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Abstract: Motivation: A good quantitative epitope prediction, i.e. a reliable prediction of the strength of the MHC-epitope 

binding, is decisive in order to better understand the immune system response. The prediction is often performed by 

means of the scoring-matrix method that usually assumes a single binding configuration: each amino acid of the epitope 

binds to a specific pocket of the MHC molecule, in a way independent from other bindings. 

Results: We have put forward the assumption, suggested by the allosteric Monod framework, that a number of alternative 

states exist, each one characterised by an interaction energy expressed by a scoring matrix. We have developed and 

suitably evaluated an algorithm for epitope prediction based on such assumption, and we finally discuss the results and the 

possible reasons why such results unexpectedly appear to be unsatisfactory. 

INTRODUCTION 

 In the normal operation of the human immune system, 
the Major Histocompatibility Complex (MHC) molecules - 
of class I and II - interact, within a cell, with short peptides 
obtained from the fragmentation of various proteins and 
present such peptides on the cell surface for a possible 
recognition as foreign antigens by the receptors (TCR) 
exhibited from the T-cells, a necessary condition for 
activating the immune response.  

 The peptides presented by MHC molecules are derived 
from the fragmentation, for class I, of cytosolic proteins 
(possibly of a virus), while, for class II, of extracellular 
proteins (possibly of a parasite). 

 MHC class I molecules are found on almost every cell of 
the body (but not on red blood cells), while MHC class II 
molecules are found only on a few specialized cell types, e.g. 
macrophages, which are professional antigen-presenting 
cells. 

 In the interaction a peptide binds to an MHC molecule in 
a site called groove, more exactly the side chain of every 
amino acid (aa) of the peptide binds to a corresponding site 
in the groove, called pocket.  

 The groove interacts with a peptide tract having a length 
of about 9 aa.: while the geometric shape of a groove of an 
MHC class I molecule is such that the maximum length of 
the whole peptide must be bounded (9 aa or only slightly 
more), so that no extra tract of the peptide can hang outside 
the groove, such steric constraint does not exist for an MHC 
class II molecule. 
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 The probability that a molecule of a peptide will be 
presented to the TCR grows with the binding affinity (or, 
equivalently, with the free energy of the interaction) between 
the MHC molecule and the peptide. When the binding 
affinity to a given MHC allele is greater than a threshold 
value (defined by the fact that beyond that value the possible 
immune response is considered good), the peptide is usually 
named epitope. When the binding affinity is not sufficiently 
known, or even unknown, the peptide should be more 
appropriately named a prospective epitope, although, for the 
sake of simplicity, this terminology is not always strictly 
adhered to. 

 It would be clearly of utmost practical importance to 
know the affinity between a given MHC allele molecule and 
a given peptide molecule. However measuring all such 
binding affinities requires a great number of sophisticated 
and expensive experiments, and it is therefore only natural to 
resort to a computational prediction, validated by a much 
smaller number of key measurements. 

 Two types of epitope prediction are usually considered: 

qualitative or quantitative. The first one consists in 

discriminating the peptide as epitope and non-epitope, 

without giving any further information about the binding 

affinity. The quantitative type consists in predicting a figure 

of merit for the binding, sometimes by using probabilistic 

arguments, but more frequently by giving a measure of the 

binding affinity, expressed by means of the experimental 

quantity known as IC50 , which represents the molar 

concentration of the peptide such that half of the MHC 

molecules are bound, so that when the binding is strong the 

IC50  is small. More specifically a peptide can be considered 

an epitope if its IC50  is less then a given threshold. 

The IC50  is by far the most widely used. Other quantities, 

possibly with different physical dimensions, are sometimes 
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considered as a measure of the binding strength, such as, for 

example, the EC50  (which many consider as equivalent to 

IC50) or the half-life of the MHC-peptide complex, or the 

dissociation costant Kd . Since such quantities are directly or 

inversely proportional to each other (usually with a good 

approximation, especially in the case of small 

concentrations) when the logarithm of the binding affinity is 

used (as we shall see later on), different measurements of the 

binding strength involve only an inessential shift. 

 While there exist different types of human MHC 
molecules and epitopes with different lengths, in this paper 
we shall restrict our study to the following largely used 
choice: we consider only the alleles of the MHC class I 
molecules, and only the epitopes whose length is 9 amino 
acids. 

 We note that for the MHC class I molecules the epitope 
prediction appears to be theoretically simpler, thanks to the 
steric constraint described above, and it is easier to get many 
experimental data; moreover such molecules are very 
important since they are synthesised by almost all human 
cells in order to counter viruses and cancers. 

 We now briefly consider some of the main prediction 
methods. 

 Practical methods used to perform epitope prediction 
include methods based on artificial intelligence, on binding 
motifs, and on quantitative matrices. 

1) Artificial intelligence methods, mostly based on 
Artificial Neural Networks (ANN), are general-
purpose algorithms that look for purely empirical 
relations, and in some cases obtain remarkably good 
results; but it is very difficult to obtain from them 
some physical insight. 

2) Methods based on binding motifs arise from the 
observation that, for a specific allele, the epitopes 
frequently exhibit the same motif, i.e. have in 
particular positions particular aa that are presumably 
the anchors of the binding. For example Parker and 
co-workers remarked that the HLA-A2 molecules 
bind with epitopes that contain Leucine or 
Methionine at the second position, and Valine or 
Leucine at the ninth position [1]. The frequency of 
such occurrences has suggested to simply consider as 
prospective epitopes those exhibiting such a motif. 
Usually for each allele only one motif is used, but 
sometimes the situation is more complex; for 
example, in [2] two motifs are considered for a 
particular allele (A*0101), in order to model two 
alternative peptide binding modes.  

3) Methods based on quantitative matrices: while a 
motif simply indicates whether a given aa can occur 
in a given position of an epitope for a specific MHC 
allele, more information is given by a scoring matrix, 
called quantitative matrix, which for each aa and each 
position gives a “figure of merit” (linearly related to 
the binding free energy) for that aa in that position; 
according to a common hypothesis of independent 
binding of side chains (IBS), a global figure of merit 

for every prospective epitope can be obtained simply 
as the sum of the relevant partial figures of merit [1]. 

 We now consider in more detail the methods based on 
quantitative matrices. 

 From a physical point of view each partial figure of merit 
is simply the interaction partial free energy of an aa with its 
pocket, and the IBS assumption states that such energies are 
mutually independent [1]. 

We write down the formulas for the special but frequent case 

where the peptide length of the prospective epitope is equal 

to 9, so that, in each of its nine positions, any considered 

peptide has one of the 20 aa. We shall call a k( )  the aa in 

position k  (
 
k = 1, ,9 ) of the peptide a . In this case the 

quantitative matrix, for a specific allele, has 9 rows and 20 

columns: and, to give an example, if the aa are alphabetically 

ordered by one-letter symbol (so that the Y, for the Tyrosine, 

represents the last aa) the partial binding free energy of a 

possible Tyrosine in the third position of the peptide is just 

the element in row 3 and column 20. 

The problem is to predict (for a specific allele) the value of 

IC50
 of a peptide as a function of its nine aa. Since, from the 

thermodynamic point of view, the binding strength depends 

only on the binding free energy, according to the IBS 

assumption, the free energy of the epitope binding to the 

MHC molecule should be considered as the sum of the free 

energies of the bindings of each aa of the peptide with the 

corresponding pocket, with no mutual interactions. 

 In other words the IBS assumption provides a model for 
computing the binding strength that can be written in the 
form 

Sa M( ) = Mi,a i( )
i=1

9

            (1)  

where the considered MHC allele is not explicitly indicated, 

a refers to the considered peptide, the quantitative matrix M  

is the table, defined above, whose element Mi,a i( )
 expresses 

the contribution, to the free energy of the MHC-peptide 

binding, by the binding of the amino acid a i( )  to the pocket 

i , and Sa M( )  is an estimate of the quantity Aa = ln(IC50 ) . 

Recalling Arrhenius equation, Aa
 is linearly related to the 

binding free energy Gº = RT ln IC50( ) , where T  is the 

absolute temperature and R  is the gas constant [3]. 

 In order to use the model for epitope prediction one 

needs of course to know the matrix M . 

 If the matrix M  is not known, in order to obtain a good 

estimate it is natural to minimize in some sense the overall 

“discrepancy” between the values of Aa
and Sa

.  

 We now describe the most frequently used procedure.  

 One defines the deviation as 

da M( ) = Sa M( ) Aa
            (2) 
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and the total square deviation (relative to the given MHC 
allele) as  

D M( ) = da
2 M( )

a

            (3) 

 A value M opt  minimizing D , i.e. implicitly defined by 

D M opt( ) = min
M

D M( )( )            (4) 

is considered as a good estimate of M , and the value of 

Sa M opt( )  is considered as a good estimate of Aa
. 

 We note however that in this form, as it can be easily 

seen, the minimization problem is degenerate: in fact if, 

given a matrix M , we define a matrix M g  with 

Mi,k
g

= Mi,k + gi
 with 9 arbitrary gi

 subject to gi = 0
i

9

 we 

have Sa M g( ) = Sa M( )  for each a , and therefore 

D M g( ) = D M( ) . 

This corresponds to 9 1 = 8  degrees of freedom, and 

therefore, in a different parlance, the problem has 8  

minimizers. 

 The main steps of a method for quantitative epitope 

prediction, using a model based on IBS, are:  

• compute a value M opt  based on experimental values 

of Aa
 for a number of a  (training set) 

• use M opt  to compute, for a number of different a , 

the value of Sa M opt( )  as the prediction of the value 

of Aa
.  

 As a side remark we note that the quantitative matrix M  

is often called an additive matrix since the score S  is 

obtained by a suitable sum of its elements (1). A perfectly 

equivalent point of view, first introduced by [1], is to 

consider a quantitative matrix M *  of elements 

Mi,
*

= exp Mi,( )  to obtain a score S*  as a suitable product 

of elements of M * , 

Sa
* M *( ) = Mi,a i( )

*

i=1

9

            (5) 

 so that the quantitative matrix M *  is called a multiplicative 

matrix and obviously  

Sa
* M *( ) = exp Sa M( )( )             (6) 

 A small annoying complication, which however has an 

important effect on the basic formulas in what follows, stems 

from the form in which some of the experimental data are 

often provided, due to limitations of the adopted 

measurement procedures. 

 The measured value Aa
+  is often provided as having a 

definite value Aa
, but sometimes is given in an indefinite 

form Aa
+

< Ua
 or Aa

+
> La

, i.e. as having an indefinite value 

belonging to an “out of range” incertitude zone defined by its 

boundary value (U  or L ). 

 Since usually both definite and indefinite values are 

present, one selects a conventional value for the deviation 

da M( )  as follows.  

 When the measure has a definite value, one obvious 

selects da M( ) = Sa M( ) Aa
 as in Eq. (2). 

 When the measure has an indefinite value, one selects as 

the value of da M( )  the smallest deviation consistent with 

the measurement: in other words, if Sa
belongs to the same 

zone as Aa
+  one selects da M( ) = 0 . Otherwise one uses the 

corresponding boundary value da M( ) = Sa M( ) Ua
 or 

da M( ) = Sa M( ) La
. 

 Summing up, if some measurements have indefinite 

values, the deviation is given by  

da M( ) =

Sa M( ) Aa if Aa
+

= Aa

0 if Aa
+

< Ua and Sa M( ) < Ua

0 if Aa
+

> La and Sa M( ) > La

Sa M( ) Ua if Aa
+

< Ua and Sa M( ) > Ua

Sa M( ) La if Aa
+

> La and Sa M( ) < La

        (7) 

 We note that if all the experimental data were provided 

as having a definite value, the total square deviation D M( )  

would be a quadratic function of the elements of the matrix 

M . However since frequently many experimental data are 

given as having only an indefinite value, as described above, 

the D M( )  becomes a piecewise quadratic function of the 

elements of M , whose numerical minimization can be more 

troublesome.  

 It is very important to quantitatively evaluate an epitope 

prediction. To this end a number of indicators can be used: 

among them, for example, the AUC of the ROC (the Area 

Under the Receiver Operating Characteristic Curve that is a 

plot of the sensitivity vs. 1-specificity) [4], is widely used 

recently, and will be considered later on.  

 Published results about the methods based on IBS exhibit 

basically the same, moderately good, predictions; some 

minor improvements in epitope prediction have been 

recently obtained by adding to the total square deviation a 

“regularisation function”, i.e. a small perturbation, producing 

a greater stability of the minimizers (e.g. with respect to 

abnormal experimental data). Such regularizazion is usually 

called after the russian mathematician Tikhonov [5], but 

sometimes other terms are used [6] . 

 The IBS assumption accounts for the simplicity of such 

methods, but also for their limitations; and in order to 

improve them it is only natural to resort to less restrictive 

assumptions.  

OUR MODEL 

 The model we propose in the present paper is based on a 

generalization, inspired by simple thermodynamics 

considerations, of the model based on the IBS assumption, 
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which is here completely abandoned. More specifically our 

model, in analogy to the allosteric model of Monod, Wyman 

and Changeux, is based on the assumption that there exist a 

number N  of alternative peptide-MHC binding modes, or, in 

other words, N  different docking possibilities. This amounts 

to consider N  quantitative matrices M k
, each one relative to 

the binding mode k , so that Eq. (1) becomes: 

Sa,k M k( ) = M k ,i,a i( )
i

           (8) 

where M k ,i,a i( )
 is relative to the binding of aa a i( )  and the 

pocket i  for binding mode k . 

 We note that such quantitative matrices (as well as those 

used under the IBS assumptions) are examples of the 

“position specific scoring matrices”, used also in other 

bioinformatics fields, such as those used, for example, to 

represent the specificity of transcription factors. 

 The total binding strength, according to thermodynamics, 

is related to the binding strength of the different binding 

modes, by the equation  

 

Sa M1, , M N( ) = ln exp Sa,k M k( )( )
k=1,N

        (9) 

 An intuitive interpretation of this equation can be simply 

obtained as follows. If we consider the time fraction during 

which the epitope and the MHC molecule remain bound, we 

can say that: for the binding in any single mode k  the 

fraction is proportional to exp Sa,k( ) , while for the overall 

binding for all modes the fraction is both equal to the sum of 

all time fractions relative to all modes, and proportional to 

 
exp Sa( ) , whence the result. Obviously the special case of 

only one binding mode ( N = 1) corresponds to the IBS 

assumption, and Eq. (9) reduces to Eq. (1). 

 In practice a very good approximation to Eq. (9) (that 

however is not used in our calculations) can be given by 

 

Sa M1, , M N( ) min
k=1,N

Sa,k M k( )( ) . 

 We note that the equations of an allosteric model deal 

with different states quite independently from their 

geometrical difference; in more detail we hypothesize that 

different docking modes for a given peptide-allele pair may 

exist, also when, as in our case, the relative positions are 

very similar, for example if only small rigid displacements 

(translations or rotations) are allowed by the steric 

constraints of the epitope in the groove. 

 Our model (9) enables to perform a quantitative epitope 

prediction relative to a given MHC allele, using the 

corresponding matrices M k
; if nothing is known (or 

guessed) about them, but a number of experimental data 

about the allele-peptide interaction are available, an obvious 

step is to estimate such matrices by suitably minimizing a 

total square deviation, as was done in the above one-matrix 

models using Eq. (1). 

 The deviation (2), when the measured value has a 

definite value ( Aa
+

= Aa
), becomes 

 
da M1, , M N( ) = Sa M1, , M N( ) Aa

 otherwise we use the 

obviously adapted version of Eq. (7). 

 The total square deviation (3) becomes 

 

D M1, , M N( ) = da
2 M1, , M N( )

a

       (10) 

 We choose to minimize the regularised deviation 

(following Tikhonov) 

 

D̂ M1, , M N( ) = D M1, , M N( ) + M k ,i, j M( )
2

k ,i, j

    (11) 

where M  is the arithmetic average of all the M k ,i, j
, and  

is a suitable constant. 

 The global minimizer 
 

M1
opt , , M N

opt{ }  of D̂ , implicitly 

defined by 

 

D̂ M1
opt , , M N

opt( ) = min
M1 , ,M N

D̂ M1, , M N( )( )       (12) 

is of course defined up to permutations, since  D  (and 

therefore also D̂ ) is a symmetrical function of 
 
M1 , , M N

. 

RESULTS 

 In order to perform a check of our model, we have 

chosen the large database of experimental values of IC50
 

relative to peptide binding to MHC class I molecules that is 

freely available at http://mhcbindingpredictions.immune-

epitope.org. Such database has been proposed [7] as a 

common benchmarking resource for algorithm testing, 

together with suggestions for obtaining homogeneous 

comparisons of predictions: the data are already grouped in 

five sets, thus allowing a uniform use of the cross-validation 

procedure, as described below. 

 We have not used all the data, but we have “filtered” 

them as follows. We have first considered only human MHC 

class I alleles and peptides of length 9. In order to avoid 

making prediction based on clearly insufficient data, we 

have considered only alleles with at least 1000 experimental 

values of IC50
. As a last filtering we have discarded the 

alleles with less than 800 definite values, so that we end up 

with a final choice of 10 alleles. 

 Our results have been obtained using the “five-fold cross-

validation” procedure, advocated by [7]. 

 In more detail, for each one of the selected ten MHC 

alleles, we use the data, already partitioned in five sets, 

taking in turn as test set one of the five sets, and as training 

set the union of the remaining four sets, and we proceed as 

follows: 

• we obtain, with a suitable local minimization 

algorithm, based on conjugate gradients, the 

minimizer matrices (12) of the deviation D̂ , using as 

the source of experimental values the training set. 
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• we obtain the predicted value 
 
Sa

 for each peptide a  

of the test set, using Eq. (9) with the minimizer 

matrices. 

 This procedure is repeated by selecting each time a 

different test set, so that we have finally, collecting the 

results, a prediction 
 
Sa

 for each peptide. 

 Finally, the quality of the prediction for a given MHC 

allele is evaluated, by means of the value of the AUC of 

ROC using as IC50
 threshold value (i.e. the value under 

which a peptide is considered an epitope) the concentration 

of 500 nM, as in [7]. 

 We note that if one considers only one binding mode, and 

therefore only one quantitative matrix (just as in any IBS-

based procedure), and all the experimental data have definite 

values, the required minimizations boil down to simple 

quadratic expression minimizations. 

 If instead some data are given as having an indefinite 

value belonging to an “out of range” incertitude zone, the 

function to be minimized becomes a convex piecewise 

quadratic function, for which the classical quasi-Newton 

techniques are well suited. 

 Things become markedly different when we consider 

several binding modes, i.e. several quantitative matrices, 

since in this case many local minima of the deviation arise; 

therefore, in order to perform the above procedure, we have 

developed a global minimization algorithm inspired by 

simulated annealing. 

 We report in Table 1 the results obtained with the above 

procedure for each one of the ten selected alleles, in the 

simplest case of only two matrices (with a value of = 1 ), 

together, for the sake of comparison, with some other results, 

as described in the legenda. 

 As for the choice of , some preliminary test had 

indicated that the best results were obtained, with minimal 

changes in the quality of the prediction, only when  

remained around 1 ; we therefore simply selected = 1 . 

 From a simple inspection of Table 1 a number of 

conclusions can be drawn. 

 We recall that, as explained above, the idea of 

introducing several quantitative matrices (instead of only 

one) was suggested by the hope of better modelling the case 

of several alternative peptide binding modes (as in allosteric 

models), and therefore the aim of our model was to assess 

the possible amount of improvement, if any, that could be 

obtained when using a several-matrix model with respect to 

using a simple one-matrix model. 

 We first note that, according to our expectations, our 

results in column N = 1  are well compatible with those in 

column SMM (small differences in the results are 

unavoidable when equivalent procedures differ in many 

details, such as regularisations and optimisation techniques). 

 On the other hand the results for the two-matrix case are 

truly disappointing: contrary to our expectations, not only 

the results are not better, but they are clearly worse than 

those in the one-matrix case, the only barely better case 

being in the first line (A_0201). 

DISCUSSION 

 It is only natural to attempt an explanation for such 

unexpected result. We put forward a few simple ideas. 

Table 1. The Table Reports (in Col. 2, 3, 4) the ROC-AUC Values Obtained in Different Conditions for a Number of MHC Alleles, 

Following the “Five-Fold Cross-Validation” Procedure 

MHC Allele N = 1 N = 2 SMM Total Data Definite-Valued Data 

A_0201 0.952 0.953 0.952 3089 1998 

A_0203 0.913 0.900 0.916 1443 1293 

A_0202 0.894 0.871 0.899 1447 1279 

A_1101 0.947 0.933 0.948 1985 1272 

A_0206 0.913 0.886 0.914 1437 1237 

A_0301 0.938 0.921 0.940 2094 1179 

A_6802 0.897 0.871 0.898 1434 1177 

A_3101 0.930 0.906 0.930 1869 1063 

A_6801 0.879 0.840 0.885 1141 988 

A_3301 0.922 0.894 0.925 1140 822 

A_0201half 0.944 0.928  1545 999 

For each allele (specified in the first column), we report our results, obtained with one (N = 1) and two (N = 2) matrices, while in the SMM column we report, for comparison, the 
results obtained by Peters et. al (2006) with the SMM algorithm (which is IBS-based, and therefore, up to programming details, should be equivalent to our column N = 1). The last 

two columns report the number of data used to obtain the above results: the fifth column contains the total number of data (i.e. both the experimental data having a definite value and 
those given as having an indefinite value belonging to an “out of range” incertitude zone) while the last column contains only the number of data having a definite value. We note 

that for N = 1 we used a local optimisation algorithm (based on conjugate gradients), while for N = 3 we used a global optimisation algorithm. The last row (A_0201half) contains our 
results obtained for the allele A_0201, using only half of the data. 
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 The first naïve hypothesis could be simply that (contrary 

to our hopes) adding a second matrix is quite useless, and in 

this case this would be correctly suggested by the cross-

validation procedure, that should give worse results when 

useless parameters are added. 

 This is analogous to the case of a mean-square regression 

with few data, where, when adding clearly useless 

parameters, a simple fitting always gives some (possibly 

small) improvement, while a correct cross-validation 

generally produces worse results. 

 A closer look to the results suggests another hypothesis 

that of course needs a better validation: the second matrix 

could be useful, but the data are simply not enough; in more 

detail, the data are barely sufficient to fit one matrix and are 

too few to reasonably fit two matrices. In other words, the 

hypothesised gain in using a second matrix could be 

overridden by the loss due to the combined effect of the 

scarcity of data and the cross-validation procedure, thus 

producing an overall negative balance.  

 A full confirmation of such hypothesis will of course 

only be obtainable when much more data, homogeneous and 

benchmark-ready, will be available. As for now (i.e. with the 

current data) a first partial confirmation can be obtained by 

reducing the number of data: if results are nearly equivalent, 

the hypothesis is clearly disproved, i.e. the data are enough; 

if instead the results are already worse for the one matrix 

case, and still worse for the case of two matrices, then we 

have a good cue for the validity of the hypothesis. To this 

end we have performed a small test: we have considered the 

allele A_0201, having roughly twice the number of data 

available for the others, and for which the two-matrices 

results are not clearly worse than the one-matrix results, and 

we have suitably taken one half of the data (A_0201half), so 

that their number becomes comparable to those of the other 

alleles. The results for one matrix are worse (0.944 vs. 

0.952), and those for two matrices are even worse (0.928 vs. 

0.953), which is just what we expected (based on our 

hypothesis); moreover the results are comparable to those of 

the other alleles, and since now the size of the data is 

comparable, it is tempting to consider that such a validation 

of our hypothesis could be applicable also to all the other 

alleles. 

 From a somehow different point of view, a rough 

confirmation of the above assumption about the scarcity of 

available data can be provided by a well-known conventional 

rule of thumb for pattern recognition stating that the number 

of training samples should be 5–10 times the number of 

model parameters [8].  

 According to this rule, in order to satisfactorily estimate 

the 360 parameters relative to our case of two matrices, we 

should need 1800–3600 training samples, which in the 

framework of the adopted five-fold cross-validation 

procedure, amounts to 2250–4500 required total samples; 

and it appears that there is a remarkably good agreement 

between these figures and our results for N=2 in all the 

considered cases: the data are barely sufficient in the first 

row, and grossly insufficient in all the others. 

 For the sake of completeness we may add that, as far as 

we know, the only other generalization of the model based 

on the IBS assumption is the model by [6] that aims to 

represent a possible influence between local bindings.  

 More specifically [6] considers a number of correction 

terms M  to be simply added to Eq. (1), each term 

representing the (pairwise) influence of the interaction 

between a side chain a j( )  and its pocket j  on the 

interaction between another side chain a k( )  and its pocket 

k , so that the score of the peptide-MHC interaction can be 

written 

Sa M( ) = Mi,a i( )
i=1

9

+ M j ,a j( ),k ,a k( )
k= j+1

9

j=1

8

       (13) 

 In fact in the considered paper for practical reasons only 

a small number of correction terms in the above general 

formula are taken as non null.  

 As for the results obtained with the above model, we note 

that, in spite of the great increase of the number of adjustable 

parameters, the author claims only very slight improvements 

in epitope prevision. 

 We may end up by noting that, at least with the 

considered results obtained so far with the available data, 

there is no evidence of significant improvements obtained by 

generalizing IBS. 

APPENDIX 

A Toy Model  

 In order to provide some insight in the comparison of 
various assumptions, we consider a simplified toy model 
representation, enabling a pictorial interpretation. While 
obviously the involved molecular objects are three-
dimensional, and their displacements are roto-translations, a 
very simple two-dimensional graphical representation of the 
mutual influence between two aa-pocket interactions, with or 
without IBS, could be sufficiently illuminating and therefore 
is presented in what follows. 

 Both the epitope and the MHC groove are represented as 
simple strip-shaped horizontal objects, and we model 
different aa-pocket binding modes by means of small 
horizontal relative displacements, so that, with respect to the 
same pocket, it may occur that while a given aa could 
energetically prefer to bind in a given place within a pocket, 
another aa could energetically prefer to bind in a slightly 
different position within the same pocket, thus possibly 
involving corresponding displacements within other pockets. 

 We note however that of course the formulations of the 
mathematical model are completely independent from the 
pictorial representation. 

 For example a simplified special case of the binding 
equilibrium MHC-epitope (showing a four aa section) with 
the IBS assumption is shown in the toy model in Fig. (1). 
The MHC molecule is designed with only one binding site in 
each pocket, and the geometry allows simultaneously for 
each aa an optimal binding, so that there is only one possible 
binding mode. 



Epitope Prediction by Modelling Alternative Binding Modes The Open Bioinformatics Journal, 2009, Volume 3    57 

 We now consider our model. A possible effect of 
introducing two quantitative matrices, i.e. two binding 
modes, can be well discussed with a simple toy model, with 
reference to Fig. (2), which represents the binding 
equilibrium MHC-epitope for the same allele and two 
different epitopes, both cases with two different binding 
modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Two arbitrary illustrative cases of binding equilibrium 

MHC-epitope relative to two different epitopes binding to two 

MHC equal grooves (showing only four aa and four pockets); in 

both cases the equilibrium involves the transitions between three 

states: epitope and MHC molecule unbound, or bound in two 

different modes (energetically evaluated by two different matrices 

M1  and M 2
, and graphically differentiated by a small horizontal 

shift). For the sake of simplicity the chemical equilibrium arrows 

between the first and the third state are omitted. The various side 

chains are identified by different symbols (green diamonds and red 

stars), and for each side chain the energetically favoured binding 

site inside the corresponding pocket is shown as a blurred disk of 
the same colour.  

 The MHC molecule is designed with two binding sites in 

each pocket, so that there are two sequences of equidistant 

binding sites (with green or with red sites). The two possible 

binding modes are as follows: epitope  has a “strong” 

binding (with three aa in a favoured binding site) and a 

“weak” binding (with only one aa in a favoured binding 

site), while for epitope  the two bindings are both 

“moderate” (both with two aa in a favoured binding site).  

 As for the model described in Eq. (13), a possible effect 

of the corrections terms can be well discussed with reference 

to the toy model in Fig. (3). According to such model, the 

Fig. (3) represents the binding equilibrium MHC-epitope for 

the same MHC allele and two different epitopes. The MHC 

molecule is designed with two binding sites in the second 

pocket, so that the sequence of blue-green-blue-blue binding 

sites is equispaced, perfectly matching the epitope , while 

the sequence of blue-red-blue-blue binding sites is non 

equispaced, so that the matching with the epitope  is 

painful.  

 

 

 

 

 

 

 

 

 

 

Fig. (3). Two arbitrary illustrative cases of binding equilibrium 

MHC-epitope relative to two different epitopes binding to two 

MHC equal grooves (showing only four aa and four pockets). The 

various side chains are identified by different symbols (green 

diamonds, blue balls and red stars), and for each side chain the 

energetically favoured binding site inside the corresponding pocket 

is shown as a blurred disk of the same colour. 

 

 In the first case each aa binds optimally with its preferred 

pocket so that the energy is given only by the matrix M ; in 

the second case each aa still binds with its preferred pocket, 

but in a non-optimal way, with an energy penalty which is 

given by the terms M , and which, in the graphics of the toy 

model, is represented by the small dislocation of some aa 

with respect to the optimal position inside the pocket, and by 

a deformation of the epitope. 
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Fig. (1). Illustration of the binding equilibrium MHC-epitope by 

showing a restricted section (with only four equal aa) of an epitope, 

and the corresponding restricted section of the MHC groove (with 

only four pockets). The four side chains are represented by four 

green diamonds and for each side chain the energetically favoured 

binding site inside the corresponding pocket is shown as a blurred 

disk of the same colour. The example represents the standard IBS 

situation where all amino acids bind simultaneously each one to its 

optimal site. 
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