Probability-Based Scoring Function as a Software Tool Used in the Genome-Based Identification of Proteins from *Spirulina platensis*

Wimada Thammasorn¹, Korakot Eadjongdee¹, Apiradee Hongsthong^{*,2}, Kriengkrai Porkaew¹ and Supapon Cheevadhanarak³

¹School of Information Technology, King Mongkut's University of Technology Thonburi, 126 Pracha-U-Thit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand; ²BEC Unit, KMUTT-Bangkhuntien, 83 Moo 8, Thakham, Bangkhuntien, Bangkok 10150, Thailand; ³School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand

Abstract: One of the major goals of proteomic research is the identification of proteins, a goal that often requires various software tools and databases. These tools have to be able to handle large amounts of data, such as those generated by PMF (Peptide Mass Fingerprinting), a high throughput technique. A newly sequenced organism, *Spirulina platensis*, was recently used to generate an *in silico* database, and thus an in-house tool designed for compatibility with this database and its inputs (PMF) was constructed in the present study. With a probability based scoring function, this tool effectively ranked ambiguous protein identification results by using five criteria: score, number of matched peptides, % coverage, pI and molecular weight. As a result, the protein identification step of *Spirulina* proteomic studies can be achieved precisely. Moreover, a very useful function of this tool is its capability for batch processing, in which the system can handle protein-identification results but also saves the user time in processing a large amount of data.

Keywords: Peptide Mass Fingerprinting (PMF), S. platensis, 2D-DIGE, Protein isoelectric points (pI), Bisection method and Probability-based scoring function.

INTRODUCTION

The identification of differentially expressed proteins by employing experimental techniques and tools is a goal of proteomics. After protein isolation by various techniques, including two dimensional- gel electrophoresis (2D-PAGE), a protein of interest is subjected to protein identification by using mass spectrometry techniques coupled with bioinformatics. Mass spectrometry (MS) technology is widely used to identify proteins by generating either the peptide mass fingerprinting (PMF) or the peptide fragmentation fingerprinting (PFF) of proteins of interest. Then, these PMFs and PFFs are searched against PMFs and PFFs in available databases, to identify the proteins. PMFs are analyzed by comparing an experimental mass list with theoretical mass lists in databases. This identification step requires both efficient software tools and appropriate databases to obtain reliable protein identification results.

At present, several software tools for protein identification using PMF have been constructed, including MASCOT, the MS-Fit tool, the ALDENTE tool, etc. These tools use several algorithms to calculate the scores of matched proteins, e.g. the Bayesian theory of probability-based scoring methods, the genetic algorithm method [1] and HMMs (Hidden Markov models) [2]. However, the tool constructed in the present study was designed not only to serve the needs of

*Address correspondence to this author at the BEC Unit, KMUTT, 83 Moo8, Thakham, Bangkhuntien, Bangkok 10150, Thailand; Tel: 662-470-7509; Fax: 662-452-3455;

users but also to assist in a precise and time-saving protein identification process by accurate scoring plus ranking function, pI-filtering and PMF-batch processing. Therefore, an in silico database and an in-house software tool were constructed for S. platensis protein identification by using PMFs as inputs. In our previous study, simple ranking methods were employed, by counting the number of matched peptides and calculating the coverage percentage of the matched peptides compared to the whole proteins, in order to rank ambiguous protein identification results. However, an effective and accurate scoring method is required to get rid of ambiguous data and make protein identification more reliable. Thus, in the present study, an effective scoring method was developed using a probability-based scoring function. Moreover, the isoelectric point (pI) and molecular weight values of a protein were also used as criteria to pick out a target protein among redundant protein identification results, which may contain proteins with very close scores. For effective use of the tool, a batch processing module was also developed to handle hundreds of inputs simultaneously in a single run.

MATERIALS AND METHODS

Programming Software

In this study, the PHP programming language was used to write code to calculate protein isoelectric point values and develop a probability-based scoring function, including a connection to the database. In the case of this tool, Apache 2.5.10 was employed to view all data from a database, which was installed with Navicat MySQL version 5.0.5. Moreover,

E-mails: apiradee@biotec.or.th, apiradee@pdti.kmutt.ac.th

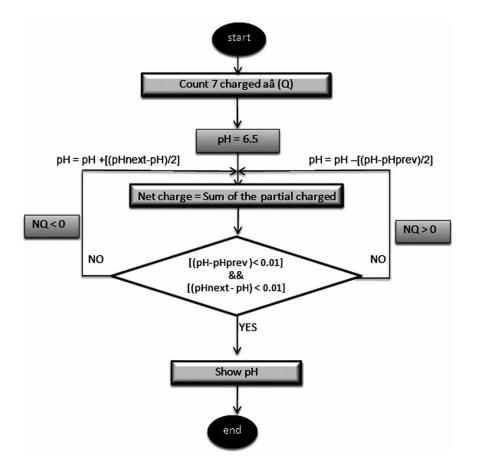


Fig. (1). Bisection method used for pI calculation.

phpMyAdmin version 2.10.3 was used to manage the database and perform tasks such as creating tables. To manage the web interface, the input and output interfaces of this tool were created as Graphic User Interfaces (GUIs) in the HTML language employed in the Macromedia Dreamweaver MX program.

pI Calculation Method

The pI of an individual protein was calculated by employing the Bisection method [3, 4] as shown in Fig. (1). The pH values, which are related to the total charge of proteins, were divided into two sections, pH 0-7 and 8-14, in order to determine total charge. If the total charge of a protein is near zero at a certain pH value, then the pH value at this state will be the pI. However, the total charge of each protein was calculated from the summation of the charges of its constituent amino acids. These macromolecules can be categorized into two major groups: (i) the group of positively charged amino acids, which consists of histidine (H), lysine (K) and arginine (R), and (ii) the group of negatively charged amino acids, which consists of aspartate (D), glutamate (E), cysteine (C) and tyrosine (Y). In order to reduce the time required for the pI calculation, the pKs values of the seven charged amino acids [4] were collected in a MySQL database. Then, the PHP programming language was used to calculate the pI values of an individual protein from the S. platensis database. Finally, the theoretical pI was shown in the 'Hits' protein results on the GUI.

Probability–Based Scoring Function Method

The scores of peptides that matched theoretical peptides from the *Spirulina*-PMF database were calculated in the form of probabilities. In the first step, the total charge of each protein was obtained from the summation of the negative and positive charges of each macromolecule, as shown in equations 1 and 2 [4], where pK_{Ni} and pK_{pi} represent the pK of negative and positive macromolecules of size i.

Charge of negative macromolecules:

$$\sum_{i}^{n} = 1 \frac{-1}{1 + 10^{pk} \text{Ni}^{-pH}}$$
 Equation (1)

Charge of positive macromolecules:

$$\sum_{i}^{n} = 1 \frac{-1}{1 + 10^{\text{pH-pK}} \text{Pi}}$$
 Equation (2)

In the case of the probability-based scoring function, the input peptides were matched with proteins in the database, and probabilities and scores were calculated, as shown in equation 3 and 4, respectively, where α represents a constant between zero and one, m_{ij} is the number of the matched peptide, and M_j is the number of all peptides obtained from digestion of the theoretical protein.

$$\Pr(P_k) = \prod_{i=R(l), l \in H_k} (1 - (\frac{m_{ij}}{M_j}(1-\alpha) + \alpha)^{n_{ij}}) \qquad \text{Equation (3)}$$

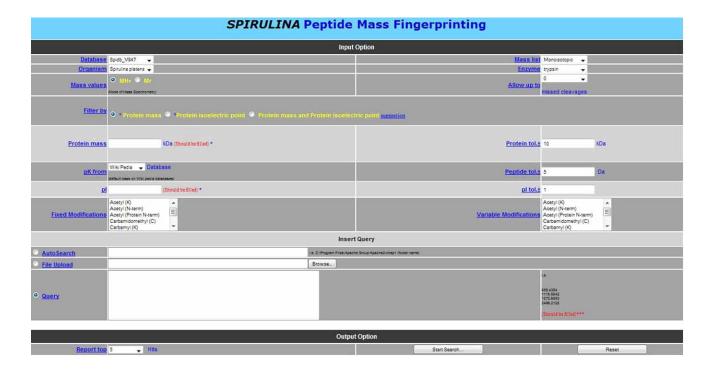


Fig. (2). Input interface of Spirulina database - PMF software tool.

Score = $-\log \Pr(Pk)$ Equation (4)

If the input-peptide does not match with a theoreticalpeptide in the database, the probability of this input-peptide is zero. Thus, the score has values between zero and one, which requires visualizing the results in the form of decimal numbers. For ease of comparison, these probabilities are converted into logarithmic form. For example, if the probabilities are 0.0001 and 0.002, these scores in logarithmic form will be -4 and -3.6989 which are simpler for users to analyze. Finally, the scores of the 'Hits' protein results are shown on the GUI.

Tool Validation

For tool validation, cross-species proteins were used to check an accuracy of the current tool, in order to compare the 'Hits' results with online PMF tools such as the Mascot tool, by using two main methods. First, cross-species proteins such as the photosystem II D1 protein found in cyanobactria (*Synechocystis sp.PCC6803 (slr0752)*), and the pyruvate kinase of *Escherichia coli K-12 MG1655* were digested, in order to collect their PMF data using miss cleavage values of zero to three. Second, the PMF data of known proteins, obtained from the 2-DE technique in the NCBI database (http://www.ncbi.nlm.nih.gov/Ftp/) were searched for with the tool. Finally, the *E. coli* genome was downloaded to the database and then PMFs of the known proteins of *E. coli* were searched with this tool.

RESULTS & DISCUSSION

The input interface of the current version of the in-house software tool was designed as shown in Fig. (2). By using this GUI, users could fill experimental PMF data into 'Query' and 'Autosearch' sections on the input interface (Fig. 2), together with protein mass and pI obtained from 2-DE experiments [5]. The source code of the tool is available at http://spirulina.biotec.or.th/~spirulina/proteome/index. htm.

Moreover, users could select a pI-database to represent the "Hits" protein results from EMBOSS, DTASelect, Solomon, Sillero, Rodwell and Wikipedia databases as shown in the dashed box in Fig. (2). In order to rank the 'Hits' protein results, five criteria were considered consecutively, (*i*) probability-based score, (*ii*) number of matched proteins, (*iii*) pI, (*vi*) protein molecular mass and (*v*) % coverage. On the output interface, all results were represented in the form of tables and lists of the amino acid sequences of theoretical protein 'Hits,' which were obtained from the *Spirulina* database under the input criteria setting (Fig. 3). Criteria for searching are presented in a table in Fig. (3), such as database name (only two versions, 677 and 847), allowed missed cleavage, ion mode (MH+ or Mr Modes), type of filtering, protein mass, protein tolerance, pI and pI tolerance.

A limitation of this tool underlying the search algorithm is the required filtering of the 'Hits' results by the protein mass and pI, because of differences in their distribution patterns. However, in both versions of the database, the same pattern of protein distributions were represented in Fig. (4a) and Fig. (4b), for database versions 677 and 847, respectively. The protein mass distribution of both versions showed that the most abundance protein masses were in the range of 5 kDa to 99 kDa. Thus, if a user selected a wide gap of protein tolerance for the experimental protein within this range, the execution time would be very long. Therefore, for the experimental proteins, which have protein masses within the range of 5 kDa to 99 kDa, a user should use a protein tolerance of 0.1 kDa when searching the 'Hits' protein results. On

>>> Back to Home <<<

Database: spidb_1847 Allow up to: 0 Ion Mode: MH+ Peptide Mass Tol +/-: 5 (Da) Filter by: Protein Mass Protein Mass: 210 (kDa) Protein Mass Tol +/-: 10 (kDa) pl: pl Tol +/-: 1

#	Protein ID	OrfName	ComputerAnnotation	HumanCuration	Score	Match	pl from Wiki Pedia	Protein MW	%Coverage	fragments
1	2110	AP06460007	COG0642: Signal transduction histidine kinase [Anabaena variabilis ATCC 29413]	Multi-sensor Hybrid Histidine Kinase	4.9769	3/4	4.6370	200559.2539	3.1496	5
2	4796	AP07980008	Protein of unknown function DUF490 [Trichodesmium erythraeum IMS101]	conserved hypothetical protein	5.0784	2/4	4.0974	211582.6854	0.9142	2
3	4498	AP07880008	two-component hybrid sensor and regulator [Nostoc sp. PCC 7120]	Similar two-component hybrid sensor and regulator	5.1151	2/4	4.6877	200094.8701	1.1864	2
4	4300	AP07810017	hypothetical protein PH0426 [Pyrococcus horikoshii OT3]	hypothetical protein	5.1360	2/4	7.5583	211215.2037	1.6958	2
5	2177	AP06510006	COG2373: Large extracellular alpha-helical protein [Anabaena variabilis ATCC 29413]	putative alpha-2-macroglobulin-like	5.1499	1/4	4.6560	208232.7736	0.3727	1

AP06460007

1 MASNSSYTLTELESAIIREPLLVTVETTAREAIALMSESRASCSISSKAS 51 VLLEEVYGEARSSCVLVVEGEQLVGILTQGDIIRLCTEKRPLEQLLVGEV 101 MTASVLSWRESELSDFFEVIDLLRKNQICHLPLVDDSDRLVGLITHETLR 151 YISHPIDLLRLRTVEEVMTTEVICASPESNLLEIACLMTQYRVNCVVLVE 201 TDFVNNSTAVNVPVGILTEGDIVKFNTFCLDLENYSSKQLMSTPVFSVAT 251 NENLWRIHELMSSQYIRRVLVTGSHGELLGIVTQTSMLKVLNPLDLYKMT 301 KILDGRISELELEKISILETQAKQLDEQVKKRTLELEQAHHREQLVFEIT 351 NRIRSWLNLPEILEETVKQVRILLNCDRVVIYQFNPDLSGDIVAESVMEP 401 YTSCLDKNIKDTCFQDNPSMYQDGKIFVAPDIDQVGLSECHLSLLKQFEV

Fig. (3). Output interface of Spirulina database – PMF software tool.

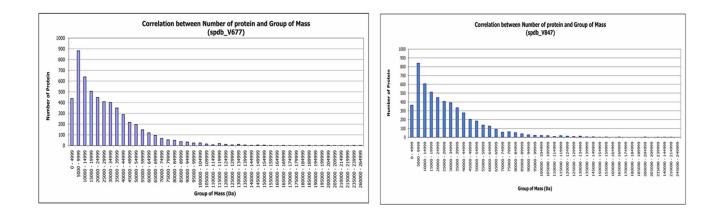


Fig. (4). Protein mass distribution of the *Spirulina* database: (a) version 677; (b) version 847.

the other hand, if the experimental proteins have protein masses of more than 100 kDa, a value for protein tolerance could be selected from 10 kDa to 30 kDa, resulting in a the searching time of 30 minutes.

In the case of pI distribution, the pI values of both databases differed in their pKs values from the pKs database, as shown in Fig. (**5a**) and (**b**) for versions 677 and 847, respectively. In these patterns, the most abundant pI values were found within the range of 3 to 7 and 8 to 11, for database versions 677 and 847, respectively. These ranges are very wide. Thus, if a user selected only pI filtering for protein identification, the process would take around 30 min to execute. Therefore, users are recommended to use protein mass filtering coupled with pI filtering.

For tool validation, two known proteins were searched for using the current *Spirulina* tool in order to compare these results to the 'Hits' results of Mascot. The 'Hits' results for each protein are shown in Table **1**, and Table **2** for photosystem II D1 (*Synechocystis sp.PCC6803*), and pyruvate kinase (*E. coli K-12*). The photosystem II D1 protein was found in

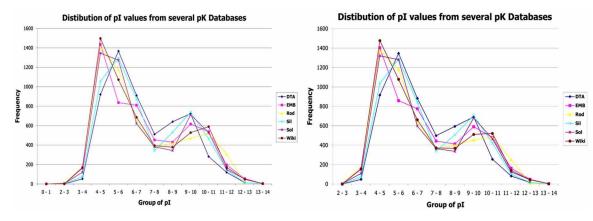


Fig. (5). pI distribution from the *Spirulina* database: (a) version 677; (b) version 847.

Table 1a.	'Hits' Results from the Mascot Tool Using PMF Data from the Photosystem II D1 Protein (Synechocystis sp. PCC6803:
	slr0752)

Orf Name	Protein Name	Mass (Da)	Score	Expect	Matched	% Coverage
F2YB16	photosystem II protein D1.II precursor - Synechocystis sp. (strain PCC 6803)	39696	160	1.5e-10	11	0.68
F2YB17	photosystem II protein D1 precursor - Synechocystis sp. (strain PCC 6714)	39786	121	1.2e-06	10	50.00
AAD09838	CAU39610 NID: - Cyanothece sp. ATCC 51142	39427	84	0.0056	7	44.00
Q4BY66_CROWT	Photosynthetic reaction center protein DI/q(B) Cro- cosphaera watsonii.	39271	64	0.62	7	30.00
Q98KV4_RHILO	Cobalamin biosynthetic protein; CobD Rhizobium loti (Mesorhizobium loti).	34673	62	0.89	6	38.00

Note: The results obtained from the Mascot software tool were identified by using five parameters for searching; <u>PMF data</u> are 13 fragments obtained from the *in silico* digestion of the photosystem II D1 protein of *Synechocystis sp. PCC6803: slr0752*, <u>Database name</u> is MSDB (Mascot Database), <u>Taxonomy</u> is bacteria, <u>Peptide tolerance</u> set at 1.2 Da, and <u>Allow</u> <u>missed cleavage</u> up to one.

 Table 1b. 'Hits' Results from the Current PMF Tool Using PMF Data from the Photosystem II D1 Protein (Synechocystis sp. PCC6803: slr0752)

#	Protein ID	Orf Name	Computer Annotation	Human Curation	Score	Match	pI	Protein MW	% Coverage	Fragments
1	3708	AP07550009	photosystem II D1 protein [Thermosynechococcus elongatus BP-1]	photosystem II D1 protein	15.7398	3/13	5.3860	39635.9211	10.8635	3
2	2167	AP06500014	COG3899: Predicted AT- Pase [Nostoc punctiforme PCC 73102]	Histidine Kinase	16.4757	2/13	4.7830	39203.3391	8.4746	2
3	4695	AP07940027	extracellular solute-binding protein, family 3 [Tricho- desmium erythraeum IMS101]	possible ex- tracellular sol- ute-binding protein, family 3	16.5410	1/13	4.2561	38316.6064	4.7887	2
4	3357	AP07360008	Porphobilinogen synthase [Trichodesmium erythraeum IMS101]	Possible delta- aminolevulinic acid dehydratase	16.5612	2/13	4.8401	39697.3457	5.5556	2
5	1545	AP05850008	Photosynthetic reaction center protein DII/q(a) [Trichodesmium erythraeum IMS101]	Photosystem II D2 protein	16.6005	1/13	5.5066	39464.8181	3.6932	1

Note: The results obtained from the previous version of the PMF tool were identified by using eight parameters for searching; <u>PMF data</u> are 13 fragments obtained from the *in silico* digestion of the photosystem II D1 protein of *Synechocystis sp. PCC6803: slr0752*, <u>Database name</u> is SpiDB_v847 (*Spirulina* Database version 847), <u>Peptide tolerance</u> at 1.2 Da, <u>Protein mass</u> of 39 kDa, the protein tolerance of 0.7 kDa, <u>pl</u> of 5, <u>pl Tolerance</u> of 1, and <u>Allow missed cleavage</u> at zero.

tolerance of one.

first place in the 'five Hits' results (Table 1) by using the Mascot tool and our current tool. For Mascot, this protein was found with a score of 160, expected values of 1.5E-10, a matched number of eleven, a protein mass of 39.696 kDa, and coverage of 0.68% (Table 1a). On the other hand, this protein was found in first place, using the current tool, with a score of 15.7398, three out of thirteen matched peptides, a pI of 5.386, a protein mass of 39635.9211 Da, and matched peptide coverage of 10.8635 % (Table 1b). The input setting for Mascot was: the MSDB database (Mascot database), Taxonomy of bacteria, allowed up to one missed cleavage, and a peptide tolerance of 1.2 Da. In the current version of the tool, six different input parameters were used: the Spirulina database version 847, allowed zero missed cleavages, protein mass filtering at 39 kDa, a protein tolerance of 0.7 kDa, a peptide tolerance of 1.2, pI filtering of five, and a pI

In the case of the other known protein used for tool validation, pyruvate kinase from *E. coli*, the search results from both tools show pyruvate kinase I second on the list. The *E. coli* database and the *Spirulina* databases were used for Mascot and the current tool, respectively, for the protein identification process. Using the Mascot tool, this protein was found in second place with a score of 62, expected values of 0.021, a match number of seven, a protein mass of 50.697 kDa, and coverage of 7% (Table **2a**). According to the current version of the PMF-*Spirulina* tool, the protein was also found in second place, with a score of 8.4036, a match number of four from seven peptide masses, a pI of 5.7986, a protein mass of 63.339 kDa, coverage of 21.19 %, and a fragment number of six, as shown in Table **2b**.

Consequently, a second set of tool validation experiments were carried out. The complete *E. coli* genomes were down-

Table 2a.	'Hits' Results from the Mascot Tool Using PMF Data from Pyruvate Kinase I
-----------	---

Orf Name	Protein Name	Mass (Da)	Score	Expect	Matched	%Coverage
Q1RCS4_ECOUT	Hypothetical protein Escherichia coli (strain UTI89 / UPEC).	6903	77	0.00058	6	26.00
D64925	pyruvate kinase (EC 2.7.1.40) [validated] - Escherichia coli (strain K-12)	50697	62	0.021	7	7.00
AAA24392	ECOPK1 NID: - Escherichia coli	50276	62	0.022	7	7.00
1A40	phosphate-binding periplasmic protein precursor mutant A197W - Escherichia coli	34516	61	0.024	6	9.00
Q1RBC0_ECOUT	Pyruvate kinase I (EC 2.7.1.40) Escherichia coli (strain UTI89 / UPEC).	58665	57	0.07	7	6.00

Note: The results obtained from the Mascot software tool were identified by using five parameters for searching; <u>PMF data</u> are 7 fragments obtained from *in silico* digestion of pyruvate kinase I of *Escherichia coli K-12 MG1655*, <u>Database name</u> is MSDB (Mascot Database), <u>Taxonomy</u> of other bacteria, <u>peptide tolerance</u> at 1.2 Da, and <u>Allowed missed cleavage</u> up to one.

Table 2b.	'Hits' Results from the	Current PMF Tool Usin	ng PMF Data from	Pyruvate Kinase I
-----------	-------------------------	-----------------------	------------------	-------------------

#	Pro- tein ID	Orf Name	Computer Annotation	Human Curation	Score	Match	pI	Protein MW	%Coverage	Fragments
1	1183	AP05200009	hypothetical protein Cwat- DRAFT_4511 [Cro- cosphaera watsonii WH 8501]		8.3257	3/7	7.3899	63142.0551	2.5594	8
2	722	AP04360002	Pyruvate kinase [Tricho- desmium erythraeum IMS101]	pyruvate kinase	8.4036	4/7	5.7986	63339.6356	2.1959	6
3	2296	AP06630005	Protein of unknown func- tion DUF6 [Trichodesmium erythraeum IMS101]	Conserve protein of unknown function DUF6 trans- membrane	8.4796	3/7	5.2400	62651.5798	1.5679	4
4	5318	AP05840005	Protein kinase:G-protein beta WD-40 repeat [Tricho- desmium erythraeum IMS101]	putative ser- ine/threonine kinase	8.5911	2/7	9.4919	62681.8923	1.4388	5
5	5315	AP05840001	hypothetical protein Npun02001295 [Nostoc punctiforme PCC 73102]	regulatory components of sensory transduction system	8.6070	2/7	5.9827	63288.5014	0.9042	4

Note: The results obtained from the previous version of the PMF tool were identified by using eight parameters for searching; <u>PMF data</u> are 7 fragments obtained from *in silico* digestion of pyruvate kinase I of *Escherichia coli K-12 MG1655*, <u>Database name</u> is SpiDB_v847 (*Spirulina* Database version 847), <u>peptide tolerance</u> at 1.2 Da, <u>protein mass</u> of 64 kDa, <u>protein tolerance</u> of 5 kDa, <u>pI of 5</u>, <u>pI Tolerance</u> of 1, and <u>Allowed missed cleavage</u> at zero.

Spot No.	ORFs Name	Protein Name	Mass (Da)	Score	Expect	Matched	%Coverage
	E85500	proteinase DO (EC 3.4.21) precursor / heat shock protein htrA - Es- cherichia coli (strain O157:H7, substrain EDL933)	49323	70	0.0031	7	22%
P0C0V0	Q1RG27_ECOUT	Periplasmic serine protease DegP (EC 3.4.21) Escherichia coli (strain UTI89 / UPEC).	49308	70	0.0031	7	22%
	CAA30997	ECHTRA NID: - Escherichia coli	51190	69	0.0039	7	21%
	DEECM	malate dehydrogenase (EC 1.1.1.37) - Escherichia coli (strain K-12)	32317	127	6.3E-09	9	41%
	Q1R6A3_ECOUT	Malate dehydrogenase (EC 1.1.1.37) Escherichia coli (strain UTI89 / UPEC).	35036	125	1E-08	9	38%
P61889	Q9ETZ1_ECOLI Malate dehydrogenase (Fragment) Escherichia coli.		30099	107	6.30E-07	8	40%
	Q9ETZ7_ECOLI	Malate dehydrogenase (Fragment) Escherichia coli.	30086	107	6.3e-07	8	40%
	Q9F6J4_ECOLI	Malate dehydrogenase (Fragment) Escherichia coli.	30102	107	6.30E-07	8	40%
	Q1RB13_ECOUT	Glyceraldehyde-3-phosphate dehydrogenase A (EC 1.2.1.12) Es- cherichia coli (strain UTI89 / UPEC).	35933	98	5.70E-06	9	28%
	DEECG3	glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) (EC 1.2.1.12) A - Escherichia coli (strain K-12)	35510	98	5.70E-06	9	28%
P0A9B2	G3P1_ECO57	7 Glyceraldehyde-3-phosphate dehydrogenase A (EC 1.2.1.12) (GAPDH- A) Escherichia coli O157:H7.		97	6.8E-06	9	28%
	AAC43271	ECU07750 NID: - Escherichia coli	33507	80	0.0003	8	27%
	1GAEO	D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) mutant N313T holo form, chain O - Escherichia coli	35366	78	0.00047	8	24%
	AAA23838	ECOGAPAB NID: - Escherichia coli	33012	64	0.014	7	23%
	CAB69331	SEQUENCE 1 FROM PATENT WO9845454 (fragment) unidentified.	18066	112	2E-07	6	64%
	AAA24261	ECOPABAA NID: - Escherichia coli	16847	87	5.80E-05	5	55%
P0AFL3	CSECA	peptidylprolyl isomerase (EC 5.2.1.8) A precursor - Escherichia coli (strain K-12)	20418	83	0.00017	5	44%
	AAA24486	ECOPYRG NID: - Escherichia coli	12523	49	4.10E-01	3	49%
	CAA57795	ECENO NID: - Escherichia coli	46417	32	18	3	13%
P0A6P9	ENO_ECO57	Enolase (EC 4.2.1.11) (2-phosphoglycerate dehydratase) (2-phospho-D- glycerate hydro-lyase) Escherichia coli O157:H7.	45495	32	18	3	14%
	2BLSA	ampc beta-lactamase (EC 3.5.2.6), chain A - Escherichia coli	39398	101	2.5e-06	8	28%
	1C3BA	cephalosporinase (EC 3.5.2.6), chain A - bacteria	39526	101	2.50E-06	8	28%
D 00911	Q6PRU8_ECOLI	Beta-lactamase (Fragment) Escherichia coli.	38673	80	0.0003	7	25%
P00811	Q5YEX8_ECOLI	Extended-spectrum beta lactamase Escherichia coli.	41573	79	0.00039	7	24%
	Q5YEX7_ECOLI	Extended-spectrum beta lactamase Escherichia coli.	41654	79	0.00039	7	24%

Table 3a. 'Hits' Results from Mascot Using PMF Data of E. coli K-12 substr. DH10B

Note: Gray color is the correct theoretical protein of each AC number. Black boxes represent the results of each AC number that the correct theoretical protein was found within the third order.

AC No.	#	Protein ID	Orf Name	Computer Annotation	Human Curation	Score	Match	pI (Wiki)	Protein MW	% Coverage	Fragments
	1	135	YP_001729118.1	serine endoprotease (protease Do), membrane-associated [Escherichia coli str. K-12 substr. DH10B]		10.7	6/9	8.7888	49305.4498	19.6203	6
P0C0V0	2	2368	YP_001731351.1	sulfate/thiosulfate ABC transporter ATP-binding protein [Escherichia coli str. K-12 substr. DH10B]		11.05	4/9	7.1262	41015.4896	16.7123	4
	3	3468	YP_001732451.1	lipopolysaccharide core biosynthesis [Escherichia coli str. K-12 substr. DH10B]		11.2	2/9	8.6790	41684.9217	13.7255	4
	4	835	YP_001729818.1	D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 6a) [Escherichia coli str. K-12 substr. DH10B]		11.24	2/9	8.1077	43563.34	11	3
	5	2137	YP_001731120.1	oligopeptide ABC transporter membrane protein [Escherichia coli str. K-12 substr. DH10B]		11.25	2/9	8.5691	40316.5402	8.2418	2
	1	3105	YP_001732088.1	malate dehydrogenase, NAD(P)-binding [Escherichia coli str. K-12 substr. DH10B]		9.91	8/9	5.37	32299.205	41.0256	8
P61889	2	2814	YP_001731797.1	methylmalonyl-CoA decarboxylase, biotin-independent [Escherichia coli str. K-12 substr. DH10B]		10.66	4/9	5.67	29135.9555	24.5211	4
	3	1689	YP_001730672.1	quinate/shikimate 5- dehydrogenase, NAD(P)-binding [Escherichia coli str. K-12 substr. DH10B]		10.99	3/9	4.76	31189.7272	12.1528	3
	4	175	YP_001729158.1	2,5-diketo-D- gluconate reductase B [Escherichia coli str. K-12 substr. DH10B]		11.05	3/9	5.28	29400.4476	11.6105	3
	5	2468	YP_001731451.1	3-mercaptopyruvate sulfurtransferase [Escherichia coli str. K-12 substr. DH10B]		11.08	2/9	4.29	30774.5998	8.1851	2
	1	1772	YP_001730755.1	glyceraldehyde-3- phosphate dehydrogenase A [Escherichia coli str. K-12 substr. DH10B]		13.28	6/11	6.71	35492.2316	21.7523	6
P0A9B2	2	2881	YP_001731864.1	hydrogenase 2 4Fe- 4S ferredoxin-type component [Escherichia coli str. K-12 substr. DH10B]		13.54	4/11	7.00	35961.5596	13.4146	4
	3	1881	YP_001730864.1	hypothetical protein ECDH10B_2030 [Escherichia coli str. K-12 substr. DH10B]		13.61	4/11	9.52	34146.682	12.987	4
	4	2225	YP_001731208.1	peptidase [Escherichia coli str. K-12 substr. DH10B]		13.63	2/11	5.17	35890.1515	7.7399	3
	5	4023	YP_001733006.1	aspartate carbamoyltransferase , catalytic subunit [Escherichia coli str. K-12 substr. DH10B]		13.65	2/11	6.15	34387.7513	11.8971	4

Table 3b. 'Hits' Results from the Current Spirulina Tool Using PMF Data of E. coli K-12 substr. DH10B

(Table 3b). contd.....

AC No.	#	Protein ID	Orf Name	Computer Annotation	Human Curation	Score	Match	pI (Wiki)	Protein MW	% Coverage	Fragments
	1	3218	YP_001732201.1	peptidyl-prolyl cis- trans isomerase A (rotamase A) [Escherichia coli str. K-12 substr. DH10B]		6.135	4/6	9.35	20400.3836	42.6316	4
P0AFL3	2	633	YP_001729616.1	apo-citrate lyase phosphoribosyl- dephospho-CoA transferase [Escherichia coli str. K-12 substr. DH10B]		7.247	2/6	6.86	20239.6361	27.3224	2
	3	532	YP_001729515.1	apo-citrate lyase phosphoribosyl- dephospho-CoA transferase [Escherichia coli str. K-12 substr. DH10B]		7.247	2/6	6.86	20239.6361	27.3224	2
	4	2615	YP_001731598.1	glucitol/sorbitol- specific enzyme IIC component of PTS [Escherichia coli str. K-12 substr. DH10B]		7.394	1/6	8.33	20548.7225	11.7647	1
	5	958	YP_001729941.1	methylglyoxal synthase [Escherichia coli str. K-12 substr. DH10B]		7.394	1/6	6.19	16889.7409	13.8158	1
	1	2542	YP_001731525.1	3-deoxy-D-arabino- heptulosonate-7- phosphate synthase, tyrosine-repressible [Escherichia coli str. K-12 substr. DH10B]		5.859	2/5	5.25	38761.4192	16.573	4
P0A6P9	2	2688	YP_001731671.1	enolase [Escherichia coli str. K-12 substr. DH10B]		6.078	3/5	5.08	45608.4117	14.1204	3
	3	3530	YP_001732513.1	hypothetical protein ECDH10B_3875 [Escherichia coli str. K-12 substr. DH10B]		6.15	1/5	5.82	44938.227	6.9307	2
	4	3774	YP_001732757.1	UDP-N- acetylenolpyruvoylgl ucosamine reductase, FAD-binding [Escherichia coli str. K-12 substr. DH10B]		6.15	1/5	5.74	37809.2744	7.6023	2
	5	3609	YP_001732592.1	entero common antigen (ECA) polysaccharide chain length modulator [Escherichia coli str. K-12 substr. DH10B]		6.153	2/5	6.23	39445.9437	12.3563	2
	1	3937	YP_001732920.1	beta-lactamase/D- alanine carboxypeptidase [Escherichia coli str. K-12 substr. DH10B]		8.845	6/8	9.08	41511.4022	27.0557	8
P00811	2	3468	YP_001732451.1	lipopolysaccharide core biosynthesis [Escherichia coli str. K-12 substr. DH10B]		9.949	3/8	8.68	41684.9217	11.4846	3
	3	789	YP_001729772.1	ABC transporter membrane protein [Escherichia coli str. K-12 substr. DH10B]		9.971	2/8	8.16	42014.5599	6.1008	2
	4	2968	YP_001731951.1	sodium:serine/threoni ne symporter [Escherichia coli str. K-12 substr. DH10B]		9.973	1/8	8.27	43431.3994	7.4879	2
	5	1999	YP_001730982.1	lipopolysaccharide biosynthesis protein [Escherichia coli str. K-12 substr. DH10B]		10.03	2/8	9.32	43142.6376	8.3333	3

loaded to test our in-house tool and also to compare with Mascot by using the PMF data of *E. coli* proteins (cross-species proteins), P0C0V0-protease Do, P61889-malatede hydrogenase, P0A9B2-glyceraldehyde-3-phosphate dehydrogenase A, P0AFL3-peptidyl-prolyl cis-trans isomerase A, P0A6P9- enolase and P00811-beta-lactamase as the input PMFs. The best 'Hits' results from Mascot and our current tool are shown in Table **3a** and Table **3b**, respectively.

According to the search results from Mascot, these proteins were found first in the best 'Hits' results for the first three proteins, and third for the last three, as shown in gray boxes in Table **3a**. The input parameters, MSDB (the Mascot database), taxonomy of *E. coli*, an allowed miss cleavage of one, and a peptide tolerance of 1.2 Da were used.

The results from our current tool illustrated that five out of six proteins were shown first in the 'Hits' results. The protein with accession number P0A6P9 was identified second on the list as enolase (protein ID 2688) with a score of 6.0782, which is less than that of the 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase.

In conclusion, the current tool has an accurate ability to identify proteins using the scoring function and appropriate input parameters. This version of the tool with a probabilitybased scoring function has high accuracy in protein identification by using peptide mass fingerprints. To the best of our knowledge, this is the first time that a tool used as search engine for protein identification contains pI-filtering, pIcalculating and a batch processing module. When the limitation of batch processing is its long execution time, this problem can be overcome by automatically obtaining the protein mass and pI values from each PMF file of the batch process.

Revised: August 14, 2009

Accepted: August 21, 2009

© Thammasorn et al.; Licensee Bentham Open.

Improvements to the batch process are in progress. Thus, the current tool obtained in this study has a high impact on the protein identification step in our proteomic work due to its accurate scoring function and ranking criteria, including pI.

ACKNOWLEDGEMENTS

This research was funded by a grant from the King Mongkut's University and Technology of Thonburi and the National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand.

SUPPLEMENTARY MATERIAL

Supplementary material is available on the publishers Web site along with the published article.

REFERENCES

- J. C. Boisson, L. Jourdan, E. G. Talbi, and C. Rolando, "Protein sequencing with an adaptive genetic algorithm from tandem mass spectrometry," *in 2006 IEEE Congress on Evolutionary Computation, CEC* 2006, pp. 1412-1419.
- [2] Y. Wan and T. Chen, "A hidden Markov model based scoring function for mass spectrometry database search," in *Lecture Notes* in Bioinformatics (Subseries of Lecture Notes in Computer Science), 2005, pp. 342-356.
- [3] J. K. Eng, A. L. McCormack, and J. R. Yates Iii, "An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database," *Journal of the American Society for Mass Spectrometry*, vol. 5, pp. 976-989, 1994.
- [4] A. Sillero and A. Maldonado, "Isoelectric point determination of proteins and other macromolecules: Oscillating method," *Comput*ers in Biology and Medicine, vol. 36, pp. 157-166, 2006.
- [5] K. Gevaert and J. Vandekerckhove, "Protein identification methods in proteomics," *Electrophoresis*, vol. 21, pp. 1145-1154, 2000.

Received: June 25, 2009

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.