0346 -15.9065
29 1PKS 30.1612 -2.2680 -2.0386 -16.8682
30 1PRB 29.3717 -2.2144 -2.0379 -15.9518
31 1PSE 29.8898 -2.2712 -2.0448 -16.2710
32 1QTU 29.6759 -2.2479 -2.0397 -16.0775
33 1RFA 30.1121 -2.2549 -2.0510 -17.0130
34 1SHG 29.9792 -2.2867 -2.0492 -16.2721
35 1TEN 29.9648 -2.2571 -2.0448 -16.5747
36 1URN 30.0767 -2.2634 -2.0543 -16.8155
37 vil 29.6296 -2.2303 -2.0935 -15.7851
38 1WIT 29.9336 -2.2549 -2.0426 -16.5369
39 2A3D 28.7168 -2.2394 -2.0298 -14.3656
40 2ACY 29.7295 -2.2542 -2.0430 -16.1234
41 2AIT 30.1659 -2.2602 -2.0481 -17.0344
42 2CI2 30.2122 -2.2666 -2.0477 -17.0496
43 2HQI 29.8254 -2.2719 -2.0536 -16.0034
44 2PDD 29.7762 -2.2440 -2.0397 -16.4642
45 2PTL 29.9315 -2.2673 -2.0507 -16.3885
46 2ABD 29.9264 -2.2592 -2.0499 -16.5011
47 2CRO 30.3554 -2.2602 -2.0741 -17.1876
48 1uzC 29.4971 -2.2475 -2.0452 -15.7653
49 1CEl 29.8364 -2.2585 -2.0481 -16.3285
50 1BRS 29.8699 -2.2585 -2.0477 -16.3823
51 2A5E 30.4155 -2.2909 -2.0565 -17.2085
52 1TIT 29.8916 -2.2588 -2.0547 -16.3851
53 1FNF_1 30.2365 -2.2613 -2.0664 -17.0803
54 1HNG 29.7975 -2.2564 -2.0470 -16.2386
55 1ADW 30.0863 -2.2535 -2.0456 -16.8783
56 1EAL 29.8293 -2.2581 -2.0540 -16.2411
57 1IFC 29.9900 -2.2740 -2.0708 -16.3535
58 10PA 29.8286 -2.2609 -2.0576 -16.1952
59 1HCD 30.1179 -2.2553 -2.0536 -16.8758
60 1BEB 29.8269 -2.2377 -2.0346 -16.5259
61 1B9C 29.7169 -2.2511 -2.0507 -16.0541
62 111B 29.6656 -2.2207 -2.0207 -16.4183
63 1PGB_a 29.8910 -2.2602 -2.0463 -16.4530
64 1UBQ 29.9282 -2.2564 -2.0477 -16.5910
65 1GXT 30.2145 -2.2592 -2.0499 -17.1541
66 1SCE 29.8920 -2.2606 -2.0499 -16.4138
67 1IHMK 29.9028 -2.2655 -2.0499 -16.3972
68 3CHY 29.8708 -2.2571 -2.0434 -16.4009
69 1HEL 29.7651 -2.2585 -2.0448 -16.1707
70 1DK7 29.7721 -2.2616 -2.0477 -16.1361
71 1JO0O 30.1746 -2.2581 -2.0474 -17.0144
72 2RN2 29.9062 -2.2708 -2.0507 -16.3234
73 1RA9 29.7319 -2.2356 -2.0309 -16.3665
74 1PHP_c 29.7782 -2.2387 -2.0236 -16.4938
75 1PHP_n 30.0821 -2.2920 -2.0587 -16.4578
76 2BLM 30.2440 -2.2944 -2.0532 -16.7865
77 1QO0P_a 29.8365 -2.2754 -2.0335 -16.2256
78 1QOP_b 29.8108 -2.2313 -2.0024 -16.7950
79 1BTA 29.9667 -2.2567 -2.0865 -16.1718
80 1L63 30.1037 -2.3015 -2.0529 -16.5076
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