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Abstract: The exon-intron structures of fungi genes are quite different from each other, and the evolution of such struc-

tures raises many questions. We tried to address some of these questions with an accent on methods of revealing evolu-

tionary factors based on the analysis of gene exon-intron structures using statistical analysis. Taking whole genomes of 

fungi, we went through all the protein-coding genes in each chromosome separately and calculated the portion of intron-

containing genes and average values of the net length of all the exons in a gene, the number of the exons, and the average 

length of an exon. We found striking similarities between all of these average properties of chromosomes of the same spe-

cies and significant differences between properties of the chromosomes belonging to species of different divisions (Phyla) 

of the kingdom of Fungi. Comparing those chromosomal and genomic averages, we have developed a technique of clus-

tering based on characteristics of the exon-intron structure. This technique of clustering separates different fungi species, 

grouping them according to Fungi taxonomy. The main conclusion of this article is that the statistical properties of exon-

intron organizations of genes are the genome-specific features preserved by evolutionary processes.  

Keywords: Comparative genomics, Exon-intron structure, Eukaryotic clustering. 

INTRODUCTION 

 The exon–intron structure is an important feature of a 
gene. The exon and intron lengths, as well as intron density, 
vary within a broad range [1-5]. In spite of a large amount of 
accumulated information on how the diversity of the exon–
intron structure of genes is produced remains unclear and 
investigating the underlying factors will give further insight 
into the evolution of exon-intron structure. 

 A putative link between the biological role of introns and 
the distribution of exon sizes in protein-coding genes was 
established soon after intron discovery [6]. Since then, many 
studies – including statistical analysis – of the exon-intron 
structures of higher and lower eukaryote genes were per-
formed [2, 5, 7-10]. The problem of exon and intron lengths’ 
variability has a long history [10, 11], and it remains un-
solved. We observed a huge variation of intron lengths, both 
between different organisms and between different genes of 
the same organism. 

 Likewise, we do not understand the evolutionary forces 
shaping species-specific chromosomal distributions of the 
intron densities (average numbers of introns per gene). At 
first, the intron density was thought to be related to organis-
mal complexity. The initial studies supported this hypothe-
sis: Homo sapiens have 8.1 introns per gene on average [12],  
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Caenorhabditis elegans – 4.7 [13], Drosophila melanogaster 

– 3.4 [14], and Arabidopsis thaliana – 4.4 [15]; by contrast, 

unicellular species were found to have less introns per gene 

[16]. However, further studies found significantly high in-

tron densities in many single-celled species [17, 18], and 

intron densities in basidiomycetes and zygomycete fungi are 

among the highest known among eukaryotes (4-6 per gene) 

[19, 20]. Diversity in intron densities among fungal genomes 

makes them extremely attractive for exploring questions of 

exon-intron structure evolution. Indeed, fungi display a wide 

diversity of gene structures, ranging from far less than one 

intron per gene for yeasts, to approximately 1–2 introns per 

gene on average for many recently sequenced ascomycetes 

(including the organisms in this study), to roughly seven 

introns per gene on average for some basidiomycetes (e.g., 
Cryptococcus). 

 Following the genome sequencing of several lower eu-

karyotes, it has become possible to examine exon–intron 

statistics with sufficiently large samples of genes. The lower 

eukaryotic genomes appeared to differ in many aspects, in-

cluding the portion of intron-containing genes [19, 21]. 

Lower eukaryotes are of particular interest for studying the 

biological role of introns, since some of their genomes have 

only a few intron-containing genes, while the portion of such 

genes in other genomes is extremely high. The exon–intron 

structure of lower fungal genes has been examined in several 

works [1, 2, 8, 19, 21-26], but our current knowledge of the 
structure is still far away from being complete. 
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 In our previous paper [27] we have shown both general 
and genome-specific features of the exon-intron organization 
of eukaryotic genes of different kingdoms. We have shown 
that the most general feature found in all genomes is the 
positive correlation between the number of introns in a gene 
and the corresponding protein's length (equivalently, the net 
length of all the exons of the gene). In addition, in all the 
genomes we have studied, the average exon length nega-
tively correlates with the average number of exons. Recently, 
analyses of patterns of exon-intron architecture variation 
brought Zhu and co-authors to the same conclusions [28]. 
One of their main conclusions was a decrease of average 
exon length as the total exon numbers in a gene increased. 
By while these laws of exon-intron statistics appeared to be 
quite general, nevertheless, many of the correlation parame-
ters are genome-specific. In this study we continue the ef-
forts of the previous one [27] to define genome-specific fea-
tures of the exon-intron organization of fungal genomes. 

 There is mixture of different chromosomal characters of 
exon-intron organization. Among them we chose to limit 
ourselves to consideration of pure exonic properties and, 
additionally, proportions of intron-containing genes among 
all protein coding genes. In A. fumigates, for example, this 
proportion is ~80%. Does this mean that this property is con-
sistent for every chromosome of A. fumigates and is the 
variation of this parameter negligible? For NC and GZ the 
values of this proportion are very close to 80% as well – 
does it mean that all other exonic properties should be simi-
lar as well? To answer this question we calculate and com-
pare such exonic properties as exon densities, average exon 
lengths, and average net exon lengths. It was shown that in 
all genomes with a high proportion of intron-containing 
genes there is positive correlation between exon density and 
average protein length. As this was found for the genomes 
with a high proportion of intronless genes, the rule should be 
modified. 

DATA AND METHODS 

Fungi Species Data 

 Nucleotide sequences of 140 chromosomes of 15 fungi 
species presented in Table 1 have been obtained from Gen-
Bank ftp://ftp.ncbi.nih.gov/genomes/Fungi 

 A standard gene annotation looks like the following an-
notation of a randomly chosen gene NCU08052.1 of Neu-
rospora crassa 

gene <25457..>26451.  

mRNA join(<25457..25690,25755..26055,26117..>26451), 

CDS join(25457..25690,25755..26055,26117..26451). 

 The annotation means the first exon of this gene starts 
somewhere upstream of the position 25457, and the last exon 
of the gene ends somewhere downstream of the position 
26451. (In genomic annotations only, coding parts of exons 
are predicted sufficiently well, so everywhere in this study, 
when referring to “exons”, we mean “coding parts of exons”. 
In other words, only those introns within coding sequences 
and exons without UTR (untranslated regions) were used for 
analysis. The data related to coding parts of exons are taken 
from CDS (coding sequence) lines. For example, the CDS of 
NCU08052.1 consists of the three “exons” [25457:25690], 

[25755:26055], [26117:26451] with lengths of 234bp, 
301bp, and 335bp. The length of the gene is larger than 995 
bp, the number of exons is equal to 3, the net length of the 
exons (the protein size in bp) is equal to 870, and the average 
exon length is equal to 290.  

Exon-Intron Structure Statistical Parameters 

 Each gene was assigned three values: the net length Lex of 

all its exons, the number Nex of those exons, and an average 

exon length Aex: Aex =
Lex
Nex

. 

 For each chromosome of each genome several absolute 

and averaged chromosomal characters were calculated. The 

proportion of intron-containing genes (pc) is a relevant at-

tribute; the average net length lex of all the exons in a gene 

per chromosome, the average number nex of the exons per 

gene per chromosome, and the average exon length aex are 

the characteristics of exons. aex is the mean of the Aex values 

of individual genes per chromosome, aex =
1

n
Aex

1

n

, where 

n denotes a number of genes in the chromosome here. Note 

that the aex is different from the average length ex of all the 

exons in the chromosome, regardless of which gene(s) they 

belong to. (The ex, is calculated as a total length of all exons 

in a chromosome divided by a total number of all exons in a 

chromosome, see ref. [4]. The aex usually have significantly 

larger values than the ex because an average length of i-th 

exon exponentially decreases with an index i, see ref. [29].  

 We also calculated species-averaged exon parameters: Ng 
(total number of genes per genome), ANex (average number 
of exons in a gene per genome), ALex (average net length of 
all exons in a genome), AAex (average exon length in a gene 
per genome), AN1ex (average number of exons in a intron-
containing gene per genome), AL0ex = average (over a ge-
nome) length of an intronless gene, L1ex (average net length 
of all exons in intron-containing genes), and Pg (proportion 
of intron-containing genes in genome in percents). 

Distances Between Pairs of Fungal Chromosomes 

 One of our goals was to cluster the chromosomes using 
exon-intron structure parameters. We used distance-based 
methods of clustering; therefore, we had to define a method 
for a distance measuring. The distance between a pair of 
chromosomes was calculated as the distance between vectors 
constructed from several standardized parameters defined 
above. The complete vector xr of chromosomal parameters 
related to chromosome r consists of (nex, lex, aex, pc, l0ex, n1ex, 
l1ex).  

 After having extracted parameters, our next task was to 

find an appropriate dissimilarity measure d such that 

d(xr , xs )  is small if and only if xr and xs are close. The sim-

plest dissimilarity measure is the Euclidean distance:  

d 2 (xr , xs ) = (xr ,k xs,k )
2

k=1

K

 

 However the Euclidean distance is not suitable for further 
clustering, since it is isotropic, while the abovementioned 
exonic characters do not have similar behaviors. That is why 
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it was relevant to use a standardized Euclidean distance de-
fined by:  

d 2 (xr , xs ) =
(xr ,k xs,k )

2

var xkk=1

K

, 

where var xk is the empirical variance of xk, i.e.,  

var xk = (xn,k mk )
2;mk =

1

N
xn,k

n=1

N

n=1

N

 

 The reason for introducing this distance is of a statistical 
matter. The xr,k are considered as N realizations of a random 
variable xr, such that the xr are independent. Then var xk is 
only the squared empirical standard deviation of xk.  

 We also used a scaled Euclidean distance based on the 

scaling of all values xr ,k  of the objected parameter of xr ac-

cording to the given interval [l1, l2]:  

xr ,k = l1 +
xr ,k xr ,min( ) l2 l1( )

xr ,max xr ,min( )
, 

Clustering of Fungal Chromosomes 

 Two methods of clustering were used: a well-known 
Neighbor Joining algorithm [30] and a Principal Directions 
Divisive Partitioning (PDDP) algorithm [31]. NJ constructs a 
tree that does not assume an evolutionary clock, so that it is, 
in effect, an unrooted tree. We used the program Neighbor of 
Phylip Package (the University of Washington) 
http://evolution.genetics.washington.edu/phylip/doc/neighbo
r.html, which is an implementation of NJ. Matrices of stan-

dardized and scaled distances between all pairs of 63 yeast 
chromosomes were exported to the program Neighbor. The 
output file was drawn by the program TreeView of Prof. Rod 
Page http://taxonomy.zoology.gla.ac.uk/rod/treeview.html. 

 The Principal Directions Divisive Partitioning (PDDP) 

algorithm, introduced by D. Boley [31], is a top-down hier-

archical clustering method producing a binary tree in which 

each node is a data structure containing data items. Inher-

ently, the algorithm has been designed to operate with a text 

mining task, based on the term–document matrix representa-

tion; although in reality this approach can be employed to 

different objects admitting similar matrix representation. 

Specifically, the algorithm manages instances given by an 

n m matrix Mm = d1, ...,dm[ ] , whose columns and rows rep-

resent the “documents” and “terms”, accordingly. In this 

study the “documents” are the fungal chromosomes, and the 

“terms” are the exon-intron statistical parameters described 

above.  

 At the start, all set Mm  fits in the root of the tree. The 

algorithm continues by splitting all document vectors into 

two disjointed subsets resting upon principal data directions. 

Consecutively, both of the two partitions are recursively di-

vided into two sub-partitions. As a result, a nested partitions’ 

assembly is organized as a binary tree (the “PDDP tree”) 

such that every partition is either a leaf node or is separated 

into two children in the PDDP tree. 

 Let us suppose, we have a partition represented by means 

n p matrix Mp, p  m. The splitting of this partition is pro-

vided by the projection on the main leading eigenvector di-

Table 1. List of Processed Species and their Chromosomes 

N Abbreviation Name of the organism Phylum / Class Number of chromosomes 

1 AF Aspergillus fumigatus  Ascomycota Pezizomycotina 8 

2 CG Candida glabrata CBS138  Ascomycota Saccharomycotina 13 

3 CN Cryptococcus neoformans Basidiomycota Agaricomycotina 14 

4 DH Debaryomyces hansenii CBS767 Ascomycota Saccharomycotina 7 

5 EC Encephalitozoon cuniculi GB-M1 Microsporidia Apansporoblastina 11 

6 EG  Eremothecium (Ashbya) gossypii Ascomycota Saccharomycotina 7 

7 GZ  Gibberella zeae Ascomycota Pezizomycotina 4 

8 KL Kluyveromyces lactis Ascomycota Saccharomycotina 6 

9 MG Magnaporthe grisea Ascomycota Pezizomycotina 7 

10 NC Neurospora crassa Ascomycota Pezizomycotina 7 

11 PS Pichia stipitis Ascomycota Saccharomycotina 8 

12 SC Saccharomyces cerevisiae Ascomycota Saccharomycotina 16 

13 SP Schizosaccharomyces pombe 972h Ascomycota Taphrinomycotina 3 

14 UM Ustilago maydis Basidiomycota Ustilaginomycotina 23 

15 YL Yarrowia lipolytica CLIB122 Ascomycota Saccharomycotina 6 

  Total  140 
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rection of the covariance matrix 

C = Mp weT( ) Mp weT( )
T

, where e = 1,1, ...,1( )
T

 and w 

is the sample mean of the chromosomes d1, ...,dp . In the 

simplest version of the algorithm used in this paper the 

chromosomes d1, ...,dp  are put into the clusters exactly 

with respect to their projections sign. All the documents with 

non-positive projections form the left child and the remain-

ing documents are fed into the right one. The cluster chosen 

for splitting in the PDDP process is the one having the larg-

est variance calculated as the square Frobenius norm. 

Mp weT
F

2
= Mp weT( )

i, j

2

i, j

 

 Note that this criterion usually leads to clusters with more 
or less similar sizes. 

Analyses of the Structural-Functional Organization of 
the System 

 One-way ANOVA statistical method was used to test for 
differences in the exon-intron structure between several 
groups of fungi species. We also used Factor analysis (FA) 
as an integral statistical method, giving the opportunity to 
define and to evaluate the structural-functional organization 
of the system. We chose Principal components analysis 
(PCA) as one of the techniques of FA. The method produces 
a set of eigenvectors calculated from the matrix of 
correlations between parameters where each of them 
represents a causal connection of elements. It is important to 
note that by using the technique of PCA, all factors become 
orthogonal and are caused by different properties of the 
system. 

RESULTS AND DISCUSSION 

 All of the abovementioned chromosomal characteristics 
(nex, lex, aex, pc, l0ex, n1ex, l1ex) were calculated for all 140 
chromosomes. The intragenomic variation was found to be 
pretty small everywhere, exactly as it was expected. As an 
illustration, the values of these characteristics for a randomly 
selected organism, A. fumigatus, are given in Supplementary 
(Table S1).  

 Every column in Table S1 contains of practically indis-
tinguishable parameters. For example, there is the same pro-
portion of intron-containing genes in all eight chromosomes 
of A. fumigatus Pc = 78.5±0.5%.  

 Table S2 (Supplementary) shows that the sets Lex and Nex 
do not demonstrate significant differences among various 
chromosomes of A. fumigatus. We can see that F-statistics 
comparing variances between and within groups of chromo-
somes is not significant; therefore, all chromosomes have 
only indistinguishable distributions of Lex and Nex.  

 Analogical results were obtained for the chromosomal 
parameters of all other organisms as well. For all chromoso-
mal characters of all genomes the differences between two 
chromosomes of an identical genome appeared not to be 
statistically significant. Would the differences between two 
chromosomes of two different species depend on the evolu-
tionary distance between these two organisms? Would it be 
possible to identify an organism by a combination of chro-

mosomal characters? As it appeared (Figs. 1-2) a pair of 
characters does not provide full partition of all species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Scatter-plot of the average exon length per gene aex (x-

axis) vs. the total exon length lex (y-axis) for all 140 processed 

chromosomes of 15 fungi species. 

 

Species-Averaged Statistical Parameters  

 In Table 2, in addition to parameters averaged over all 
genes, there are data related to intron-containing (L1ex) and 
intronless genes (AL0ex) separately. For the set of intronless 
genes, the parameters ALex and AAex are identical and equal to 
an average gene length AL0ex. In the section Methods there 
are descriptions and formulas for calculations of these 
parameters. Some putative empirical rules may be observed 
in Table 2. For example, regarding average gene lengths of 
intron-containing and intronless genes, it seems that if there 
is only a small amount of intron-containing genes in a ge-
nome, these genes are shorter in average than other intron-
less genes of the same genome. This property is especially 
strongly expressed in EC, CG, and KL, and also exists for 
EG, DH, SP, and UM. Another observation may be done 
regarding a lack of correlation between amounts of genes in 
a genome and other genomic statistical parameters.  

Chromosome-Averaged Statistical Parameters  

 Let us consider the average parameters lex, nex and aex. 
Scatter-plot of aex vs. lex is shown in Fig. (1). Every organism 
in the plot is presented by a specific combination of a color 
and the filling in of a circle. As we mentioned above, Fig. (1) 
shows that the averages lex and aex turned out to be pretty 
similar for different chromosomes of the same species but 
rather distant for different species. Moreover, five separate 
groups of points may be observed in Fig. (1). The two pa-
rameters lex and aex cluster separately all 14 chromosomes of 
C. neoformans (CN) in one group, 8 chromosomes of E. cu-
niculi (EC) in another group, and all 23 chromosomes of U. 
maydis (UM) in the third group. All other points are distrib-
uted between two additional groups. 

 Analyzing the contents of the groups presented in Fig. 
(1), one can suppose that the partitions follow fungal taxon-
omy. Fig. (2b) is obtained from Fig. (1) by coloring all 
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points in six colors related to six fungi classes (see Table 1): 
Ascomycota Pezizomycotina, Ascomycota Saccharomy-
cotina, Ascomycota Taphrinomycotina, Basidiomycota 
Agaricomycotina, Basidiomycota Ustilaginomycotina, and 
Microsporidia Apansporoblastina. 

 Fig. (2a) presents a scatter plot of the aex vs. nex, and 
clearly shows four separate groups of chromosomes: CN 
chromosomes belonging to Basidiomycota Agaricomycotina 

form the most left group, Ascomycota Pezizomycotina chro-
mosomes make the second left group, three chromosomes of 
S. pombe (Ascomycota Taphrinomycotina) are located to-
gether but separately from other points on the plot, and the 
points belonging to other fungi classes (Basidiomycota Usti-
laginomycotina, Microsporidia Apansporoblastina, and As-
comycota Saccharomycotina) appear more or less together. 
The CN chromosomes have the greatest exon density (nex) 
and the shortest exons (lex) among all the fungi chromosomes 

Table 2. Exon Parameters by Species 

Organism Ng ANex ALex AAex AN1ex L1ex Pg AL0ex AL0ex / ALex AL0ex / L1ex 

AF 9002 2.935 1476 671 3.462 1522 78.58 1304 0.883 0.856 

CG 5174 1.016 1513 1507 2.024 671 1.59 1527 1.009 2.275 

CN 6318 6.262 1608 317 6.428 1624 96.95 1112 0.691 0.684 

DH 6231 1.057 1387 1357 2.057 1092 5.38 1403 1.011 1.284 

EC 1995 1.008 1079 1078 2.071 435 0.50 1084 1.005 2.492 

EG 2952 1.049 1460 1441 2.032 882 4.38 1501 1.028 1.165 

GZ 6745 3.238 1520 624 3.682 1564 83.44 1299 0.854 0.830 

KL 5257 1.024 1422 1413 2.016 733 2.40 1439 1.012 1.963 

MG 9675 2.875 1411 852 3.490 1485 75.31 1185 0.839 0.798 

NC 6343 2.699 1459 690 3.123 1481 80.01 1370 0.939 0.925 

PS 5299 1.417 1493 1220 2.566 1746 25.86 1402 0.939 0.803 

SC 5859 1.055 1489 1450 2.029 1466 5.31 1491 1.001 1.017 

SP 4990 1.952 1417 1042 3.089 1310 45.56 1507 1.063 1.150 

UM 5539 1.751 1831 1443 2.979 1642 37.93 1947 1.063 1.186 

YL 6425 1.160 1460 1339 2.135 1646 14.10 1430 0.979 0.869 

Total 87804 2.229 1484 1023 3.774 1526 44.31 1450 0.977 0.950 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Scatter-plot for all 140 processed chromosomes of six fungi phyla of the average exon length per gene aex (x-axis). a) vs. the average 

number of exons per gene nex (y-axis); b) vs. the average net exon length per gene lex (y-axis). 
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we have studied. Scatter-plots of aex vs. nex (Fig. 2a) and aex 
vs. lex (Fig. 2b) show that already three parameters aex, nex 

and lex are sufficient for successful classification of 140 
chromosomes to six fungal classes. 

 At this point, we use factor analysis of the system of 140 
chromosomes that led us to the synthesis of the following 
successive logical structure: 

1. Dividing the system into sets of "elementary" compo-
nents – all of the abovementioned chromosomal char-
acteristics (nex, lex, aex, pc, l0ex, n1ex, l1ex)  

2. Analysis of the relationships of these components in 
species 

3. Revealing system-forming relations 

4. Description of the structure of the system (model) and 
its properties 

 As we can see from Table 3, four main components are 
responsible for the whole system organization, and two of 
them can describe 93.9% of the whole variability of the sys-
tem.  

Table 3. Total Variance Explained 

Component % of Variance Cumulative % 

1 73.841 73.841 

2 20.042 93.884 

3 3.887 97.771 

4 2.229 100.000 

 

 The detailed Table S3 placed in Supplementary data, 
shows relationships of these principal components in species 
as a component structure of 140 chromosomes on the basis 
of their exon-intron structure. Results of Table S3 (Supple-
mentary) are shown also in Figs. (3, 4). We can see that the 

first component strongly divides all species into yeasts (Sac-
charomycotina) vs. Pezizomycotina and Taphrinomycotyna, 
and the second component demonstrates the difference be-
tween Microsporidia and Basidiomycota. Unfortunately, we 
can also see that the chromosomes of the species of the phy-
lum Basidiomycota are split by the first component between 
two groups: they appear in the first group together with 
Agaricomycotina (CN) and in the second group together with 
Ustilaginomycotina (UM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Factor analysis of 140 processed chromosomes of 15 fungi 

species by seven parameters (nex, lex, aex, pc, l0ex, n1ex, l1ex) colored 

in reference to phylum.  

 

 The PDDP method based on scaled distance measures 
produced a tree presented in Fig. (5). There are 5 terminal 
nodes at the tree: 05, 07, 08, 09, and 10. Some species may 
be characterized by a homogeneous distribution of the chro-
mosomes: all chromosomes of CN are in cluster 05, SP 
chromosomes are in 09, all 8 chromosomes of AF are in 
cluster 10, and so on. However, there are species with "non-
uniform" distribution: for example, the third chromosome of 
GZ is located in cluster 10 while the other 3 chromosomes 
are in cluster 05.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Factor analysis of 140 processed chromosomes of 15 fungi 

species by seven parameters (nex, lex, aex, pc, l0ex, n1ex, l1ex) colored 

in reference to species. 
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Fig. (5). A dendrogram of clusters obtained by the PDDP method 

based on scaled distances among the vectors (nex, lex, aex, pc, l0ex, 

n1ex, l1ex) presenting the chromosomes. 

 

 The standardized distances (Fig. 6) led to better results. 
There are more terminal nodes, and the clusters correspond-
ing to the leaves of the tree are more homogeneous than in 
the previous dendrogram (Fig. 5); nevertheless, the third 
chromosome of GZ is located differently from other chromo-
somes of the same organism similarly to the previous tree. 
Moreover, the first chromosome of YL and the chromosome 
07 of EG appear separately in "wrong" clusters. 

 Clustering results presented in Figs. (5, 6) appear to be 
sufficiently similar. It may be considered as evidence of the 
consistency of recovered cluster structures.  

 Table 4 presents the measure of strength of association 
between two final partitions. The Cramer's contingency coef-
ficient built on a contingency table is 0.865. Therefore, it can 
be concluded that there is a strong association among the 
partitions. 

 Clustering results presented in Figs. (5, 6) are based on 
different distance measures: scaled distances and standard-
ized distances. The denominators are different for these 
measures. One of the discussed problems is the choice of the 
denominator for the distance parameters. What is the proper 
scaling parameter needed to make the data dimensionless? 
Because a priori we do not know contribution of which pa-
rameters will take the highest effect, we can only try differ-
ent kinds of multiplying factors and compare results of clas-

sification. As we have found, the normalization to unite 
standard deviation gave us the best result but, of course, it is 
not the only way to dimensionless data representation. 

 We know that in bioinformatics there are many other 
methods in use. For example, in the very popular correspon-
dence analysis (positive) data are normalized to unite mean. 
For bistochastization or binormalization more sophisticated 
methods were used, see, for example, a highly cited paper 
[32], a review [33] or a very seminal mathematical paper 
[34]. The reason for all alternative approaches to data nor-
malization is, usually, very simple. Any normalization, either 
to unit variance of variables or to unit interval or to any other 
factor may cause many mistakes and may give enormously 
high weight to unimportant features, and only the final result 
may judge whether our choice was justified. As we men-
tioned above, clustering results are sufficiently similar, 
which may be considered as justification of our choices. 

Dendrogram of Yeast Chromosomes 

 All applied clustering techniques based on distances 
among vectors (nex, lex, aex, pc, l0ex, n1ex, l1ex) sometimes did 
not succeed in distinguishing between chromosomes of dif-
ferent species, especially between yeasts. Therefore, we de-
cided to use linear regression between the net length of ex-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Dendrogram of clusters obtained by the PDDP method 

based on standardized distances among the vectors (nex, lex, aex, pc, 

l0ex, n1ex, l1ex) presenting the chromosomes. 

�0�

�

.0�

.

�0�

�

�0�

�

�0�

�
1�0�� 1�0�. 1�0�� 1�0�� �

�	

��

�

��

�

�2

��

.


������0..


������0��


������0�	


������0�.

� �	
� ��� ��

� ��
� �.
� ��
� ��
� �� � ��

� ��
� ��
� �2

!#��
!#��
!#��
� ��
� �.

����
����
����
����
���.����

���.
����
����
���	����

����
���.
����
����

 ���
 ���
 ��.
 ���
 ���
 ���
 ���

�!��
�!��
�!��
�!��
�!�.
�!��
�!��
!#�.


'�	

'��

'��

'��

'��

'�.

'��

'��

����
���2
����
����
����
���	
���2
����
����
���.
����
����
��������

���.
����
����
����
����
���.
����
����
���2
���	
����%&


����
����
���.
����
����
����
����
���	
����
����
����
�!

�!3
�!� %&!

%&'
%&$ $!�.

$!��
$!��
$!��
$!��
"�

"�3
"��

$���
$���
$��.
$���
$����!&

�!!
�!'
�!$
�!%

"�%
"�$
"�'

$���
$���
$��	
$��2
$���
$���

����
���.
����
����
����$!��

$!��
%&%
%&�
%&3
�!�
�!�
�!"
�!4
�!5

����"�%
"��
"�3

%&3
%&

�!�
�!�

"�

$!��
$!��
$!��
$!�.
$!��
$!��

�!"
�!4
�!5
�!&
�!!
�!'
�!$
�!% %&$

%&'
%&!

%&%
%&�

�!�
�!3
�!


����
����
���	
����
���.
����
"�'
"�$

$���
$���
$��2
$��	
$���
$���
$���
$���
$��.
$���
$���

����
����
���.
����
����
���2
����
����
����
����

����
����
����
���.
����
���.����

���� ����
��������

���� ���	
�������2

���	 ����

����
����
���.
����
����

���	
����
����
����
����
���.
����
����
$!��

 ���
 ���

 ���
 ���
 ��.
 ���
 ���

�!��
�!��
�!��
�!��
�!�.
�!��
�!��
!#��
!#��

!#��

'�	

'��

'��

'��

'��

'�.

'��

'��

����
���2
����
���.
����
����
����
����
����
!#�.

� ��
� �.
� ��
� ��
� ��
� �2
� �	� ��

� ��
� �.
� ��
� ��
� ��
� ��

�1�1��
�

�

�

.

�

�

�

�

��

�

2

�

��

�

��

�

��

	

�..

�

������0.	


������0��


������0��


������0��


������0.	


������0��


������0��


������0��


������0�2


������0�2


������0�2


������0��


������0��



38    The Open Bioinformatics Journal, 2010, Volume 4 Kaplunovsky et al. 

ons of a gene lex and the number of exons nex in genes on all 
processed chromosomes. Now, the vectors presenting the 
chromosomes additionally to averaged chromosomal pa-
rameters nex, lex, and aex contained correlation coefficients an, 
al, and nl, linear regression parameters a, b, and a parameter 
of explained variation R  of a regression nex=a+b·lex, as in 
our previous paper [27]. We applied the program Neighbor 
using scaled distances. The dendrogram presented in Fig. (7) 
was drawn by the program TreeView. There are two main 
features of the dendrogram: a) practically all chromosomes 
of the same yeast species are distributed compactly along the 
tree, and 2) the chromosomes belonging to the same species 
form a separate cluster. 

CONCLUSIONS 

 We applied statistical analysis of the exon-intron struc-
ture in order to reveal general and genome-specific features 
of fungi genes. Taking the complete genomes of fungi, we 
went through all of the protein-coding genes in each chro-
mosome separately and calculated the portion of intron-
containing genes and average values of the net length of all 
the exons in a gene, the number of the exons, and the aver-

age length of an exon. The purpose of this research has been 
to determine the most appropriate approach to classify fungal 
chromosomes, according to these simple exon-intron statis-
tics. We tested a few clustering techniques measuring dis-
tances among the chromosomes in different ways.  

 Firstly, we found that intragenomic variation is substan-
tially smaller than intergenomic variance everywhere. In 
other words, we found that the laws of exon-intron statistics 
are specific to genomes rather than to individual chromo-
somes.  

 Secondly, we commented on the consistent similarity of 
the partitions, which resulted from rather different clustering 
methods. Clustering results obtained with scaled and normal-
ized Euclidean distances appear to be sufficiently similar. 
The Principal Components (PC) clustering, the Principal 
Directions Divisive Partitioning (PDDP) method, and the 
Neighbor joining (NJ) algorithm produced very similar clus-
tering results. 

 Thirdly, we propose techniques of clustering that are able 
to distinguish between chromosomes of different species 
with satisfactory success. The addition of regression parame-

Table 4. Contingency 

Cluster index in Fig. (5) 05 09 10 07 08 

Cluster index in Fig. (6) # of items 17 15 23 37 48 

07 14 14 0 0 0 0 

13 10 0 8 1 1 0 

14 25 3 0 22 0 0 

11 17 0 7 0 10 0 

12 24 0 0 0 23 1 

09 11 0 0 0 0 11 

10 39 0 0 0 3 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Dendrogram of the 63-processed chromosomes of seven yeast species based on scaled distances among parameters nex, lex, aex, an, 

al, nl, a, b, and R  (an, al, and nl are correlation coefficients; a, b, and R  are parameters of the linear regression nex=a+b·lex) obtained by NJ 

clustering technique. 
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ters to averaged chromosomal parameters nex, lex, and aex 
improved the resolution of clustering. We added to parame-
ters nex, lex, and aex parameters of linear regression 
nex=a+b·lex and got a phylogenetic tree of the yeasts.  

 Clearly, the exon-intron structures of eukaryotic genes 
have many important parameters that we did not consider in 
this work; we intend to pursue these in future research. In 
particular, the ratio between the exon and intron lengths ap-
pears to be an important feature of a gene. In some genomes 
the intron length is comparable with the exon length: in uni-
cellular eukaryotes [1, 2], plants [2, 35], and particular ani-
mals [2-4]. In general, introns are longer than exons in 
mammalian genes [11]. 
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ABBREVIATIONS 

Nex = number of exons in a gene 

Lex = net length of all exons in a gene 

Aex = average exon length in a gene 

nex = average (over a chromosome) number of exons 
in a gene 

lex = average (over a chromosome) net length of all 
exons in a gene 

aex = average (over a chromosome) of the average 
exon length in a gene 

pc = is a proportion of intron-containing genes in a 
chromosome 

l0ex = average (over a chromosome) length of an in-
tronless gene 

a0ex = l0ex 

l1ex = average (over a chromosome) net length of all 
exons in an intron-containing gene 

a1ex = average (over a chromosome) of the average 
exon length of an intron-containing gene 

n1ex = average number of exons in a intron-containing 
gene per chromosome 

Ng = total number of genes per genome 

ANex = average (over a genome) number of exons in a 
gene 

ALex = average (over a genome) net length of all exons 
in a gene 

AAex = average (over a genome) of the average exon 
length in a gene 

Pg = is a proportion of intron-containing genes in a 
genome 

AL0ex = average (over a genome) length of an intronless 
gene 

AA0ex = AL0ex 

AL1ex = average (over a genome) net length of all exons 
in an intron-containing gene 

AA1ex = average (over a genome) of the average exon 
length of an intron-containing gene 

AN1ex = average number of exons in an intron-
containing gene per genome 

SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publishers 
Web site along with the published article. 
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