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Abstract: Most approaches for protein structure alignment start from a search for similar fragments since this local 
similarity is necessary to the alignment even though is insufficient. In contrary to the sequence alignment, any 
insignificant trial alignment for structures can be detected by structure superposition and then excluded. It is then 
practicable to select from locally similar fragments those responsible for alignment and build up it. An efficient way for 
local similarity search is to use a conformational alphabet, which is a discretized description of protein chain local 
geometry. Using our conformational alphabet and its substitution matrix CLESUM, we propose a tool called BLOMAPS 
for fast multiple structure alignment. 

By means of the conformational alphabet, a structural fragment is mapped to a string, and two strings with their CLESUM 
score being higher than a preset threshold form a similar fragment pair (SFP). A string from one protein as a seed and its 
highly similar fragments from other proteins form a similar fragment block. Taking one protein as the pivot, BLOMAPS 
uses the rigid transformation for SFPs in a block to superimpose proteins and initiate an anchor-based alignment. 
BLOMAPS is greedy in nature, guided by CLESUM similarity scores. It consists of several steps including finding 
similar fragment blocks based on a pivot protein, removing block redundancy, constructing scaffold by checking 
consistency in spatial arrangement among fragments from different blocks, dealing with unanchored structures, and the 
final step of refinement where the average template for alignment is obtained and motifs missing from the pivot protein 
are found and added. The utility of BLOMAPS is tested on various protein structure ensembles including large scale ones, 
and compared with several other tools including MATT.  

BLOMAPS is available at: www.itp.ac.cn/zheng/blomaps.rar 
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1. INTRODUCTION 

 Protein structures are better conserved than amino acid 
sequences. Remote homology is detectable more reliably by 
comparing structures. Multiple alignment carries 
significantly more information than pairwise alignment, and 
hence is a much more powerful tool for classifying proteins, 
detecting evolutionary relationship and common structural 
motifs, and assisting structure/function prediction. Most 
recent reviews on protein structure alignment include Refs. 
[1, 2]. Being able to provide very useful information and 
insights for proteomics, structural bioinformatics and drug 
development, the comparison and alignment of protein 
structures has come to be a fundamental and widely used 
task in computational structure biology. However, 
developing accurate and fast methods for multiple structure 
alignment is still regarded as an open challenge. Here, we 
propose a tool called BLOMAPS for fast multiple structure 
alignment. 
 The common goal of all multiple structure alignment 
methods is to identify a set of residue ‘columns’ from each 
‘row’ protein that are structurally similar, or to find an 
optimal correspondence among the atoms of these molecular 
structures. For a given multiple alignment, several aligned 
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‘blocks’, which correspond to contiguous columns, usually 
can be identified. Each block is again composed of locally 
similar fragments. This local similarity within a block may 
be phrased as ‘vertical equivalency’. The local similarity is 
necessary to the alignment, but is insufficient. For any two 
structures in the multiple alignment, the transformation to 
superimpose a fragment duad in an aligned block should also 
bring the fragment duads in other blocks spatially close. This 
is the ‘horizontal consistency’. In contrary to the sequence 
alignment, any insignificant trial alignment for structures can 
be detected by structure superposition and then excluded. 
Thus, it is practicable to select from locally similar 
fragments those responsible for the global alignment and 
build up it. 

 Structure alignment involves the geometric 
representation for structures. In most cases, only the 
backbone of pseudobonds formed by 

!C  atoms are 
considered. Atom coordinates, which change under 
translation and rotation in 3D space, are not geometric 
invariants. Distances used by DALI [3, 4] or CE [5] are the 
intrinsic property of a geometric object. The peptide chain 
dihedral angles or the bending and torsion angles of 
pseudobonds [6] are also geometric invariants. The unit-
vector used by MAMMOTH [7] implies pseudobond angles, 
but is not invariant. MASS [8, 9] replace secondary structure 
elements by the vectors of their axes. This vector 
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representation speeds up the computation, but has a low 
precision for structural elements. BLOMAPS uses 
pseudobond angles, but goes one step further. The three 
pseudobond angles formed by four contiguous residues have 
been coarse-grained into discrete ‘conformational letters’, 
and a substitution matrix called CLESUM has been 
constructed for these letters based on a database of aligned 
protein structures [10, 11]. By means of this conformational 
alphabet, a structural fragment is mapped to a string. 
BLOMAPS measures the similarity of two fragments with 
the CLESUM score of their strings. 

 The horizontal consistency described above is based on 
superposition. In the language of distances, the consistency 
is expressed as the distance constraint that any corresponding 
distances from two structures in alignment should be nearly 
equal. A few methods like DALI or CE construct an 
alignment by joining fragment duads satisfying the distance 
constraint without superposition. Many methods start with an 
initial trial correspondence, and then iteratively update the 
optimal transformation and correspondence in turn until the 
best correspondence is finally found. Often a dynamic 
programming algorithm is employed in piecing up a global 
alignment; it enforces the alignment to be collinear. MATT 
(Multiple Alignment with Translations and Twists), 
including the difference between transformations for 
superposing fragment duads as a part of penalty for dynamic 
programming, is able to deal with local flexibility [12]. 

 The pairwise structure alignment forms the basis for the 
multiple structure alignment. Most existing methods of 
multiple structural alignment combine a pairwise alignment 
and some heuristic with a progressive-type layout to merge 
pairwise alignments into a multiple alignment [6, 7, 13-16]. 
Such pairwise-based methods have the limitation that 
alignments which are optimal for the whole input set might 
be missed. Another limitation is in speed. There are a 
handful of truly multiple methods [8, 9, 17, 18]. BLOMAPS 
also belongs to the category as well as CLEMAPS, another 
tool developed in our group [19]. 

 BLOMAPS is developed from our CLEPAPS, a fast tool 
for pairwise protein structure alignment [20]. CLEPAPS 
searches for similar fragment pairs (SFPs) by string 
comparison based on CLESUM scores. Like ProSup [21], 
CLEPAPS is anchor-based. It takes a single good SFP as an 
initial correspondence. The optimal transformation for this 
seed SFP is used to superimpose the pair proteins and then to 
update the correspondence. The procedure of progressively 
building up larger correspondence is iterated until the best 
correspondence is finally found. CLEPAPS adopts a greedy 
strategy guided by CLESUM scores. In fact, the usage of 
conformational letters may be integrated into any approaches 
engaging SFPs. However, the number of operations involved 
in consistency checking for a CE-type method is, roughly 
speaking, quadratic in the number of relevant residues, while 
for a ProSup-type it is linear. Our CLEMAPS, being 
developed before CLEPAPS, is a multiple version of the CE-
type, which is less superior in speed than the ProSup-type. 
Encouraged by the performance of CLEPAPS, we decided to 
extend it to BLOMAPS, a multiple version. The design of 

BLOMAPS’ architecture has been briefly reported in [22] 
and [11]. Recently, appeared a new tool MATT, which 
outperforms other programs in alignment quality on distant 
structures, and sets a high standard for other tools to reach. 
We present here a full version of BLOMAPS, which 
includes not only a detailed description of the method and 
careful analysis of its implementation, but also some tests on 
large scale ensembles and case study. BLOMAPS is 
compared with several other tools including MATT. 

2. METHODS 

 BLOMAPS is greedy in nature. Its several steps include 
finding similar fragment blocks based on a pivot protein, 
removing block redundancy, constructing scaffold by 
checking consistency in spatial arrangement among 
fragments from different blocks, dealing with unanchored 
structures, and the final step of refinement where the average 
template for alignment is obtained and motifs missing from 
the pivot protein are found and added. 

2.1. Abbreviations 

 Five main abbreviations SFP, AFP, SFB, HSFB and 
MAB are frequently used and listed as follows. Their more 
precise definitions will be given in the text. 

SFP = Similar fragment pair. As the name suggests, it 
is a pair of segments, each from each of two 
given proteins. SFPs are based only on local 
geometry. 

AFP = Aligned fragment pair. We save word ‘aligned’ 
only for global features such as orientation of 
secondary structure elements and overall 
topology. An AFP must be an SFP, not the other 
way around. AFPs are those SFPs which finally 
appear in the global alignment of two whole 
structures. 

SFB = Similar fragment block. SFB is the counterpart 
of SFP for multiple proteins. We use a 
simplified version of SFB, for which there is a 
seed fragment member, and all other members 
are compared only with this seed. SFBs are 
based only on local geometry. 

HSFB = Highly similar fragment block. For a given 
fragment as the seed, there are usually many 
SFBs. The HSFB has its members most similar 
to the seed. That is, among these SFBs, for any 
protein in comparison, the member in the HSFB 
is more similar to the seed than those in any 
other SFBs.  

MAB = Multi-aligned block. MAB is the counterpart of 
AFP for multiple proteins. MABs form the core 
of a multiple structure alignment, and then can 
be extracted from the alignment. Thus, an MAB 
must be an SFB, not the other way around. 

2.2. Conformational Alphabet 

 To represent protein structures with conformational 
alphabets, which are discretized conformational states of 
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certain fragment units of backbones, is an old idea [23-29]. 
BLOMAPS uses a 3D structure coding of protein backbones 
consisting of 

!C  pseudobonds. Three contiguous 
!C  atoms 

determine two pseudobonds and a bending angle between 
them. Four contiguous 

!C  atoms, say a , b , c  and d , 
determine two such bending angles ),( !! "  and a torsion 
angle )(!  which is the dihedral angle between the two 
planes of triangles abc  and bcd . Since the length of 
pseudobones in the dominant trans configuration is almost 
constant these bending and torsion angles, as the chain 
counterparts of curvature and torsion of a smooth curve, 
maintain the three dimensional information. The smallest 
unit possessing one-to-one correspondence between angles 
and coordinates is the quadrupeptide unit. By using a 
mixture model for the density distribution of the three 
angles, the local structural states have been clustered as 17 
discrete states or letters (A to Q) of a protein conformational 
alphabet. When using structural codes for the structural 
comparison, a score matrix similar to the BLOSUM for 
amino acids is desired. Based on the alignments for 
representative structures in the database FSSP of Holm and 
Sander, we have constructed a substitution matrix called 
CLESUM for the conformational letters. The matrix (in an 
updated version) is shown in Table 1, where a scaling factor 
of 20 instead of 2 is used to show more details [10]. To the 
best of our knowledge, CLESUM is the first substitution 
matrix directly derived from structure alignments for a 
conformational alphabet. Among the 17 letters, H represents 
the prototype of helices, while E represents that of extended 
strands. In Table 1 similar conformational letters have been 
grouped closely. CLESUM reflects not only a geometrical 
similarity, but also an ‘evolutionary’ similarity. For example, 

the diagonal entry for the frequent H is relatively small 
despite the high geometrical similarity between two helices. 

 An essential parameter of BLOSUM is its valid 
evolutionary distance, which is controlled by the identity rate 
of sequences for training. Similarly, we use the structure 
family indices of FSSP to carefully control the similarity 
between structures in our training set. A training set of too 
high similarity will make most non-diagonal entries of the 
substitution matrix negative. 

2.3. Finding Similar Fragment Blocks 

 Suppose that protein P  is one from the structures to be 
aligned. The coordinates }{

i
r  of 

!C  atoms of the protein are 
converted to a sequence S  of conformational letters. Since 
each letter corresponds to a quadrupeptide unit, the length of 
S  is shorter than that of P  by three. The first letter is 
assigned to the third residue by convention, the second to the 
fourth and so on, until finally the last letter is assigned to the 
last residue but one. (This assignment is supported by an 
analysis on the position dependence of the mutual 
information between the letters and amino acids.) 

 For given two fragments of the same length l , one starts 
at residue i  of P  and the other at j  of another protein P!  
(with conformational sequence S ! ), their local structural 
similarity may be measured by  

),,(=
1

0=

kjki

l

k

ssM ++

!

"#$            (1) 

where ),( baM  is the ),( ba -entry of the CLESUM, and 

ki
s +  and kjs +

!  are the conformational letters of the 

Table 1. CLESUM: The Conformation Letter Substitution Matrix (in Units of 0.05 Bit) 

J  37                                 

H  13  23                               

I  16  18  23                             

K  13  5  21  49                           

N  -2  -34  -11  28  90                         

Q -44  -87  -62  -24  32  90                       

L -32  -62  -41  -1  8  26  74                     

G -21  -51  -34  -13  -8  8  29  69                   

M  16  -4  1  12  7  -7  5  21  61                 

B -57  -96  -74  -50  -11  12  -12  13 -13  51               

P -34  -60  -49  -36  -3  7  -12  5  8  42  66             

A -23  -45  -31  -19  10  16  -11  -6  -2  20  35  73           

O -24  -55  -34  5  15  -13  -4  -1  5 -12  4  25 104         

C -43  -77  -56  -33  -5  29  0  -4 -12  7  4  13  3  53       

E -93 -127 -108  -84  -43  -6  -21 -22 -47  15  -5 -25 -48  3  36     

F -73 -107  -88  -69  -32  3  -16  -5 -33  7  0 -20 -30  20  26  50   

D -88 -124 -105  -81  -44  14  -22 -31 -49  13 -10 -17 -42  21  22  21  52 

  J   H   I  K   N   Q   L   G   M   B   P   A   O  C  E  F   D  



72    The Open Bioinformatics Journal, 2009, Volume 3 Wang and Zheng 

corresponding residues. Here the same index is kept for a 
residue and its conformational letter. If the pair score !  is 
greater than a preset threshold T , the pair is called a similar 
fragment pair (SFP), which defines a correspondence of l  
residue duads. Comparing each string of S  with length l  
against S ! , we can find all SFPs. Usually, a small l  and a 
low T  will result in a long list of SFPs. 

 A rigid transformation can be found to superimpose the 
two members of a given long enough SFP and make the 
spatial deviation of its duad 

!C  atoms very small [30, 31]. 
Since an SFP is determined only by local similarity, a 
superposition valid for one SFP need not be valid for 
another. We define the spatial ‘separation’ between two 
members of a certain SFP under a given transformation by  

|},||,||,{|max=
S)',(

jijiji
FP

j
r
i
r

zzyyxx !"!"!"
#

$         (2) 

where )',(
ji
rr  is a residue duad of the SFP after 

transformation, and ),,( zyx  denotes the 3D coordinates of 
r . A small separation !  implies a good superposition of the 
two SFP members. 

 Selecting a ‘pivot’ protein from a set of structures to be 
aligned and taking an l  long fragment of the pivot as a seed, 
we search the structures other than the pivot for fragments 
similar to the seed. A fragment which forms an SFP with the 
seed is called a neighbor of the seed. For a given seed, 
several neighbors may be found in a single structure. A 
block of similar fragments (SFB) may be formed by taking 
one neighbor from each structure which has neighbors of the 
seed. There is a block which consists of the seed and those 
neighbors which score the highest amongst neighbors in each 
structure possessing neighbors. Such a block is called a 
‘highly similar fragment block (HSFB)’. Of course, a seed 
might have no neighbor in some structures. The total number 
of fragments in an HSFB will be called the depth of the 
HSFB. The total score !  of an HSFB is defined as the sum 
of !  scores between the seed and each of its neighbors in 
the HSFB. Another characteristic of an HSFB is its 
consensus, which is defined as follows. For a given set of 
conformational letters, their consensus letter is defined as the 
letter which belongs to the set and has the highest sum of 
CLESUM scores between itself and all letters in the set. The 
consensus of an HSFB is then defined as the string which 
consists of the consensus letters of columns when aligning 
the ‘row’ strings of the HSFB. Thus, besides the positions of 
its member fragments, an HSFB has a depth, score and 
consensus. 

 To examine each l  long string of every conformational 
sequence and find all possible SFBs is inefficient. 
BLOMAPS simply takes the shortest protein as the pivot to 
create all HSFBs. That is, all seeds are extracted from this 
protein. (When seeking SFBs, CLEMAPS conducts an all-
against-all search for the best centers and finding SFBs as 
so-called center-stars. The center of such a block is always 
the consensus. However, besides the high computation cost, 
it is hard to efficiently remove redundancy from such 
blocks.) Bearing only local similarity, an SFB need not 

correspond exactly to a multi-aligned block (MAB), which 
appears in the multiple structural alignment. Obviously, an 
MAB must be an SFB in the sense of the CLESUM score. 
For a set of closely related structures, we expect that there is 
a good chance of finding certain members of MABs in some 
HSFBs. 

 For an HSFB with a large depth and score, shifts of its 
seed would plausibly also generate HSFBs with a large depth 
and score. To remove this redundancy, the HSFBs are sorted 
first in descending order of depth and then in that of score. A 
2D grid of atom indices is created with its rows 
corresponding to individual proteins. The atom indices of the 
first HSFB in the grid are marked, and then the second 
HSFB is examined. If the overlapping positions between the 
two HSFBs are less than lm!=" , where l  is the width of 
the block, m  the depth of the second HSFB and !  a 
parameter for redundancy, we fill in the grid the second 
HSFB. Otherwise, we skip it, and examine the third. When 
examining a new HSFB, the number of its positions that 
overlap with the marked indices of the grid is counted. Only 
when its overlapping proportion is less than !  do we fill in 
its place in the grid. This procedure is continued until the last 
HSFB is examined.  

2.4. Building up a Scaffold 

 Multiple structure alignment requires both the vertical 
equivalency and horizontal consistency. This increases the 
difficulty of alignment, but also reduces the chance of 
making a wrong alignment. That is, by superposition the 
wrong alignment can be detected and then discarded. The 
multiple alignment algorithms which progressively merge 
pairwise alignments may be classified as horizontal-first. 
Our BLOMAPS may be regarded as vertical-first. To speed 
up, all structures are aligned against some template, and at 
the beginning the shortest protein is taken as the template to 
create HSFBs. BLOMAPS then starts with an HSFB taken 
from the top K  HSFBs as an ‘anchor’. To choose the most 
representative structure, the template is updated to the 
protein whose member in the anchor HSFB has the highest 
similarity score with the consensus. The updating of 
template may result in that the new pivot protein does not 
have a fragment in an HSFB. Since structures are aligned 
against the template, it is desired for the template to have as 
many HSFB members as possible. When an HSFB lacks a 
fragment of the pivot protein, the consensus of the HSFB is 
used to search the pivot for possible neighboring fragments 
with a lower threshold 

!T , and add the optimal neighbor to 
the HSFB. 

 The transformations to superimpose the fragments of the 
anchor HSFB are also used to superimpose the whole 
structures where the fragments are. After having 
superimposed all the structures which possess a fragment in 
the anchor HSFB, the horizontal consistency is examined as 
follows (see a schematic in Fig. 1). We mark all the HSFBs 
and their fragments ‘uncolored’, and set up a counter for 
each HSFB. If an HSFB contains a fragment of the pivot 
protein, the fragment will be regarded as the center of the 
HSFB, and separations between the center and other 
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members of the HSFB are calculated. When a separation is 
found below a preset cutoff 

1
d  the count of the counter for 

the HSFB is advanced by one, the HSFB is marked colored 
and both the fragment and the center colored. At the first 
time when such an HSFB is found, the anchor HSFB, and its 
two fragments taken for creating the transform for 
superposition are also colored. The total number of colored 
HSFBs and that of colored fragments are assigned to the 
anchor HSFB. Having calculated the total counts for all the 
top K  anchor HSFBs, we select the ‘optimal’ anchor HSFB 
to go on to the next step by inspecting first the total number 
of colored HSFBs, and then the total number of colored 
fragments if necessary. 

 For an optimal anchor HSFB, its colored HSFBs are 
spatially consistent with the anchor. Thus, the colored 
fragments of the pivot protein are supported both 
horizontally and vertically, and form a scaffold for multiple 
alignment. It may happen that the anchor HSFB has no 
neighbors in some structure (even after an extra search with 
the block consensus), which is then regarded as an 
unanchored protein. No transformation can be found based 
on the anchor HSFB to superimpose such an unanchored 
protein on the pivot protein. 

 If an protein has a colored fragment in an anchor HSFB, 
but has no fragment in a colored HSFB, we search the 
protein for fragments which do not overlap with any colored 
fragments and are similar to the center either by checking the 
similarity score first, or directly examining the separation 
with respect to the center fragment. If a separation is found 
being smaller than the cutoff 

1
d  the corresponding fragment 

is colored and added to the HSFB. For a structure which has 
a fragment in the anchor HSFB, if the number of its colored 
fragments is smaller than a lower bound 

h
n  the protein is 

also regarded as unanchored, and otherwise as anchored (see 
Fig. 1).  

2.5. Improving the Scaffold 

 Improving of the scaffold greatly follows the pairwise 
CLEPAPS [20]. By using the colored fragments, the 
transformation to superimpose two structures, which so far is 
based only on a single pair of fragments, can be updated 
based on more fragment pairs satisfying consistency. That is, 

for an anchored protein, the transformation optimal for 
superimposing all its colored fragments on the pivot protein 
is the updated transformation for the two proteins. With the 
transformation updated, we use a width l!  smaller than l  
and a more stringent cutoff 

2
d  to examine the consistency of 

colored fragments. If an l  long colored fragment has at least 
l!  residues whose coordinates deviate from their 
counterparts on the pivot protein within 

2
d , the fragment 

remains colored, and otherwise it is changed to uncolored. 

 Having examined all l  long colored fragments, we 
‘recruit aligned fragment pairs (AFPs)’ for every anchored 
protein as follows. For a given anchored protein, the colored 
fragments and their partner fragments on the pivot define the 
primary AFPs. They are masked from the anchored and pivot 
proteins. With each fragment of length l!  from the 
unmasked region of the pivot, the unmasked region of the 
anchored protein is searched for SFPs at a lenient threshold 
T ! . After sorting the found SFPs in descending order of 
scores, we examine the separations of the SFPs in 
succession. Whenever a separation is found to be smaller 
than 

2
d  and the positions of the corresponding SFP do not 

conflict with the existing AFPs, the SFP is recorded as an 
AFP, and its fragment on the pivot is assigned as a part of 
the scaffold. An extended scaffold is then obtained. The 
AFPs map residues of proteins other than the pivot to those 
of the pivot protein, and define columns of residue 
correspondence. We construct the first average template by 
averaging transformed coordinates of atoms over individual 
columns, and use it for dealing with unanchored structures. 

2.6. Dealing with Unanchored Structures 

 The optimal anchor HSFB does not provide any guidance 
for aligning an unanchored protein. However, the protein 
may still have members in other colored HSFBs. Any of 
such members can be used to generate a transformation for 
superimposing the protein on the template for examining the 
consistency of other fragments. For efficiency, we may sort 
the members of colored HSFBs according to their depths or 
similarity scores, and then examine only the top K . If an 
unanchored protein does not have enough number of 
members which can be associated with colored HSFBs, a 
pairwise alignment is necessary. 

 

 

 

 

 

 

 

 
 
Fig. (1). Schematic of horizontal consistency examination. Selected by the consensus of the anchor HSFB, structure 2 is the pivot, on which 
all other structures are superimposed. The anchor HSFB has 4 colored HSFBs and 13 colored fragments. For 3=

h
n  structures 1 and 3 are 

anchored.  

3 anchored

2 pivot

1 anchored

4 unanchored

5 unanchored

uncolored
HSFB

anchor
HSFB

colored
HSFB
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 There is a difference between the pairwise alignment 
here and the ordinary one. The scaffold on the pivot protein 
now provides a guidance. Each fragment of length l  is taken 
from the scaffold as a seed, and the unanchored protein is 
searched for SFPs at threshold T . After sorting the found 
SFPs in descending order of scores, the top K  SFPs are used 
to generate transformations and the top )( KJ ! , say K10 , 
are used for consistency checking. (The algorithm speed is 
insensitive to the choice of J ). The transformation derived 
from the fragment pair of an SFP in the top K  is used to 
superimpose the unanchored protein on the template. 
Separations of the top J  SFPs are then successively 
examined. We count the total number 

p
n  of non-

overlapping SFPs whose separations are less than 
2
d . The 

SFP which has the largest 
p
n  among the top K  and its 

consistent SFPs are used to update the transformation for 
superimposing the unanchored protein. The procedure of 
recruiting AFPs is then applied to extend the portion aligned 
to the scaffold. Every unanchored protein can be treated in 
this way. 

2.7. Refinement 

2.7.1. Updating the Average Template 

 The average template can be updated once unanchored 
proteins are aligned on the template and missing motifs are 
discovered. A cutoff 

3
d , even more stringent than 

2
d , is 

applied to examine the deviation between residue duads of 
AFPs and their flanking sites. Fragments are elongated or 
shrunken according to the deviation cutoff 

3
d , and hence the 

AFPs updated. The modified AFPs lead to an updated 
average template. This is an iteration, and its convergence is 
usually rather fast. At the final iteration step, the distance 
cutoff 

0
d  is used to control residue duad distances (instead 

of separations which are just maximal coordinate 
differences). 

2.7.2. Seeking for Missing Motifs 

 The patterns or motifs considered here are ungapped 
fragments which are structurally similar locally, and are 
arranged in space very alike globally. It is doomed by the 
greedy nature of the above scheme that only patterns shared 
by the pivot protein have a chance to be discovered. Some 
patterns could be shared by a subset of structures, but be 
absent from the pivot protein. They are ‘missing motifs’ to 
the pivot protein. Their information has to be extracted from 
the structures sharing them. 

 A motif in a set of structures must also be a motif of their 
conformational sequences. Although the reverse need not be 
true, the latter provides a candidate for the former. There are 
many methods for discovering motifs in a set of sequences, 
e.g. a simple center-star approach in the sense of strings 
instead of sequences [32]. An exceptionally large protein 
will have a large proportion of ‘blank’ regions, most of 
which have no contribution to missing motifs, and hence a 
procedure to directly examine all fragments would be rather 

inefficient. The inefficiency occurs also when the number of 
structures is large. 

 Considering the fact that the structures have been 
superposed in the space, we propose a way to rescue missing 
motifs by ‘cell registration’. The space occupied by the 
structures after superimposition is divided into uniform cubic 
cells of a finite size, say 6Å . The number of different 
proteins which have their residues falling in a given cell is 
the depth of the cell. The cells with their depths below a 
preset cutoff are discarded. The remaining cells are sorted in 
descending order of depth. Picking a cell of a large depth as 
a base, in each dimension we select from its two nearest 
neighbor cells the one with the higher depth to expand the 
base cell and double its size into an ‘octad’. The residues 
falling into the octad are marked. In this octad, if a protein 
which has at least three marked residues with their indices 
within l!  is found, we take the segment of the protein which 
covers the most marked residues as a seed, and examine all 
the segments which are from other proteins and have some 
marked residues by checking their separation from the seed. 
If AFBs are found, we discard the eight cells of the octad 
after finding the AFBs, and continue with the cell of the next 
highest depth until all cells are examined. 

 So far it is implicitly assumed that there is a common 
core shared by the whole set of structures. In the case the 
structure set is actually divided into subsets according to 
common cores, the above scheme extracts a subset based on 
the pivot. The algorithm first accomplishes the alignment for 
this subset, and then treats the remainders as a new input set. 

2.8. Evaluation 

 The final alignment may be described with the involved 
rigid transformations and viewed visually. Another 
convenient way is to give the complete residue 
correspondence. A full column of the correspondence has 
residues from every protein of the structure set. Usually, the 
common core of alignment is rigorously defined by all full 
columns. A ‘partial core’ may also be defined by introducing 
a parameter of proportion. For example, core-60 is given by 
columns covering sixty percent or more proteins of the 
structure set. Assume that a new motif is found on a protein 
other than the pivot. With the help of the common core, we 
can map the protein together with the missing motif on the 
template, and update the template by averaging coordinates 
over residues in individual new columns. After having 
superimposed structures on the final average template, we 
can calculate the total squared deviation of aligned residues 
with respect to the template for full or partial core of the 
alignment, and then the RMSD (root mean square deviation) 
for evaluation. 

 The default parameters of BLOMAPS are listed in Table 2. 
Finally, we summarize the overall algorithm of BLOMAPS: 
1) creating HSFBs using the shortest protein as a template, 
sorting HSFBs, and deriving redundancy-removed HFSBs; 
2) for each HSFB in top K , selecting the pivot protein based 
on the HSFB consensus, superimposing other proteins on the 
pivot, finding consistent HSFBs, and selecting the best 
HSFB according to the number of consistent HSFBs; 3) 
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building a primary scaffold from the consistent HSFBs, 
updating the transformation using the consistent HSFBs, 
recruiting aligned fragments, and creating an average 
template; 4) dealing with unanchored proteins, finding 
missing motifs by cell registration, and refining the 
alignment; and finally 5) evaluating the alignment. 

3. RESULTS 

 BLOMAPS has been tested on 16 protein structure 
ensembles as well as some large scale ensembles. The 16 
ensembles, covering various challenging cases of structural 
alignment, are taken from several references: five from Ref. 
[17], three from [8], four from [9], and four from [6]. Some 
ensembles contain structural homologies at different levels, 
some exhibit submotifs not shared by all members or 
different topologies, while others contain a large number of 
proteins, or exhibit symmetry or repetition. The ensembles 
are briefly summarized in Table 3. The meaning of the 
abbreviated names and original references for the ensembles 
listed in the table are as follows. MicrRib: Microbial 
ribonucleases, Subtil: Subtilisins, TIM61: a set of 61 TIM 
barrels, Serin5: a set of 5 Serine proteinases, Serpin: Serpins, 
Thior: Thioredoxins, Beta: All beta immunoglobulins, 
Glob10: a set of 10 Globins, Glob16: another set of 16 
Globins, Serin68: another set of 68 Serine proteinases, 
CaBind: Calcium-binding proteins, CL-GL: Cofilin-
like/Gelsolin-like proteins, PLP: PLP-dependent 
transferases, C2: C2-domains, TIM7: another set of 7 TIM 
barrels, and HelBun: Helix-Bundles (with the number of 
proteins less by one due to the fail in tracing PDB-ID in the 
updated PDB version). DBNWa: MASS [8], DBNWb: 
MASS [9], SNW: MultiProt [17], YJ: Ye & Janardan [6], 
CK: Chew & Kedem [13]. 

 To conduct large scale comparisons between BLOMAPS 
and other tools, they should be downloadable to run locally, 

and provide readable alignments easy for further handling. 
Fortunately, MAMMOTH-mult (abbreviated as 
MAMMOTH later on) [7], Mustang [16] and MATT [12] are 
such softwares available from the web or authors. They all 
use dynamic programming, and build multi-alignment 
progressively from pairwise alignments. Occasionally, we 
also manually make comparisons with some other tools. (As 
mentioned before, CLEMAPS is of the CE-type, involving 
many pair comparisons. The use of conformational letters 
makes it still fast, but its alignment quality is less 
satisfactory at least for the published version. The paper of 
CLEMAPS reported that the running time for Serin68 was 
27s. The same set takes BLOMAPS 1.84s. Since CLEMAPS 
has been compared with MAMMOTH, we shall not make 
further comparison with CLEMAPS.) 

3.1. Implementation of BLOMAPS on 16 Test Sets 

 BLOMAPS uses several greedy strategies. It starts by 
taking the shortest protein as a pivot for finding HSFBs. It 
could happen that the shortest one poorly represents the set. 
The found HSFBs will then have a low quality, and even 
cannot pass the examination of vertical equivalency and 
horizontal consistency. In this case, BLOMAPS will get 
warned at the very beginning, and a second protein has to be 
taken as a new pivot. However, taking the shortest as a pivot 
works for all the 16 ensembles. Furthermore, for five 
ensembles (MicrRib, Subtil, TIM61, Serin5, Serpin), three of 
which have members over 60, the similarity between 
members in a set is so high that the shortest always well 
represents the set, and the optimal anchor HSFBs, which 
always have members from all proteins in the set, directly 
correspond to a MAB (except for one member in 63 of 
MicrRib). They are then ‘trivial cases’. The top few HSFBs 
of local similarity also agree with the global alignment. Mere 
string comparison for conformational codes with the 
CLESUM matrix can lead to the right answer. 

Table 2. Default Parameters of BLOMAPS 

 Symbol  Value  Meaning 

 l   12  width of wide SFBs 

T   200  similarity threshold for wide HSFBs 

K   5  number of wide HSFBs tested as anchors 

l!   8  width of narrow SFPs for scaffold improvement 

T !   100  similarity threshold for narrow SFPs 

!   0.5  overlap proportion for removing redundancy of HSFBs 

!   4  minimum length of aligned fragments 

0
d   5Å  distance cutoff for evaluating overall alignment 

1
d    10Å  separation threshold for consistency 

2
d   7.5Å  separation bound for recruiting AFPs based on the pivot 

3
d   5Å  separation cutoff for recruiting AFPs based on the template 

h
n   3  minimal number of colored fragments for an anchored protein 
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 Although these trivial cases are not the best examples to 
show the power of the conformational letter description we 
mention a pair of structures, 1gci: 1gnsA, in the set Subtil 
(see Table 3), whose optimal anchor HSFB is supported by 
12 other colored HSFBs. The amino acid identity rate for the 
pair in these 13 HSFBs as the aligned proportion is 88/156 
while 120/156 of their conformational letters are identical. A 
simple elongation of colored HSFBs with duads of positive 
CLESUM scores with respect to the pivot protein leads to 
total of 216 aligned positions for the set. 

 The first notable ensemble is the set of Thioredoxins 
(‘Thior’ in Table 3). The shortest protein 1fo5A is of length 
85, rather shorter than all the rest nine (between 105 and 
112). The HSFB of rank 1 is selected as the optimal anchor 
HSFB, having six colored HSFBs. (Here, ‘rank 1’ means that 
the HSFB is ordered first according to its depth and then to 
its total score among HSFBs.) The seed of the HSFB has 
codes FEEENOGCEDEQ from 1fo5A, while the consensus 
of the HSFB selects EEEENOGCPLDE of 2tir as a 
representative, then 2tir becomes the pivot protein. The shift 
of center member results in a score change of the HSFB 
from 439 to 688. This HSFB happens to be an MAB. 
Interestingly, being supported by only two colored 
fragments, 1fo5A turns to be unanchored. Its member in the 
anchor HSFB may be regarded as a ‘weak member’. That is, 
although it finally appears in the global alignment, it is not 
strong enough for inferring the alignment. However, SFPs of 
other colored HSFBs can still be used to superimpose 1fo5A 
against the pivot for checking horizontal consistency, and 
then align it. If the members of a protein in all the colored 
HSFB are wrong or week, which should be rare, we have to 

conduct a direct pairwise alignment to align the protein 
against the scaffold. However, this does not happen here. 

 The next notable ensemble is the set of 16 globins 
(Glob16), which was first studied by Chew and Kedem [6, 
13]. The shortest protein is 1eca. The optimal anchor HSFB, 
with 1bdbA being the pivot selected by the consensus of the 
HSFB, has 6 colored HSFBs, all with depth 16. The total 
number of colored fragments is 38. Since an HSFB reflects 
only the local similarity it need not be an MAB. For this set 
the anchor HSFB has two ‘wrong’ members from 1eca and 
2hbg, i.e., it is not the fragment appearing in the final 
alignment. No supported SFPs are found for these two wrong 
fragments in the examination of horizontal consistency, and 
they are then rejected. In fact, there are two more members 
of the HSFB which fail in the horizontal consistency 
examination. The scaffold after recruiting aligned fragments 
consists of 17 pieces. By using the colored HSFBs, the four 
structures unanchored so far are easily aligned against this 
scaffold. 

 Ensemble C2 consists of ten proteins, four 
‘Synaptotagmin-like’ proteins and six ‘PLC-like’ proteins, 
taken from two families of the ‘C2 domain’ superfamily [8]. 
The two families are related by a circular permutation while 
each forms a topological group. The lengths spread over a 
wide range from 123 (1bdyA) to 841 (1qasA). No dynamic 
programming is conducted in MASS, so the non-topological 
alignment of this ensemble was detected by MASS [8]. The 
core of the MASS alignment forms a sandwich of eight ! -
stands, which will be indexed from a  to h . The model 
alignment for the four ‘Synaptotagmin-like’ proteins is 

Table 3. The 16 Ensembles Used to Test BLOMAPS. The Last Five Columns are the Rank, Depth, Number of Wrong Members of 
the ‘Optimal’ Anchor HSFB and Numbers of its Colored HSFBs and Fragments, respectively 

Name Ref  Size L   Rank Depth  
rong

n
w

   
b
N  

fN  

 MicrRib  DBNWb  63  100:104  5  63  1  5  309 

Subtil   DBNWb  60  263:281  2  60  0  13  770 

TIM61   DBNWb  61  385:443  4  61  0  22  1217 

Serin68  DBNWa  68  181:396  1  68  8  9  410 

Serin5   SNW   5  274:279  2  5  0  14  58 

Serpin   SNW   13  337:420  1  13  0  16  150 

Thior   YJ   10  85:112  1  10  0  6  38 

Beta   YJ,CK  6  95:115  1  6  0  4  16 

Glob10   YJ   10  136:158  3  10  3  7  32 

Glob16   YJ,CK  16  136:158  2  16  2  6  38 

CL-GL   DBNWb  12  96:174  2  12  0  5  32 

PLP   DBNWa  11  361:730  1  11  4  15  54 

C2   DBNWa  10  123:841  1  10  4  6  26 

CaBind   SNW   6  75:185  3  6  4  3  7 

TIM7   SNW   7  247:491  5  7  5  4  10 

HelBun   SNW   9  106:159  3  9  5  4  11 

Size: Ensemble size, L: Length range. 
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abcdefgh  in the element indices while that for the six 
‘PLC-like’ proteins is bcdefgha . In the MASS alignment 
element d  was absent in 3rpbA and 1bdyA. Any multiple 
alignment tool which uses dynamic programming is able to 
discover only collinear alignment. For example, in the 
MATT alignment element a  of ‘PLC-like’ (near C-
terminus) was missing, but element d  exists in all the 10 
structures. The missing element a  counts 8 columns, and 
makes the MATT alignment shorter than BLOMAPS. 
According to PDB files the segments corresponding to 
element d  of 3rpbA and 1bdyA are not annotated as sheets, 
which explains the missing of the element in the alignment 
of MASS, a secondary structure based tool. In fact, the 
conformational codes of element d  for the whole set are 
typical of strands. BLOMAPS is able to detect all the eight 
elements. 

 Compared with the other members in ensemble C2, 
protein 1qasA is tremendously large (about seven times 
larger than the smallest). This ensemble is a good example to 
demonstrate the cell registration technique for missing 
motifs. Besides the above mentioned core of eight ! -
strands, there are five submotifs, which are not shared by all 
proteins. After the 10 structures have been superimposed 
together, they occupy a volume of 1980=111512 !!  (in 
units of Å6.0  for sides). Among the 1980 cells, only 101 
cells contain points from at least three proteins. By sorting 
these cells in descending order of depth, The five subpatterns 
are discovered using the first, second, fifth, sixth and eighth 
cells. The third, fourth and seventh cells are removed during 
the octa formation. (A cell size of Å5.0  has been tested, and 
also works.) 

 Another ensemble showing subset alignment is CL-GL, 
which consists of 12 structures belonging to the fold ‘Actin 
depolymerizing proteins’, four from the Cofilin-like(CL) 
family and eight from the Gelsolin-like (GL) family. The 
two families share five ! -strands (indexed from a  to e ) 
and two ! -helices (indexed as 3 and 4), and family CL has 
two additional helices (indexed as 1 and 2). Written in these 
indices, the structurally conserved common core is eacd3 ; 
the CL family is characterized by ecdab 321  while GL 
family by 43eabcd  [9]. The shortest structure, being 1d0n, 
and the pivot protein selected by the consensus of the 
optimal anchor HSFB are the same one. It belongs to the GL 
family. The anchor HSFB is supported by 5 colored HSFBs 
and 32 colored fragments. Although the HSFB is an MAB, 
i.e., all its members appear in the final alignment, there are 
still three members from CL family which fail in the 
consistency examination. The first scaffold is then built 
based on the rest nine structures. After recruiting aligned 
fragment pairs the improved scaffold consists of 10 pieces. 
There is no difficulty to align the three unanchored structures 
against the scaffold by using colored HSFBs. Since the pivot 
structure belongs to the GL family, the two additional helices 
specific to the CL family have to be detected as missing 
motifs. By cell registration we find not only these two CL 
helices, but also many other subpatterns. For example, the 
helix 4 is split into two submotifs according to CL and GL, 

and it is missing in CL protein 1f7sA. However, 1f7sA 
shares with the two other CL members some submotifs 
which are missing in CL member 1ak6. If looking only at the 
core of full aligned columns, the BLOMAPS alignment 
agrees with those of other tools, but is a little longer.  

 An example of large ensemble is Serin68, which 
comprises 68 molecules of the SCOP family ‘Prokaryotic 
trypsin-like serine protease’ [33]. Aligning this ensemble is 
not acceptable to the MAMMOTH-mult web server due to 
its large size (although it is not an actual limit of 
MAMMOTH). The optimal anchor HSFB has 68 members, 
and is top-1 HSFB in the sorted list, with 8 members being 
wrong. Protein 1csoE is selected as the pivot by the 
consensus of this HSFB. It is supported by eight other 
HSFBs, seven of which have their depths 68 (full). The 
transformations based on single SFPs of the anchor HSFB 
are able to align 60 structures against all the nine fragments 
of the primary scaffold. There is no difficulty in aligning the 
8 unanchored proteins on the scaffold by using colored 
HSFBs other than the anchor. The lengths of proteins vary 
over a large range in this ensemble, which requires a step for 
missing motifs. It should be pointed out that this ensemble is 
highly redundant. At least 40 members have lengths between 
195 and 198; their members in the top five HSFBs are highly 
identical in both amino acids and conformational letters. The 
core of alignment for these 40 structures has 195 residues 
with RMSD Å0.139 . 

 Ensemble CaBind has six proteins of EF hand-like 
superfamily extracted from three families [17]. According to 
the pairwise relation, the ensemble can be split into two 
groups: non-repetitive (3icb, and 4cpv) and repetitive 
(2scpA, 1scmB, 1top and 2sas). For the latter, a pairwise 
alignment of a single structure against itself admits multiple 
solutions. This set is rather tricky. With the shortest 3icb, 10 
HSFBs are found. The consensus of the optimal HSFB picks 
up 2sas as the pivot. However, due to a lack of enough 
colored fragments no structures are anchored, and a pairwise 
alignment becomes necessary. After aligning the five 
structures against 2sas, the common core of BLOMAPS 
finally has 56 residues. The BLOMAPS alignment is rather 
close to that of MATT. 

 Since various criteria are used it is difficult to define a 
general comparison between different aligning methods. A 
common goal for structural alignment is to minimize the 
deviation of the conserved core while maximizing the size of 
the core. We set up a cutoff Å3.0  to standardize the 
deviation criterion for the core: only when the root mean 
squared deviation (RMSD) of the residues in a given aligned 
column with respect to their corresponding site in the 
average template is smaller than Å3.0  will the column be 
kept in the core. Note that the RMSD here is in the sense of a 
single aligned column. The core size obtained with this 
cutoff is denoted by 

c
N . Such 

c
N  can be compared directly. 

Besides, an important measure for comparison is some 
identity rate between the compatible cores of alignments of 
two methods. Here we take the BLOMAPS alignment as a 
reference. For example, when we compare BLOMAPS with 
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MATT, usually corresponding columns from two cores of 
alignment can be easily recognized by counting the identical 
site indices, which should not be less than the half of the 
ensemble size. The identical indices are summed, after 
divided by the ensemble size, to give the effective number of 
‘identical columns’ 

0
N . To include also small shifts, we 

count nonidentical site indices which deviate at most four 
sites (one turn of a helix) in the related columns. The number 
of site indices is converted to another effective number of 
columns 

±N . The number 
±+ NN

0
 may be then taken as a 

measure of accordance between two alignments. The 
comparison of BLOMAPS with MUSTANG, MAMMOTH 
and MATT on 12 of the 16 sets is summarized in Table 4. 
For the 4 sets with set size over 60, either the size is beyond 
the limit of a tool, or the running time is too long except for 
BLOMAPS, so these sets are not included in the table. 
BLOMAPS’s 

c
N  for these four large sets MicrRib, Subtil, 

Tim61 and Serin68 are 99, 257, 364 and 120, respectively. A 
running time comparison conducted on subsets of various 
sizes extracted from Tim61 will be presented later. One case 
of discrepancy between BLOMAPS and other tools 
mentioned above is ensemble CaBind due to repetition. 
Ensembles CaBind, TIM7 and HelBun contain members 
from different superfamilies or even different folds, besides 
the symmetry and repetition. Thus, observing discrepancy 
among different methods in these ensembles is not so 
surprising. It is seen that, in absence of symmetry and 
repetition, alignments of BLOMAPS usually agree with 
those of other three tools; BLOMAPS is most close to 
MATT. As a rule, the aligned length obtained by a tool using 
dynamic programming is longer and scrappier than by a tool 
without it. BLOMAPS superadds a minimum length of 
aligned fragments which is set to four as default. To make a 

close comparison, the aligned lengths !

c
N  with this same 

restriction (applied before the cutoff Å3.0  for fairness) are 
also given in the table. 

3.2. Large Scale Comparison of BLOMAPS with other 
Tools 

 Large scale tests are conducted on two sets: ASTRAL40-
fam and SABmark-sup. ASTRAL40 is extracted from %40 
percentage identity filtered ASTRAL SCOP genetic domain 
sequence subsets [34]. By excluding families with members 
less than 3 or over 25, and three more families containing 
member proteins which cannot be traced by their PDB 
indices in the updated version of PDB, ASTRAL40-fam 
covers 852 SCOP families. Taking the BLOMAPS 
alignment as reference, we divide the set into two subsets: 
alike and unlike. For a family in subset ‘alike’, 

c
N  of 

BLOMAPS is never less than 85% of the largest (‘best’) 
among the three 

c
N  values from MUSTANG, MAMMOTH 

and MATT. At the same time, 
±+ NN

0
 between 

BLOMAPS and the best tool is never less than 85% of the 
smaller in the two 

c
N  values. (When a tool reports no 

alignment for a family, the 
c
N  is assigned as zero.) This 

subset ‘alike’ has 783 families, and the rest 69 families form 
subset ‘unlike’. The comparison of BLOMAPS, 
MUSTANG, MAMMOTH and MATT is summarized in 
Table 5. 

 The original SABmark, designed as a sequence 
alignment benchmark, provides structurally alignable groups 
of SCOP superfamily level, and consists of two subsets: 
Twilight Zone (-twi) and Superfamilies (-sup) [35]. The 

Table 4. Comparison of BLOMAPS Alignments with those of MUSTANG, MAMMOTH and MATT 

   BLOMAPS MUSTANG MAMMOTH MATT 

Name Size 
ean

L
m

 !

c
N  

!

cc
NN :  ±+ NN

0
 !

cc
NN :  ±+ NN

0
 !

cc
NN :  ±+ NN

0
 

 Serin5   5  277  238  236  230  224+ 6  241  239  227+ 7 243 232  224+11 

Serpin   13  369  305  301  299  289+ 9  303  297  285+14  307 301  293+10 

Thior   10  105  75  74  67  66+ 4  80  80  71+ 2  76  73  66+ 4 

Beta   6  107  76  77  76  71+ 2  79  76  70+ 1  78  69  69+ 3 

Glob10   10  147  116  116  112  110+ 2  117  116  110+ 1  118 118  111+ 3 

Glob16   16  146  99  98  93  89+ 3  98  95  90+ 2  105  98  87+10 

CL-GL   12  126  66  62  62  49+11  62  59  45+12  64  58  49+12 

PLP   11  443  198  143  119  118+15  167  154  124+19  194 131  124+23 

C2   10  258  84  4  3  0+ 0  32  30  26+ 1  73  62  67+ 3 

CaBind   6  140  56  41  41  28+ 3  0  0  0+ 0  59  52  50+ 5 

TIM7   7  390  91  1  0  0+ 0  0  0  0+ 0  69  50  11+ 4 

HelBun   9  131  60  0  0  0+ 0  18  18  4+ 1  33  29  13+ 1 

L
mean

: the mean length. 
c
N : the number of fully aligned columns at cutoff Å3.0  without the restriction on minimum length of aligned fragments; !

c
N : the number of the full 

columns with the restriction set to 4 (applied before cutoff Å3.0 ). 
0
N  (or 

±N
): effective numbers of fully aligned columns (in 

c
N ) which coincide with those of BLOMAPS (or 

shift at most four sites). 
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former is more divergent in sequences than the latter. Thus, 
SABmark-twi might be better for the case study, and for the 
large scale comparison we use only SABmark-sup of 425 
groups, each of which contains 3 to 25 members. (Note that 
the ‘false positive’ sequence counterparts for the purpose of 
discriminant analysis are never used here.) Ten groups 
contain member proteins which cannot be traced by their 
PDB indices. The remain 415 groups are then used for 
comparison. The set can also be divided into ‘alike’ and 
‘unlike’ subsets with the same criteria for ASTRAL40-fam. 
The averaged values of 

c
N , 

0
N  and 

±N  for the two subsets 
are summarized in Table 6. 

 Finally, we give three examples of case study in more 
details. The first example, taken from SABmark-sup (Group 
323), is the SCOP superfamily Glutamine 
synthetase/guanido kinase of three domains: d1m15a2, 
d1qh4a2 of family Guanido kinase and d1f52a2 of family 
Glutamine synthetase with a fold description of the common 
core being two beta-alpha-beta2-alpha repeats. Domain 
d1f52a2 is longer than the other two by about 100. Written in 
helical elements (indexed from 1 to 5) and beta strands 
(indexed from a  to g ), the BLOMAPS alignment is 

1a2bc3de4fg5 (from the N- to C-terminus), which well 
represents the fold. Values of 

c
N  (at cutoff Å3.0 ) are 147, 

21, 34 and 74 for BLOMAPS, MUSTANG, MAMMOTH 
and MATT, respectively. MATT aligns 1a2bc3 of domain 
d1f52a2 to 3e4fg5 of the other two. Alignments reported by 
MUSTANG and MAMMOTH are not better than that of 
MATT. Comparative alignments are illustrated in Fig. (2). 

 The second example, taken from ASTRAL40-fam, 
consists of 12 proteins of SCOP family Thiolase-related. 
This is an example of submotifs. The 12 proteins form three 
groups: I=(d1m3ka2, d2bywa2, d1ox0a2, d1tqyb2, d1tqya2), 
II=(d1tqyb1, d1tqya1, d2bywa1, d1ox0a1), and 
III=(d1wdkc1, d1afwa1, d1m3ka1). With helical elements 
being indexed by arabic digits and strands by letters, the 
common core for the whole family can be characterized as 

dcba 321 , while group I as 4321 !!!! dcccba , group II as 
433222111 !!!!!!!!!!!! ddcbaaa , and group III as 

7645321 hfgdcba . The segment cc !!! , consisting of a long 
loop intervened between two very short strands c!  and c !! , is 
missing in d1m3ka2 of I; elements d !  and 4!  are missing in 
d1tqyb1 of II. The BLOMAPS alignment of the family is 
shown in Fig. (3). The aligned cores of BLOMAPS, 

Table 5. Comparison Between BLOMAPS, MUSTANG, MAMMOTH and MATT on Test Set ASTRAL40-fam 

Alike(783)  BLOMAPS  MUSTANG  MAMMOTH   MATT  

 BLOMAPS   123.3   5.3   5.7   7.2  

MUSTANG   103.7   114.0(109.8)  4.9   5.4  

MAMMOTH   106.8   101.2   117.4(115.3)  6.1  

MATT   110.2   103.8   106.1   124.2(116.5)  

 Unlike(69) BLOMAPS  MUSTANG  MAMMOTH   MATT  

 BLOMAPS   57.7   1.9   2.9   3.2  

MUSTANG   23.2   43.4   2.9   2.2  

MAMMOTH   21.4   22.6   44.6   2.8  

MATT   29.5   29.4   28.5   65.0  

Average )( !

cc
NN  (diagonal), 

0
N  (lower-left) and 

±N
 (upper-right) are listed for two subsets of ‘alike’ and ‘unlike’. 

Table 6. Comparison Between BLOMAPS, MUSTANG, MAMMOTH and MATT on Test Set SABmark-Sup 

 Alike(345)  BLOMAPS  MUSTANG  MAMMOTH   MATT  

 BLOMAPS   105.0   5.6   6.0   7.8  

MUSTANG   80.6   91.4(87.6)  5.0   5.7  

MAMMOTH   82.5   74.9   94.0(92.0)   6.8  

MATT   89.0   79.8   80.7   104.6(96.4)  

 Unlike(70) BLOMAPS  MUSTANG  MAMMOTH   MATT  

 BLOMAPS   53.0   2.5   3.4   3.5  

MUSTANG   16.1   34.3   2.3   2.6  

MAMMOTH   15.5   13.4   36.1   4.1  

MATT   21.5   18.7   20.5   57.1  

Average )( !

cc
NN  (diagonal), 

0
N  (lower-left) and 

±N
 (upper-right) are listed for two subsets of ‘alike’ and ‘unlike’. 
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MUSTANG and MATT are very similar, while that of 
MAMMOTH is much shorter. 

 The third example, taken also from ASTRAL40-fam, is 
the SCOP family Legume lectins of 4 proteins in class All 
beta. Domains d1gzca represents itself and other two 
structures (d1v6ia and d1dhkb), while d1nlsa forms another 
group of the family. Each structure consists of two segments 
A  and B  of eight strands. They can also be identified in the 
aligned core of BLOMAPS; the lengths corresponding to A  
and B  are of 102 and 80 residues. Structure d1gzca is 
characterized as AB  while d1nlsa as BA . The two segments 
cannot be related by a simple symmetry of rotation. The 
BLOMAPS alignment of the family is shown in Fig. (4). An 
aligning tool using dynamic programming can at most find 
the longer segment A  as the core. Indeed, while 

c
N  of 

BLOMAPS is 182, those of MUSTANG, MAMMOTH and 
MATT are 102, 101 and 103, respectively. 

 A comparison on the running time is summarized in 
Table 7. BLOMAPS is the fastest. Furthermore, the running 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Comparative alignments of SABmark-sup Group 323. (a) The core of BLOMAPS alignment is shown with bold lines for d1f52a2 
(in blue), d1m15a2 (in green) and d1qh4a2 (in red). A more stringent cutoff 2.5Å  is used for a perceptible visualization. The fragments of 
this core will be also shown in the following alignments of MUSTANG, MAMMOTH and MATT as insets. (b) The core of MUSTANG 
alignment, (c) The core of MATT alignment, and (d) The core of MAMMOTH alignment. (Pictures were drawn with RasMol [36]). 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3). BLOMAPS alignment of SCOP family Thiolase-related. 
The full core is shown with bold lines, and partial core with thick 
lines. Structures in groups I, II and III are colored in blue, green 
and red tones, respectively. (Pictures were drawn with RasMol 
[36]). 



Fast Multiple Alignment of Protein Structures The Open Bioinformatics Journal, 2009, Volume 3    81 

time for BLOMAPS grows linearly with the set size in 
contrast to the quadratic growth for the other three tools. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). BLOMAPS alignment of two representative structures 
1gzca (brown) and 1nlsa (cyan) in SCOP family Legume lectins. 
The common core is shown with bold lines. The N - and C -
termini of the two structures are indicated, showing a topological 
shift. (Pictures were drawn with RasMol [36]). 
 

4. DISCUSSION 

 BLOMAPS distinguishes itself from most other existing 
algorithms for multiple structure alignment by its use of 
conformational letters. The description of 3D segmental 
structural states by a few discrete conformational letters 
gives a compromise between precision and simplicity. The 
substitution matrix CLESUM provides us with a proper 
measure of the similarity between these discrete states or 
letters. Such a description fits ! -congruent problems very 
well [17]. Furthermore, extracted from the database FSSP of 
structure alignments, CLESUM contains information of the 
structure database statistics. For example, scores between 
two frequent helical states are relatively low, which reduces 

the chance of accidental matching of two irrelevant helices. 
The conversion of coordinates of a 3D structure to its 
conformational codes requires little computation. Once we 
have transformed the 3D structures to 1D sequences of 
letters, tools for analyzing ordinary sequences can be directly 
applied. The use of conformational letters for a fast local 
similarity search can be integrated in many existing tools to 
improve their efficiency. 

 BLOMAPS is developed from our CLEPAPS, a tool for 
pairwise structure alignment, which is based on similar 
fragment pairs (SFPs) defined by CLESUM scores from 
string comparison. CLEPAPS takes a single good SFP as an 
initial correspondence, and iteratively builds up larger 
correspondence with ever stringent thresholds of ‘zoom-in’. 
CLEPAPS adopts a greedy strategy guided by CLESUM 
scores. When dealing with the multiple alignment, we 
inevitably encounter the problem of combinatorial explosion. 
The concept of similar fragment pairs is extended to that of 
aligned fragment blocks. A multiple alignment has to satisfy 
the equivalency among the fragments of differen proteins 
inside an aligned fragment block, and, at the same time, the 
consistency among different aligned fragment blocks of the 
alignment. The strong restriction of both equivalency and 
consistency reduces the chance of making an insignificant 
alignment. Our heuristic to avoid the combinatorial 
explosion includes the using of a single pivot protein and 
HSFBs (instead of SFBs). Wrong assignment of 
correspondence can be detected, then removed, and replaced 
by a correct one in a later stage. In contrast with MATT, 
BLOMAPS uses a ‘zoom-in’ technique to go from local to 
global alignment. Thanks to the operation reduction to 
merely string comparison, greedy strategy guided by 
CLESUM scores and the cell-registration technique, the 
implement of BLOMAPS is considerably fast. At the same 
time, its alignment quality is competitive with other 
programs. 

 Contrary to CLEPAPS, for multi-alignment BLOMAPS 
excludes multiple solutions. Thus, it is encouraged to have a 
survey of the symmetry and repetition on the structures to be 
aligned, for example, by running a pairwise alignment on a 
randomly picked structure with itself. An inspection on 
conformational sequences can also be informative. In 
existence of a symmetry, the possibility of a cycle 
permutation should be examined. For repetition, we may 

Table 7. Comparison of Running Time (in Units of s) Among BLOMAPS, MUSTANG, MAMMOTH and MATT on Different Sets 

 Test Set  BLOMAPS  MUSTANG  MAMMOTH  MATT 

 C2 (10 structures)   0.16  508.53  6.50  151.58 

ASTRAL40-fam (averaged 
over 852 groups) 

 0.15  73.77  2.70  63.68 

SABmark-sup (averaged 
over 415 groups)  

0.26  167.87  3.90   97.88  

 First 5 structures of TIM61  0.20 46.20  4.31 137.42 

First 10 structures of TIM61  0.40 181.19  16.97 718.05 

First 15 structures of TIM61  0.61 450.25  36.97 1744.16 

First 20 structures of TIM61  0.81 807.83  67.06 3193.61 
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mask the already aligned portion of a structure, and then 
have a second run of alignment. This technique of masking 
is also useful for detecting components with a domain move 
or translations and twists of MATT. 

 It should be emphasized that all the results presented 
above are derived with the same set of the default parameters 
listed in Table 2. The tuning of parameters is generally 
crucial to an optimal performance of an algorithm. For 
example, for BLOMAPS a large value of fragment width l  
or similarity threshold T  would reduce search times, but at 
the price of sensitivity. A too long l  would leads to too few 
HSFBs. Similarly, a too high T  would result in too sparse 
HSFBs. Without an enough number of dense HSFBs an 
efficient checking of vertical equivalency and horizontal 
consistency becomes impossible. Our strategy is to use 
moderately stringent parameters first for building a reliable 
primary scaffold for alignment, and then fill in the missing 
blanks for later compensation of the sensitivity loss with 
relaxed parameters. Under the assumption that structures to 
be aligned are independent of each other, a relatively low 
threshold T , which might be weak for a pairwise alignment, 
can still be significant for a multiple alignment. 

 The large ensembles we have tested are taken from the 
literature and all highly redundant. Extremely close 
structures can be detected rather reliably by merely aligning 
their conformational letter sequences. To conduct an 
alignment only for representative structures is more efficient 
and less biased. 

 CLESUM only considers information of conformation. 
However, the FSSP alignments from which CLESUM was 
derived also contain the amino acid information. The use of 
modified CLESUM matrices that also include such 
information would illuminate the biochemical role in 
alignment [10]. Recently, we have clustered amino acids into 
two groups AVCFIWLMY  (type h ) and 

TDEGHKNPQRS  (type p ), and then obtained CLESUM 
matrices of types p - p , h -h  and h - p  [11]. We expect 
that such matrices would further improve the efficiency of 
our tools for structure alignments. 
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