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Abstract: The use of modeling to observe and analyze the mechanisms of complex biochemical network function is be-

coming an important methodological tool in the systems biology era. Number of different approaches to model these net-

works have been utilized-- they range from analysis of static connection graphs to dynamical models based on kinetic in-

teraction data. Dynamical models have a distinct appeal in that they make it possible to observe these networks in action, 

but they also pose a distinct challenge in that they require detailed information describing how the individual components 

of these networks interact in living cells. Because this level of detail is generally not known, dynamic modeling requires 

simplifying assumptions in order to make it practical. In this review Boolean modeling will be discussed, a modeling 

method that depends on the simplifying assumption that all elements of a network exist only in one of two states. 
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 The modern era of cellular biochemistry has been charac-
terized by the discovery of large interaction networks that are 
notable for their highly nonlinear connection structures. Such 
structures complicate study since they are often quite diffi-
cult to reduce into linear subsets that function in isolation 
from the embedding network [1, 2]. It is for this reason that 
the concept of “systems biology” has been developed and is 
now being applied to these complicated biochemical net-
works [1, 3, 4]. 

 One of the first steps taken toward applying a systems 
approach to understanding biochemical networks was to be-
gin organizing the connection information determined in the 
laboratory by creating connection maps (wiring diagrams) 
that could then be analyzed using graph theory concepts. 
While these studies have been highly successful [5], the fact 
that cells are dynamical systems means the next major step 
in the study of these systems involves the creation of models 
that take into account how they move and function in time. 
Thus we are now in a new era of creating large-scale dy-
namical models of biochemical systems. 

 An obvious choice for the modeling of dynamical sys-
tems is to describe the system with a system of differential 
equations, and this approach has been used extensively to 
study protein and/or gene interactions in a variety of rela-
tively small models (for examples, see [6-9]). One of the 
advantages of continuous modeling via differential equations 
is that one can potentially describe molecular interactions 
with high precision and in quantitative terms that correspond 
to realistic laboratory measurements. However, that preci-
sion tends to make them computationally unwieldy for the 
large scale models necessary for the systems approach. There  
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is currently a great deal of work being done in order to sim-

plify and streamline continuous models in order to make 

them more tractable for large-scale models, and there has 
been success (for example, see [10]). 

 The alternative to the continuous approach is discrete 

modeling. Discrete modeling is a qualitative approach that 

begins with the simplifying assumption that each node in a 

network can have only one of some set number of possible 

values at any particular time point. The most severe simpli-

fying assumption for a discrete model is binary; each node 

can have only one of two values at any time, usually desig-

nated as ON or OFF. Binary (or Boolean) models are the 

simplest discrete model, and thus the most computationally 

efficient, but the severity of the simplification immediately 

raises the question of its validity; is it possible to make mod-

els that display the dynamical richness of these systems 

when all elements exist only in one of two states? The use of 

Boolean modeling of biochemical systems was introduced 

by Kauffman [11], who also demonstrated that Boolean 

models preserve the dynamical features of the original sys-

tem [12, 13]. Because from a historical perspective the ex-

pression of genes has often been thought of in terms of 

ON/OFF (e.g., expressed or not expressed), the employment 

of Boolean models seemed quite natural. It is then no sur-

prise that many subsequent Boolean models of gene net-

works and their analysis have been developed [14-19]. How-

ever, what about the modeling of the even more complex 

modern networks that make up the cellular interactome? Can 
Boolean modeling be used to model these complex systems? 

 In this review, we will survey efforts at modeling bio-

chemical networks with Boolean modeling methods, and see 

that not only is it possible to use them, but also that they can 

provide a useful complement to standard continuous model-
ing. 
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THE ANATOMY OF NK BOOLEAN NETWORKS 

 Detailed reviews of the concepts of Boolean modeling 
have been previously presented [20-22], but a simple intro-
duction to Boolean models is presented here. Consider the 
simple network shown in Fig. (1A) [23]. There are three 
elements in this network and each element is connected to 
each of the others. Therefore, the parameter N (the number 
of elements in the network) is 3 and the parameter K (the 
number of connections feeding into each element) is 2. The 
logical functions for each individual node, shown in the ad-
jacent tables, are OR and AND. These tables give the 
ON/OFF state of each element (indicated with a 1 or 0, re-
spectively) as a function of the ON/OFF state of the other 
two elements connecting to it. The internal homogeneity 
parameter P depends on how each Boolean function assigns 
1's and 0's. P is simply the percentage of times a function 
assigns 1 or 0, whichever is greater. Thus for all three ele-
ments, P is 0.75 since 1 is assigned 3/4's of the time for 
nodes 2 and 3, while 0 is assigned 3/4's of the time for ele-
ment 1. Any function that assigns 1 (or 0) in 50% of the 
cases would have a value of 0.5, the lowest possible value 
for P (1.0 is the highest possible value). In the case of the 
network in Fig. (1), the average value of P for the entire net-
work is 0.75, the average of the bias of all three elements. 

 The network exists at time T in some initial state, with 
each separate element either ON or OFF. At the next time (T 
+ 1), the states of all three elements will change according to 
the tables shown. The evaluation of the entire system from 
time T to time T + 1 can be represented in a single table 
(shown on the right of Fig. 1A) where the column T contains 
all the possible initial states of the system and column T + 1 
shows the result of application of the logic set to each initial 
condition. Continued iteration by the same method results in 
a trajectory of the system as the states change over time. The 

trajectory that a given initial condition follows depends on 
all of the variables and parameters described above, and 
variation of the parameters can radically alter the types of 
trajectories obtained as will be discussed in the next section. 

 The network introduced in Fig. (1) is simple enough to 
view all of the possible trajectories, which are shown in 
Panel B. Because there are a finite number of elements in the 
system (N), there is a finite number (2

N
) of possible states of 

the system. Thus, as the system travels in time, it must (re-
gardless of trajectory) reenter a state previously encountered. 
As shown in Fig. (1B), when the system is at state 000 or 
111, it remains there (encountering itself over and over), thus 
those two states are referred to as steady-states. If the system 
is at state 001 or 010, it cycles between those two states, a 
trajectory that is referred to as a period 2 cycle. Finally, there 
are four other states of the system (110, 100, 011, and 101) 
that follow trajectories to the steady-state 111. In summary, 
the network described in Fig. (1) has three conditions 
(namely the two steady-states 000 and 111, and a period 2 
cycle containing 001 and 010) called attractors into which 
the trajectories of all initial states eventually settle. In bio-
logical contexts, attractors of biochemical systems are often 
associated with cellular phenotypes [23-25]. 

 Basins of attraction are those states whose trajectories 
lead to a given attractor. For example, the basin of attraction 
for the steady-state attractor 000 consists only of the condi-
tion 000. The basin of attraction for the steady-state attractor 
111 is larger, consisting of 110, 100, 011, and 101. The basin 
for the period 2 cycle consists only of its two states, 001 and 
010. Attractors are considered stable if they are resistant to 
minimal perturbation (defined as a change in a single ele-
ment in the system [23]). One can easily see from Fig. (1B) 
that the steady-state 000 is not stable as a change in any sin-
gle element results in the system moving to another attractor. 
For example, if 000 is changed to 100, then the system is in a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). (A) A simple network and its logical connections. (B) All possible trajectories and attractors for the network. 
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different basin that drains to a different attractor, namely 
111. In contrast, the steady-state 111 is stable since any sin-
gle change results in a state that is still in the same basin of 
attraction and will ultimately return to 111. 

ORDER, CHAOS, AND COMPLEXITY IN NK 
BOOLEAN NETWORKS 

 Boolean networks can have a wide variety of dynamics. 
The network considered in Fig. (1) has N = 3 components 
and therefore 2

N
 = 8 possible states. Thus, the largest possi-

ble attractor would have size 8 since it is impossible to go 
more than 8 iterations without encountering a previous state. 
When networks have attractors that are large (relative to the 
size of the network), they are considered to be minimally 
ordered [23]. In other words, they are structured in such a 
way as to have a minimal number of reencounters with pre-
vious states. Furthermore, any network with such a structure 
would have attractors whose sizes scaled exponentially (by a 
factor of 2

N
) as the number of components in the system (N) 

is increased [23]. Thus a minimally ordered system with N = 
200 components could have an attractor of size 2

200
, or ap-

proximately 1.6x10
60

! An attractor of this magnitude means 
that the system would never repeat itself in any relevant time 
scale and could be considered effectively infinite. By defini-
tion, a trajectory of this type that is deterministic (and 
bounded) but not periodic over (effectively) infinite iteration 
is called chaotic [26]. As explained fully in [23], chaotic 
networks are characterized by high connectivity (K > 4) and 
low internal homogeneity of the Boolean functions (P closer 
to 0.5). Thus networks with high values of K and low values 
of P can generally be characterized as chaotic. Networks 
with lower values for K or higher values for P tend to have 
smaller attractors that scale in size by a factor that is less 
than exponential and are characterized as ordered. Interest-

ingly, it has been shown that order in random NK Boolean 
networks begins to crystallize automatically (i.e., attractors 
grow at a smaller rate as elements are added to the network) 
as K approaches 2 or as P approaches 1.0, and becomes a 
fully ordered system at K = 1 [23]. Why would particular 
values of these two parameters alone determine order? The 
answer appears to be that networks with those parameter 
values contain a "frozen core" of elements, each frozen in 
either the 1 or 0 state. This can be seen by comparing two 
simple networks that differ only in those parameters. 

 Consider the network shown in Fig. (2A). Here we have 
N = 4, K = 4, and randomly assigned Boolean functions (av-
erage P = 0.53); parameter values consistent with a relatively 
chaotic network. There are no steady-states, and all other 
trajectories feed into the period 8 cycle 0000, 0101, 0110, 
1000, 1010, 1101, 1111, 0010. In that period 8 cycle, all of 
the elements are in a perpetual state of change between 0 and 
1. Although a period 8 attractor is not large in absolute 
terms, it is large relative to the size of the network (N = 4) 
and would grow as elements are added [23]. The fact that all 
trajectories lead to a relatively large cyclic attractor in which 
all of the elements of the network are in a state of flux is 
typical of a network that is chaotic [23]. This instability of 
elements also means that if any element is flipped to the op-
posite value, the system will generally end up on a very dif-
ferent place on the attractor. In large systems, that means 
that, even though on the same attractor, the ON/OFF pattern 
of each node will be very different than if the value had not 
been flipped. This is a type of “sensitivity to initial condi-
tions,” another trait that defines a chaotic system [26]. 

 Contrast that with the network shown in Fig. (2B). In this 
case, N = 4, K = 2, and P = 0.75; parameter values more in 
line with an ordered system [23]. All trajectories (except for 
the steady-state 0000) move to the steady-state 1111 where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). (A) An N=4, K=4 network with random Boolean functions (average P=0.53). (B) An N=4, K=2, and P=0.75 network with all OR 

connections. 



Boolean Modeling of Biochemical Networks The Open Bioinformatics Journal, 2011, Volume 5    19 

they become trapped forever. Hence all elements of the sys-
tem eventually become frozen in the 1 position— a large 
frozen core of elements. Note that the frozen core is also 
stable as a single change of any element from 1 to 0 results 
in a state that is still in the basin of attraction for 1111; thus 
there is no sensitivity to initial conditions. The fact that all 
trajectories in this network lead to a small, stable attractor in 
which most (in this case all) of the elements of the network 
exist in a frozen core is typical of a network that is ordered 
[23]. 

 Thus the parameters K and P are as indicators of relative 
order or chaos. However, there is another important Boolean 
function characteristic that influences the dynamics of a net-
work; the number of functions with canalizing inputs [23]. 
Canalizing functions are Boolean functions that include at 
least one input variable that can determine the output regard-
less of the values of the other variables. Consider the Boo-
lean function OR shown in Fig. (3A). Here variable z has 
two input variables x and y , and the state of variable z is de-
termined by the states of these two input variables according 
to the table. If the value (state) of x is 1, then the value of z is 
1 regardless of the value of y . In other words, the input vari-
able x set to the value 1 forces the value of z to be 1. The 
same is true for the input y. Thus, the Boolean function OR 
is a canalizing function because it has at least one canalizing 
variable (and in this case there are actually two). However, 
the Boolean function XOR shown in Fig. (3B) is not canaliz-
ing because setting each of the input variables to 0 or 1 does 
not “force” the state of variable z to be constant. 

 Because of the “forcing” nature of canalizing functions, 
their presence in networks is associated with order. Exact 
formulas for the number of canalizing functions have been 

obtained [27]; if the number of input variables K is greater 
than 4, then there are relatively few canalizing functions, a 
fact consistent with highly connected networks tendency 
toward chaotic dynamics. Interestingly, biological networks 
are dominated by canalizing (forcing) functions [28]. Thus, 
the connectivity in biological networks can be greater than 
two, but with a correspondingly high number of canalizing 
functions, there can still be highly ordered dynamics typical 
of living systems [23]. Note that these conclusions are drawn 
from results from Kauffman NK networks where the connec-
tivity K is fixed (a uniform degree distribution). The degree 
distributions of real biological networks tend to be power 
law distributions with exponents less than 2 [29], and there is 
evidence that the mean probability of canalizing functions 
for some biological systems is an effective indicator of the 
degree of order or stability in the system irrespective of the 
connectivity distribution [30]. 

 However, living systems are not completely ordered. 
Because they must exhibit both stability (order) and flexibil-
ity (the ability to depart, at least temporarily, from strict or-
der), they must have a degree of disorder. In fact, this is a 
third type of dynamic; complexity. A complex dynamic is 
defined as poised on the border between order and chaos, 
i.e., a system that is not fully ordered but not disordered to 
the point of being chaotic [23]. One can see that the network 
in Fig. (2A) is relatively chaotic but, as K and P are varied, 
the system becomes absolutely frozen as in Fig. (2B). 
Somewhere between those two extremes is the realm of 
complex systems, and the intermediate values of the parame-
ters K and P can be considered definitive of a complex sys-
tem. Complex Boolean networks tend to have moderately 
sized attractors with some, but not all, of the elements frozen 
while on the attractors. Complex dynamics is associated with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). (A) Both inputs are canalizing for the inclusive or (OR) function. (B) Neither input is canalizing for the exclusive or (XOR) func-

tion. 
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living systems as they capture the balance between stability 
and flexibility that is a hallmark of living systems [23]. 

 The balance between order and chaos necessary for non-
trivial dynamics such as those demonstrated by living sys-
tems is an intriguing area of study, and Boolean networks 
have been applied in this area as well. By using a combinato-
rial approach Konvalina discovered a fractal component to 
nontrivial network dynamics in Boolean networks at K = 2 
[31]. This fractal, shown in Fig. (4), can be thought of as a 
visualization of the ratio of “freedom” and “control” in these 
networks. In this context, freedom and control means how 
much freedom there is to create networks (with arbitrarily 
large N) with particular behaviors (i.e., attractors). In other 
words, if a network with a particular behavior can be created 
in many different ways using different choices for the Boo-
lean functions for the nodes that make it up, then that net-
work is said to have a great deal of freedom. If, on the other 
hand, the creation of a network with that behavior requires 
careful selection from a limited set of choices for those func-
tions, then there is a great deal of control in the network. It is 
intuitively evident that more connectivity in a network af-
fords more choices as to how a network can be set up to pro-
duce a given dynamic, whereas lower connectivity limits 
those choices. Thus there is a fundamental relationship be-
tween connectivity and freedom/control in Boolean net-
works. Furthermore, in many complex systems the compet-
ing forces of freedom and control tend to shape the dynamics 
of those systems-- too much freedom in a system can lead to 
chaotic, disordered behavior, while too much control can 
result in totally ordered dynamics. Thus the discovery of the 
fractal represents a way to connect these dynamical proper-
ties (in a visual way) to the connectivity of the network. 
When K = 2, the fractal representation shows a balance be-
tween freedom and control in NK Boolean networks. On the 
other hand, lower values of K indicate a bias toward control, 
while higher values of K are shown as having a bias toward 
freedom. Thus the fractal shows that, at K = 2, a phase tran-
sition between order and chaos occurs for the average NK 
Boolean network, strongly supporting the concept that con-
nectivity is a critical factor in the potential of networks to 
display the nontrivial behaviors associated with living sys-
tems. 

 With these basic concepts of states, attractors, and stabil-
ity in mind, we can now see how Boolean models have 
proved useful in modeling biochemical systems at several 
levels, from basic network motifs such as feedback loops, to 
emergent behavior such as cellular information processing. 

MECHANISMS OF DYNAMICS; BOOLEAN STUDIES 
OF THE FEEDBACK LOOP 

 One of the structural features commonly found in gene 
networks is the regulatory feedback loop. Feedback loops are 
network structures in which the output signal regulates the 
input signal of a given pathway. The direction of this regula-
tion can be either positive or negative, hence the terms posi-
tive feedback loops or negative feedback loops. Biological 
feedback loops have been studied extensively [32, 33]. In 
biological systems, the existence of negative feedback loops 
in signaling networks gives rise to higher order, non-trivial 
properties such as adaptability and desensitization [34-37]. 
The mechanistic basis for this likely lies in the fact that 

negative feedback loops have been conjectured (and subse-
quently shown) to be essential for periodic behavior-- that is, 
they tend to keep a system on periodic attractors [32, 34, 38]. 
While this result has been confirmed in Boolean networks 
[39-42], Boolean modeling has also been used recently to 
show that as the number of feedback loops (particularly in-
dependent negative ones) increases in a network, the cyclic 
attractors of a network tend to become longer and the dy-
namics are much closer to chaotic [43]. Using a novel meas-
ure of independent negative feedback loops called “distance-
to-positive-feedback,” it was shown that, as the number of 
independent negative feedback loops increases, there tends 
to be a smaller number of larger cycles; a cycle structure 
associated with chaotic dynamics. 

 Positive feedback loops, on the other hand, result in 
multistability, hysteresis, ultrasensitivity, irreversibility, and 
the ability to set the amplitude of a signal [6, 34, 37, 44]. 
Collectively, these non-trivial properties appear to provide 
the cell with the ability to react to extracellular environ-
mental conditions and stimuli even when the stimuli has 
been removed and the environment changed. This function is 
a crucial property of memory, hence it can be argued that 
one of the main functions of positive feedback is to form the 
basis for cellular “memory modules” [32, 45, 46]. The 
dependence of multistability on positive feedback loops has 
also been demonstrated in Boolean models [38-41, 47]. 

 While the necessary association of negative and positive 
feedback loops with periodicity and multistability, respec-
tively, is at this point well-documented in both the continu-
ous and discrete case, Boolean modeling has recently been 
used to show that the nontrivial converse of these associa-
tions is also true-- i.e., that negative and positive feedback 
loops are sufficient for these dynamics [47]. This is an in-
triguing result since it implies that the existence of feedback 
loops in the graph structure of a network can provide infor-
mation on the existence of periodic cycles and fixed points. 
This is an important finding given that most realistically-
sized biological networks have state spaces far too large to 
visualize such cycles. 

 In addition to feedback loops in isolation, it is often the 
case that negative and positive feedback loops are integrated 
to form coupled regulatory feedback systems, giving rise to 
even more sophisticated and robust cellular functions [48-
50]. Again, Boolean models have been used to great effect in 
studies of coupled feedback loops. Using random Boolean 
networks, a series of papers by Kwon et al. has shown that 
networks with more coupled positive feedback loops are 
associated with multistability (i.e., fixed point dynamics), 
while those with more coupled negative feedback loops are 
associated with cyclical behavior [39, 51-53]. Moreover, the 
existence of coupled feedback loops is associated with in-
creased robustness of the network (i.e., more resistant to per-
turbation); a finding that would explain why coupled feed-
back loops are so common in biological networks. Further 
study by Kwon et al. [54] found that coupled feedback loops 
are associated with networks that exhibit “preferential at-
tachment.” Preferential attachment is when a network 
evolves in such a way that nodes preferentially attach to 
nodes with higher numbers of attachments with other nodes, 
which results in a so-called “scale-free” structure [55]. How-
ever, they also found that networks evolved to have coupled 
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feedback loops are even more robust than preferential at-
tachment networks, even though degree distributions are 
similar. This result was supported by the finding that older 
nodes in actual biochemical networks were associated with 
more coupled feedback loops. This is strong evidence that, 
while coupled feedback loops may have first appeared in 
biological systems spontaneously due to inherent preferential 
attachment, natural selection in favor of coupled feedback 
due to the superior robustness properties has resulted in their 
surprising prevalence in biochemical systems. 

 The feedback loop is one of the most significant network 
motifs in biochemical systems, and we have seen that Boo-
lean modeling has been used extensively to understand the 
rich dynamics these motifs can produce. However, Boolean 
modeling has also been used extensively to understand spe-
cific biochemical mechanisms in cells. 

CELLULAR FUNCTION; BOOLEAN STUDIES OF 
BIOCHEMICAL MECHANISMS 

 Because cellular signal transduction networks are so im-
portant for cellular function, these immensely complicated 
biochemical networks have been the subject of intense study 
for decades. However, the highly interconnected nature of 
signaling pathways means that the laboratory study of these 
networks is not always straightforward as the primary labo-
ratory research tool of reductionism is not always effective 
[56]. Thus modeling has become an important component in 

biomedical research, and Boolean model is playing its part. 
Here is presented a survey of various results obtained using 
Boolean modeling. 

 In the area of research into mechanisms of apoptosis 
(programmed cell death), a number of Boolean models have 
been used. A Boolean model of caspase3 and forkhead-
related transcription factor associated signaling pathways 
was used to develop a vulnerability assessment platform 
[57]. With this platform, the authors were able to identify 
proteins in the signaling network that may be more prone to 
pathologically important mutations, which may provide new 
insights as to identifying new targets for drugs, but more 
importantly, targets that may not be directly obvious unless a 
systems approach coupled with computational analysis is 
employed. In another study [58], a 40-node Boolean model 
of signal transduction network governing the processes of 
cellular survival and apoptosis was built to deepen the un-
derstanding of emergent properties such as stability and irre-
versibility that arise as a result of intricate architectural fea-
tures of the system. These examples of a Boolean model of 
signal transduction in apoptosis was followed by a similar 
model of apoptosis developed by a different group [59] that 
used the model to identify feedback loops present in the sys-
tem. This resulted in the identification of a previously un-
known feedback loop, which may in turn lead to new studies 
as to the role of this feedback in the regulation of apoptosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The K2 fractal. As explained fully in [31], black areas represent trajectories of a Boolean network where all of the logic is fixed 
(i.e., control) whereas the white areas represent where there is choice in logic (i.e., freedom). 
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 In the area of immunology, a Boolean model of over 50 
signaling components in a cytotoxic T cell (CTL) was cre-
ated to develop a better understanding of the survival of the 
cell in T cell large granular lymphocyte (T-LGL) leukemia 
[60]. Because the abnormal clonal expansion of TCL and 
their prolonged survival (or lack of apoptosis induction) is 
what characterizes T-LGL leukemia, the authors used the 
model to predict, for example, that when IL-15 and PDGF 
are constitutively activated, they are sufficient to induce 
other signaling abnormalities related to the disease. 

 Because of their relevance to disease (including breast 
cancer), a set of pathways of high interest to biomedical re-
search include ones associate with the receptor tyrosine 
kinase (RTK) family [61-64]. This family comprises the 
EGFR (or ErbB1) as well as ErbB2, ErbB3, and ErbB4 [65], 
most of which have been considered an important target for 
cancer drug development [66, 67]. The activation of ErbB 
receptors is initiated upon the binding of a ligand (e.g., EGF, 
TGF-alpha, NRGs, etc.) to the receptor. The binding of a 
ligand to its receptor leads to homo- or hetero- dimerization, 
which provides the cell with the ability to amplify as well as 
diversify the signal [65, 68]. The improper regulation of 
these (and many downstream) signaling components, spe-
cifically the overexpression of some of EGFR and ErbB2, 
have been associated with cancer, namely breast cancer. Be-
cause of this realization, the ErbB components have been 
studied as potential targets for anticancer drugs. For exam-
ple, the monoclonal antibody trastuzumab was developed to 
target ErbB2. However, in many cases cells develop resis-
tance to the drug and hence create difficulties in the treat-
ment. Therefore understanding the mechanisms of drug re-
sistance and, especially identifying the cause of the resis-
tance would have significant implications in the develop-
ment of more efficient drug therapies. In fact, a recent study 
to analyze cell resistance to trastuzumab in relation to breast 
cancer was conducted by using a Boolean approach [69]. 
Specifically, a Boolean model of ErbB1-3 signaling as well 
as regulatory components of the G1/S transition of the cell 
cycle were synthesized. Using the computational systems 
approach, the signaling component c-MYC was identified as 
a potential novel target for drug therapies focus on breast 
cancer. In addition, the results obtained by the model predict 
interesting finding suggesting that therapeutic combinatorial 
targeting of ErbB receptors won't be effective in de novo 
trastuzumab resistant breast cancer cells. 

 In another study, a large-scale Boolean model of Epider-
mal Growth Factor Receptor (EGFR) and associated path-
ways was employed to study signaling dynamics in these 
pathways and compare the model's dynamics to high-
throughput data [70]. The EGFR signaling model was devel-
oped by converting an existing stoichiometric model to logi-
cal terms that underlie Boolean models. Although the con-
version process doesn't guarantee complete creation of all 
Boolean functions, a protocol was developed to overcome 
this shortcoming. Furthermore, a protocol to directly com-
pare the dynamics of the Boolean model to high-throughput 
data was also developed. Comparing dynamics of the large-
scale Boolean models and the high-throughput data, the 
authors have identified several inconsistencies that may be 
attributed to various factors such as the model 
(in)completeness or cell type discrepancies (the Boolean 
model represents signaling system of all different types of 

cells, whereas the high-throughput data was obtained from 
human hepatocytes). However, being able to compare and 
map high-throughput data with the dynamics of Boolean 
models opens new doors to be able to identify gaps and/or 
problems in the large-scale models that can be subsequently 
expanded and/or fine-tuned. Having more complete models 
of complex signal transduction networks will provide inves-
tigators with a tool to perform additional in silico studies that 
will, in turn, lead to new predictions and generation of hy-
potheses that can be further tested in laboratory. 

EMERGENT PROPERTIES IN CELLS; BOOLEAN 
STUDIES OF GLOBAL CELLULAR DYNAMICS 

 While modeling is useful for modeling specific mecha-
nisms of biochemical function, the real promise of modeling 
lies in the development of a true systems approach to the 
study of the cell by modeling multiple biochemical networks 
simultaneously. Such large scale models have the potential 
to allow observation of how the cell integrates the multiplic-
ity of inputs from the environment and generates appropriate 
responses. A major theme in the use of large-scale models is 
to explore the ability of the cell to map inputs (extracellular 
cues) to output (phenotypes; e.g., cellular fates). 

 The first example of this type of study was done focusing 
on the cell fate decision process using a Boolean model to 
abstract the underlying regulatory mechanism of cellular 
survival, apoptosis, and necrosis [71]. Results with this 
model demonstrated the ability to classify the output behav-
ior into clear equivalence classes (corresponding to survival, 
apoptosis, and necrosis) based on the combination of the 
model inputs. Using this model, the authors were also able to 
generate new hypotheses and predictions as to the effects of 
different (virtual) knockouts on the decision making process. 
For instance, using computer simulations of their model, the 
authors were able to gain more insights into the role of RIP1 
(a protein important in cell necrosis) in the cellular decision-
making process. Specifically, it was found that RIP1 needs 
only to be transiently active for the cell's decision to undergo 
necrosis, whereas the protein was found to be constitutively 
active when cell survival was induced. 

 Another example of the use of a large-scale logical model 
to employ input-output mapping is work conducted in a T-
cell environment [25]. The purpose of the study was to fur-
ther understand the signaling process that leads to the activa-
tion and differentiation of primary T cells. A Boolean model 
of T-cell signaling system composed of 94 nodes and 123 
connections was created by using qualitative information 
from the literature as well as the group's own experimental 
data. They employed existing methods applied in other mod-
eling approaches (e.g., stoichiometric) of, for example, 
metabolic or gene regulatory systems, and demonstrated how 
these methods can be directly applied on qualitative models 
of signal transduction networks [72]. First, the large-scale 
model was analyzed from a graph-theoretical perspective by 
analyzing the model's interaction graph, and it was found 
that it contains the total of 172 feedback loops (89 negative 
and 83 positive), demonstrating their significance in cellular 
signaling systems. However, as mentioned in the introduc-
tory section of this review, although important, the analysis 
of static maps of signal transduction does not allow direct 
analysis of the dynamics of the system. Thus, the authors 
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performed several analyses of the Boolean model to identify 
important cross-pathway dependencies, various input-output 
behaviors, and potential targets within the network that are 
capable of altering the global response of the signaling net-
work to its external inputs. Collectively, these computational 
findings led to the generation of new hypotheses that the 
group tested experimentally. For example, the computational 
analysis of the model suggested the ability of active CD28 to 
induce and sustain the activity of the c-Jun N-terminal kinase 
(JNK), something that has not been experimentally estab-
lished before. The authors subsequently confirmed this pre-
diction in an in vitro experiment. 

 In the final example, Boolean modeling has been used to 
create a very large scale model in order to interrogate signal 
transduction networks for emergent properties, namely deci-
sion-making [24]. The weight of discoveries in recent dec-
ades has made it obvious that intracellular signaling path-
ways are not linear structures as first thought, but form 
highly complex non-linear structures. But why would this be 
the case? If the sole job of signaling pathways is to pass a 
signal from the outside of the cell to the nucleus, why the 
need for such a complexity in these structures? In many ar-
eas of cellular biochemistry, cells have evolved mechanisms 
that are elegant in their linearity and efficiency; the precise 
traits that made them susceptible to understanding by reduc-
tionist study decades ago. It seems incredible that the seem-
ingly low-level function of simply passing a signal from the 
cell membrane to, for example, the nucleus would not have 
been solved by evolution with a similarly elegant and direct 
mechanism. 
 Approximately 20 years ago, a new hypothesis began to 
be developed that the function of signal transduction net-
works is more than a simple signal-passing; their role is 
much more sophisticated and complex -- it is to process in-
formation and make decisions based on the cell's environ-
ment [73]. In recent years evidence has grown that this revo-
lutionary idea is indeed the case and, perhaps even more 
significantly, that this function is actually an emergent prop-
erty of these complex networks; i.e., the overall functions of 
these networks cannot be observed or studied using reduc-
tionism. 
 To test the hypothesis that signal transduction networks 
function as an information processing, decision-making ma-
chine in the cell, a large-scale Boolean model of signal 
transduction in a generic fibroblast cell was constructed [24]. 
The model consists of several main signaling pathways, in-
cluding the receptor tyrosine kinase (RTK), G-protein cou-
pled receptor, and Integrin signaling pathway. The inclusion 
of these multiple pathways resulted in a model composed of 
about 130 Boolean nodes (representing the various signaling 
molecules) and over 800 connections. Via a novel technique 
in Boolean modeling, a stochastic aspect was introduced into 
the model which allowed simulation and interrogation of the 
model under tens of thousands of (random) virtual cellular 
environments. The simulation results were then analyzed 
using input-output mapping algorithms such as Principle 
Component Analysis to provide evidence that, indeed, there 
is a high likelihood that signal transduction networks have 
evolved to do more than simple signal-passing. In particular, 
the findings suggested that these networks, via their sensors 
(receptors), intake extracellular cues and, using their com-
plex (and specific) architecture, process the information to 

produce clearly defined responses, even in the presence of 
noisy and often times contradictory environmental signals. 

 Building on these findings, in the second example, a 20+ 
node (stochastic) Boolean model integrating signaling path-
ways associated with Cadherin, Receptor Tyrosine Kinase, 
and Integrin/ECM signaling was used to study the global 
dynamics of that system [74]. These authors also used an 
input-output mapping approach. Specifically, they interro-
gated the model under all possible combinations of the ex-
ternal inputs (representing receptor ligands) and identified a 
set of attractors (corresponding to global cellular phenomena 
such as proliferation, apoptosis, etc.) in which the model's 
dynamics settled as a result of each input permutation. Creat-
ing an input-output map, the authors were also able to ana-
lyze the direct effects of some of the components on the out-
put (phenotype) of the system. In addition, the model was 
analyzed while adding noise to the system. The results indi-
cated that the system is very robust in that the input-output 
map was unchanged even under relatively high levels of 
noise. While the mechanism (and the modeled signaling 
pathways) used to introduce noise was different from that 
used in [24], the results suggesting a highly robust system 
are consistent. 

CONCLUSION 

 Boolean models present a simplified alternative to the 
generally more common differential equation-based ap-
proaches. However, a reasonable objection is that the sim-
plicity (e.g., binary states of the model's nodes) associated 
with the alternative discrete modeling techniques does not 
allow the capture of the richness of dynamics in the real bio-
logical systems. As we have seen, Boolean models have 
been applied to network dynamics studies at many different 
levels. In some of these studies, large-scale dynamical mod-
els were created (something that is often difficult using con-
tinuous modeling approaches) to reveal higher-order emer-
gent properties of the signaling systems that would have 
been very difficult to perform using continuous modeling 
techniques. 

 However, there is an additional advantage to discrete 
modeling – the relatively simple mechanism of describing 
node interactions makes for an ideal platform for commu-
nity-based model building. Because of the inherent size and 
complexity of biochemical networks, it is extremely difficult 
for a single person or group to efficiently transfer the vast 
amount of laboratory data into a mathematical representa-
tion; this fact applies to any modeling technique. One way to 
address this issue is to engage the community of laboratory 
scientists that have generated these data and, hence, have 
first-hand knowledge of the local protein-protein regulatory 
mechanisms. If the community of laboratory scientists had a 
mechanism by which they could collaborate by contributing 
their intimate knowledge of local interactions into a large-
scale global model, the creation of these models would be 
greatly enhanced in terms of both size and accuracy. Since 
Boolean models rely on qualitative information, it makes 
them an ideal candidate for that platform as most laboratory 
scientists communicate their data in qualitative terms. 

 Although the advantage of Boolean models for the crea-
tion of such a community-based modeling system is that they 
do not require an understanding of high level mathematics, it 
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does assume that users dealing with these models are famil-
iar with Boolean formalism. At first, this may seem as a sub-
tle issue as most qualitative information generated in labora-
tories is practically generated and interpreted in Boolean 
terms (e.g., protein x AND y activate protein z), the Boolean 
truth table (and equations) get more complex as the size of 
the model increases. This complexity effectively creates an-
other challenge in building large-scale models. However, 
this gap can be possibly bridged by software tools that would 
allow biologists to create Boolean models without having to 
directly interact with the model's mathematical complexities. 
Although, many of the existing tools offer numerous func-
tions (e.g., GINsim [75], SQUAD [76], and ChemChains 
[77], Discrete Dynamics Labs [78], BooleanNet [79], Bool-
Net [80], or SimBoolNet [81]) and feature-rich graphical 
interfaces for modelers familiar with Boolean formalism, 
they still need much work before considered as “biologist-
friendly.” 

 However, as we move into the new era of dynamical 
modeling as an important complement to laboratory re-
search, we have seen that Boolean modeling is a simple, un-
derstandable modeling method that has the power to repre-
sent very complicated systems. This combination of features 
has great appeal, and it is likely that Boolean modeling has 
earned its place alongside continuous modeling based on the 
results it will produce. 
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