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Abstract: Rapid advances in data processing of genome-wide gene expression have allowed us to get a first glimpse of 

some fundamental laws and principles involved in the intra-cellular organization as well as to investigate its complex 

regulatory architecture. However, the identification of commonalities in dynamical processes involved in networks has 

not followed the same development. In particular, the coupling between dynamics and structural features remains largely 

uncovered. Here, we review several works that have addressed the issue of uncovering the gene expression dynamics and 

principles using micro-array time series data at different environmental conditions and disease states as well as the emer-

gence of criticality in gene expression systems by using information theory. Moreover, we also describe the efforts done 

to explore the question of characterizing gene networks by using transcriptional dynamics information. The combination 

of the emergent principles uncovered in the transcriptional organization with dynamic information, may lead to recon-

struct, characterize and complete gene networks. We also discuss several methods based on simulations of a series of en-

zyme-catalyzed reaction routes and Markov processes as well as combination of complex network properties with sto-

chastic theory. 
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INTRODUCTION 

 High-throughput data acquisition with DNA microarray 
technologies have led to drastic changes in molecular biol-
ogy, a field historically characterized by reductionism for 
decades. The simultaneous measure of the concentration of 
tens of thousand of RNA transcripts from a diverse sample 
of cells, including normal and cancer tissues, offers a new 
challenge in biology in the twenty-first century [1-3]. Instead 
of focusing on individual bio-molecules, scientists investi-
gate biological functionalities that emerge from complex 
interactions of fundamental molecules in distinct temporal 
states, making it possible to envision, for the first time, a 
model of the cell’s underlying topological structure and its 
transcriptional dynamics [4-9]. Rapid advances in the field 
have contributed to develop multi-disciplinary based reverse-
engineering techniques to infer models of transcriptional 
regulatory networks and predict the cellular response under 
stresses and therapy treatments [9-16].  

 Bio-molecular regulatory networks aim to describe the 
causal, functional and physical relationships between func-
tional molecules like genes and proteins. These bio-
molecules are the nodes in the network and two nodes can be 
connected by edges representing the relationships between 
them. Several engineering-oriented strategies and methods 
have been suggested to reconstruct these networks and ana-
lyze its properties. Boolean networks, differential equation 
models, Bayesian network models and association networks  
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are some representative examples of the rapid expansion of 
the field [10, 12, 16-19]. However, complex systems, and the 
cell is not an exception, are composed of a large number of 
elements. A human cell is composed of tens of thousand 
unique transcripts, each of them having up to hundreds of 
copies. Furthermore, the interacting rules between cellular 
components may change over time in response to environ-
mental stresses. On the other hand, a more systemic-oriented 
approach that combines previous ideas seeks to identify and 
unveil fundamental organizing principles that govern the 
formation and evolution of transcription networks. This re-
search based on complex systems science focus on 
determining the dynamics of a real system by proposing 
simple models that capture its main features. In this systemic 
view, the whole is much more that the sum of its parts, and 
consequently, the functionality of the system is given by the 
interactions between its constituents [4, 6-7]. In this context, 
qualitative approaches can identify the existence of universal 
laws and generic principles that lead to a greater insight into 
the cell’s functional organization and biological phenomenon 
in general.  

 Rapid advances in bio-knowledge and data processing of 
genome-wide gene expression have allowed us to get a first 
glimpse of some fundamental laws and organizing principles 
that govern the cellular functions. One of these findings has 
shown that the transcriptional organization is very heteroge-
neous, suggesting that the probability that a gene has an 
amount of expression k decays as a power-law [20-22]. This 
organization seems to be universal and conserved across 
species, cell types and disease states suggesting a robust 
property in gene expression dynamics. Furthermore, recent 
research suggests that the gene expression dynamics exhibits 
criticality in the macrophage [23]. These findings, the exis-
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tence of a power-law as stationary state and the emergence 
of criticality in gene expression are extremely important to 
understand the cell’s functional organization and to unify its 
study of structure and dynamics. 

 Here, we review several works that have addressed the 
issue of uncovering the principles of gene expression dynam-
ics using micro-array time series data at different environ-
mental conditions and disease states as well as the emer-
gence of criticality in gene expression systems by using in-
formation theory. Moreover, we also describe the efforts 
done to explore the challenging question of predicting gene 
networks by only using transcriptional dynamics informa-
tion. The combination of the emergent principles uncovered 
in the transcriptional organization with dynamic information, 
may lead to construct, characterize and complete gene net-
works. In particular, we explore the possibility of identifying 
structural features of networks by only computing dynamic 
information obtained from gene expression time series data. 
We also discuss several methods based on simulations of a 
series of enzyme-catalyzed reaction routes and Markov proc-
esses as well as combination of complex network properties 
with stochastic theory. 

UNIVERSALITY IN SYSTEMS BIOLOGY 

 The molecular interactions within a cell are very complex 
and their direct study poses enormous difficulties from 
experimental and theoretical view point. However, the cell is 
not the only example of complexity. We are surrounded by 
many disparate complex systems like, for example, financial 
systems, social networks, fluid dynamics and Internet evolu-
tion. In these cases, it is simply impracticable to solve and 
predict the behavior of single stock prices, individuals, water 
atoms and web pages, respectively. In spite of that, these 
systems often show a remarkably simple behavior and com-
monalities. While the understanding of these systems using a 
microscopic approach seems a hard and intractable task, its 
study from a macroscopic view leads to an understanding of 
the observed behavior. This coarse-grained approach is cen-
tral in statistical mechanics, whose concepts and techniques 
have permeated different fields like economics, engineering, 
computer science and life sciences [24-28]. In short, the 
great success of statistical mechanics and its predictive 
power in so many disparate fields has been possible because 
macroscopic phenomena, and their relative simple observed 
laws, do not depend on the microscopic particulars in a large 
extent. Well-known examples are the Newton’s laws or the 
Navier-Stokes equations. These laws emerge from underly-
ing complex interactions and properly reproduce the effec-
tive observed behavior of the system. However, the water 
motion and gravity effect do not largely depend on details of 
the elementary molecular interactions of water molecules 
and matter forces, respectively. This fact has definitely 
contributed to identify continuum laws and principles in 
physics that apply to many fields. With the advent of high-
throughput technologies in the post-genome era, there has 
been a necessity to process this new and massive information 
and, at the same time, to provide answers to fundamental 
questions on the cell’s functional organization and its ele-
mental interacting constituents. This huge flow of data has 
led to hypothesize about the emergence of simple laws for 
dynamic molecular processes in life sciences. Bioinformati-
cians and computer scientists have dealt with these issues by 

combining algorithms and computational techniques, based 
on data processing, with leading statistical mechanics con-
cepts to unravel the principles of cell biology. In particular, 
gene expression dynamics has been one of the central topics 
of interests in the recent years.  

LINEAR RESPONSE IN GENE EXPRESSION 

 As we have mentioned above, an understanding of the 

gene expression organization and its dynamics is largely 

lacking. An attempt to uncover fundamental dynamic princi-

ples that generate complex gene expression fluctuations was 

carried out in [22]. A series of genome-wide experiments 

were conducted using high-density oligonucleotide arrays to 

investigate the large-scale organization of gene expression 

dynamics and elucidate its fundamental principles. Gene 

expression data was collected from experiments performed 

using six organisms (E. coli, S. cerevisiae, A. thaliana, D. 

melanogaster, M. musculus and H. sapiens) under several 

environmental conditions (for example, constant light/dark 

cycles, normal or symbiotic conditions). First, the global 

RNA expression features were investigated by analyzing the 

distribution of gene expression. The results showed that the 

probability to find a gene with an amount of expression k 

decays as a power-law with the analytical form 

P(k) ~ k . Interestingly, this behavior is conserved from 

E. coli to H. sapiens with degree exponents in the vicinity of 

the value -2, suggesting that prokaryotes and eukaryotes 

share a similar genome-wide transcriptional organization.  

 However, a question arises about whether this observed 
power-law will be conserved when different temporal states 
or tissues are investigated. The analysis of RNA expression 
using data at different circadian time (CT) or various tissues 
showed that the distribution of gene expression displayed a 
power-law in spite of the fact that many genes changed their 
expression values. For example, while 3% and 16 % of genes 
in S. cerevisiae and A. thaliana, respectively, changed their 
expression values, this proportion increased up to 95 % and 
88 % of genes in H. sapiens and M. musculus, respectively. 
Therefore, it means that even though a large proportion of 
genes changed the individual expression level, in average the 
changes compensated each other and the power-law re-
mained invariant with the same exponent. These fractions of 
differentially expressed genes were observed in 47 tissues of 
H. sapiens and 45 tissues of M. musculus. This finding raised 
a new question about what kind of dynamics generated this 
invariant transcriptional organization across time and space 
(i.e., tissues). 

 The transition probability T(k1, k2) of expression change 

for individual genes with expression level k1 to another ex-

pression level k2, along two different conditions was com-

puted for several organisms. This expression was calculated 

by counting the number of genes with expression level k1 that 

changes to another expression k2. The results showed that the 

transition probability does not show a random pattern. In 

contrast, it largely depends on the before-transition expres-

sion level k1. It means that while highly expressed genes 

have a higher probability to largely change its expression 

level, low expressed genes have low probability to show 

large changes. To precisely determine the nature of the dy-
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namics involved in these transitions, the absolute change 

| k |=| k2 k1 |  was computed. The results indicated that 

this absolute change was proportional to the initial before 

transition value, suggesting a proportional expression dy-

namics in agreement with the results shown by the transition 

probability. To understand this finding in a theoretical con-

text, the authors proposed a model where the standard devia-

tion of gene expression change increases proportionally to 

the before-transition gene expression level k. In this ap-

proach, the gene expression dynamics is represented by a 

continuous Markov process. In this context, the forward 

Kolmogorov equation, or equivalently the Fokker-Plank 

equation in one dimension can be written as: 

P(k,t )

t
=

k
[< dk > P(k,t )] +

1

2

2

k2
[<| dk |>2 P(k,t )]  

              (1) 

where <dk> and <|dk|> are the drift and diffusion terms, 
respectively. The drift term <dk> indicates the average of 
instantaneous expression changes and can be computed us-
ing the following expression: 

< dk >=
t 0
lim

1

t
T (k + k,k) kd( k)          (2) 

where k  is an expression change during time interval t.  
It was assumed that there was not specific tendency in the 

average value of gene expression level. In other words, for 

each gene, the expression level could increase or decrease, so 

the value of the drift term averaged over time is taken as 

<dk>=0.  

 The standard deviation of instantaneous expression 
change (in the context of Fokker-Planck equation, this ex-
pression is called diffusion term) <|dk|> was computed us-
ing the following expression: 

<| dk |>= [ lim
t 0

1

t
T (k + k,k)( k)2d( k)]1/2   (3) 

 Furthermore, it was hypothesized that this standard de-
viation of instantaneous expression change was proportional 
to the before-transition expression level k. This leads to the 
following expression: 

<| dk |>= a(k + b)s ,          (4) 

where a>0, k>>b>0, and s~1. By considering these assump-
tions and by imposing the stationary state condition, a sta-
tionary distribution of gene expression level characterized by 
a power-law with exponent -2 was obtained, in good agree-
ment with experimental observations. This proportional or 
“rich-travel-more” dynamics could generate a power-law 
distribution, in a similar way that “rich-get-richer” mecha-
nism (also known as preferential attachment) could derive 
the power-law distribution in complex growing networks. 
The described gene expression dynamics represents a generic 
principle in the regulation of transcriptome based on large-
scale statistics, for both highly or lower expressed genes, that 
co-exists with more rich and specialized dynamics, in a 
lower-level view, that characterizes specific modules like 
feed-back loops and cycles [29]. However, although this 

“rich-travel-more” mechanism has an intrinsic beauty and 
attractiveness, its linear form is surprising. It could be ex-
pected that a complex regulatory network, that is able to 
adapt environmental or rapid developmental stages, might be 
governed by a highly complex non-linear response dynam-
ics. Perhaps, a new avenue for the investigation of gene ex-
pression dynamics could be the simultaneous investigation 
of structure and dynamic properties [23]. In the next sec-
tions, we will see that, in spite of the fact that a complete 
framework is still lacking, recent and promising studies sug-
gest that the information theory could significantly contrib-
ute to this issue. 

CRITICALITY 

 If we think in terms of atomic matter, fluids or even 
larger-scales like social networks, populations, cities or eco-
systems, we observe that these systems are composed of 
multiple fundamental elements or individuals that interplay 
by means of physical forces, social relationships or informa-
tion exchange. While these interactions are originated by 
intrinsic features of the systems, external forces, like elec-
tromagnetic and gravitational fields, social rules as well as 
drastic and severe climate changes, may also drive the evolu-
tion of the system. An intriguing phenomena is that even 
though intrinsic and extrinsic forces co-exist, it seems that 
systems share a high degree of commonality and behavior, 
which seems to be independent of the nature and details of 
the system itself. In [30, 31], the Bak, Tang and Wiesenfeld 
(BTW) model shows that, in fact, any system consisting of 
many interacting components could display general and 
common behavior by organizing itself into a state where 
there is no a homogeneous or specific size for characteristic 
event. Instead of that, it is suggested that there is a large-
range of possible time or length scales, where events can 
occur in a heterogeneous way (i.e., the observed distributions 
exhibits a power-law decay). A simple example is the earth-
quake activity characterized by many small quakes but few 
large ones far in the tail of the distribution. Systems that 
obey this kind of power-law dynamics exhibit the same 
structure (self-similar) over all scales. Moreover, the expo-
nents of the power-laws could be relatively similar between 
systems that show a disparate microscopic nature. This de-
scription certainly resembles the characterization of real 
networks carried out by the new science of networks [7, 32]. 
The main statement in BTW is that the system can self-
organize itself without needing specific external constraints. 
Their global organization is the result from the interactions 
between the components. Moreover, these interactions are 
independent of the physical nature of the individual compo-
nents. Interestingly, in the self-organized states, different 
systems show similar emergent behavior, characterized by 
scale-free or power-laws distributions. Several works have 
suggested that life has precisely emerged and developed at 
this self-organized state, a critical point between order and 
chaos [33]. 

 A very fresh and novel approach was recently conducted 
based on information theory. As discussed above, the cell is 
a highly regulated system that is able to respond to external 
signal, adapt environmental changes and conserve stability. 
In this process, a fundamental and recurrent feature in self-
organized systems is the existence of criticality. In addition, 
it is well-known that criticality also represents a trade off 
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between adaptability and stability. It indicates a state of the 
system where signals and perturbations can be efficiently 
propagated over longer temporal and spatial states, without 
being repressed nor amplified. While it has been suggested 
since several decades ago, that biological systems are critical 
and live at the edge of the criticality, Schmulevich group 
conducts experiments on gene expression and addresses this 
issue with biological experiments. In particular, they exam-
ine the large-scale organization of gene expression dynamics 
in the macrophage [23]. The striking aspect of their approach 
is that, based on existing measures of information theory, 
they propose a novel method that determines the existence of 
criticality in macrophage cell types. These cells were stimu-
lated by a variety of stresses and the results suggested that 
macrophage cells operate on a critical state-based dynamics.  

LINKING INFORMATION THEORY AND CRITI-
CALITY IN GENE EXPRESSION DYNAMICS 

 Macrophages, also known as white blood cells, are good 
examples of how molecular entities are able to response to 
environmental signals [23]. This type of cell is involved in 
the immune systems and as well as involved in the inflam-
matory response programs. Cell surface receptors detect mo-
lecular patterns that pose perils to the cell, and transmit the 
information through signal transduction pathways where 
macrophages detect it, and initiate complex and adapted gene 
expression programs that lead to modify their functional 
state, start producing specific chemical compounds, and re-
lease them to deal with the pathogen. It is particularly inter-
esting and intriguing how the information that reaches the 
cell is transmitted through the molecular pathways and acti-
vates these complex responses [34]. To deal with this issue, 
it has been suggested since long, that living organisms and 
cells operate at the critical boundary between a perfect or-
dered state (like a lattice, for example) and a completely dis-
organized state (chaotic system, for example). Several stud-
ies have analyzed these features in biological systems [35, 
36]. The interplay between these two very different states 
seems to be an essential feature of emergence of life and 
adaptability. If the system becomes too chaotic, it self-
evolves into a more ordered state and vice-versa. Criticality 
represents the key link that connects two drastically different 
worlds and where cell behavior emerges in a compromise 
between stability and adaptability [33]. It could explain why 
so disparate dynamic systems share universal features. 

 The approach is based on information theory, concretely 
in the information dynamics and how to measure the infor-
mation distance between different states. The authors con-
sider two different external signals that make evolve the cell 
into two well-defined states. Each state can be determined by 
measuring the time-course transcriptional data. By measur-
ing the information difference between two states and how 
this difference changes over time, we can characterize the 
dynamics of the system. An informational convergence 
would suggest a world where the uniqueness of both signals 
are progressively vanished, suggesting a stable and robust 
behavior. In contrast, an informational divergence scenario 
would indicate that even a small differential signal could be 
amplified, which drastically compromises the transmission 
of information over time. A critical behavior lies in the mid-
dle, in the most effective balance point, showing an equilib-

rium between stability and adaptability and supporting the 
“life on the edge of chaos” hypothesis. 

 In Li et al. an information-based measure was developed 
to measure the universal information distance between two 
objects [37, 38]. The minimal information distance between 
discrete objects x and y is the length of the shortest program 
that transforms x into y as well as computing y from x. It can 
also be defined in terms of the Kolmogorov complexity. The 
Kolmogorov complexity or algorithmic entropy K(x) of a 
string x is the length of a shortest binary program to compute 
x on an appropriate universal computer. In other words, it 
represents the minimal amount of information required to 
generate x by any algorithm. It can also be interpreted as the 
compressed form of x. As this concept is not computable, the 
authors approximate its computation by using real-world 
data compressors (i.e., gzip) and used the normalized com-
pression distance NCD: 

NCD(x,y) =
C(xy) min{C(x),C(y)}

max{C(x),C(y)}
       (5) 

 This distance has been normalized because, for example, 
when it is required to express similarity between two strings, 
it is more appropriate to show the relative distances among 
them. Two strings of 10,000 bits differing by only 100 bits 
seem to be similar. However, two strings of 100 bits differ-
ing by 100 bits are totally different [38]. In this expression, 
C(x) represents the compressed size of x and xy means the 
concatenation of the strings x and y. Schmulevich group per-
formed gene expression experiments and measured the 
course of the time series. Data was obtained from murine 
bone marrow-derived macrophages under six different 
treatments or conditions. For each pair of distinct experi-
ments (S1, S2), NCD was computed for every pair of time-
point measurements. Then, by selecting consecutive time 
points (t1,t2) in distinct experiments (S1,S2), NCD(S1(t1), 
S2(t1)) was plotted versus the next time step NCD(S1(t2), 
S2(t2)). Here, S1(t) and S2(t) refers to the expression states 
for two micro-array experiments. Therefore, the NCD uses 
the compressed size of each micro-array data at a given time 
t, C(S1(t)), C(S2(t)) and the compressed size (i.e., binary in-
formation corresponding to expression values compressed 
using a real-world data compressor like gzip) of the corre-
sponding concatenated string C(S1(t)S2(t)). The result 
showed that the scatter plot follows the main diagonal, with 
slope 1. This finding suggests that the transcriptional net-
work dynamics is governing the macrophage functions in the 
critical regime. As showed above, this finding is consistent 
with the results showing that gene expression is organized 
following power-law distribution. In critical regime, the sys-
tems tend to self-organize to be scale-free. Data above the 
diagonal would imply a chaotic or divergent behavior, indi-
cating a system hypersensitive to external signals or con-
straints and with difficulties to carry out a coherent response. 
In contrast, a distribution below the diagonal would suggest 
an informational convergence. The system would progres-
sively become more insensitive to signals [23]. Furthermore, 
these results, showing that that gene expression dynamics in 
the macrophage exhibits criticality, were validated by using 
Boolean networks simulations. This method of computation 
is very useful because it can potentially applied to genomic 
sequences, networked structures, time series data, and in 
general to any objects that can be represented using comput-
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ers. The interplay between networked structures and dynam-
ics using Boolean networks as well as the phylogenetic 
analysis of the metabolism of 107 organisms were conducted 
using NCD information [39]. Basically the information dis-
tance can be applied to any object. Although it was applied 
to gene expression data, it can also be applied to networks, 
graphs or any other type of data. The pairwise distances be-
tween the metabolic networks of more than hundred organ-
isms were computed, and a phylogenetic tree, generated by 
means of the complete linkage method was constructed. This 
approach was able to clearly group all the organisms into the 
corresponding three domains of life and subclasses of spe-
cies. It shows that fundamental structural differences in net-
works are highlighted by using this method. On the other 
hand, the relationship between dynamics and structure was 
investigated in an experiment using Boolean networks. Six 
ensembles of random Boolean networks were prepared with 
N=1000 nodes with average network connectivity K=1,2,3. 
For random wiring of edges, by appropriately setting the free 
parameter in the critical phase transition curve, K=1,2,3 will 
correspond to ordered, critical and chaotic states, respec-
tively. Moreover, each ensemble consisted of 150 networks. 
Then, NCD measures were computed between all pairs of 
network structures and between the corresponding dynamic 
state trajectories. By plotting the NCD computed using struc-
tural information in x axis and NCD calculated using the 
dynamics state trajectories in y axis, the six ensembles were 
clearly separated and visible in the figure [39]. Interestingly, 
only the ensemble corresponding to random topology with 
K=2 exhibited an elongated pattern along the vertical axis at 
a fixed point in the horizontal axis, showing a more rich and 
diverse dynamical behavior. This supports the idea that sys-
tems in critical regime operate and exhibit a maximal dy-
namic diversity. It is precisely on the edge of the critical re-
gime, where complexity arises and where the interplay be-
tween structure and dynamic becomes more relevant. These 
findings showed the power of the approach based on NC 
measure in order to combine networked structures and dy-
namic information into the same framework. It would cer-
tainly be very interesting if this analysis could be carried out 
using real biological systems, like gene expression data, in-
stead of using computer simulation models. 

ZIPF’S LAW IN GENE EXPRESSION 

 An extensive analysis on gene expression data using a 
large variety of organisms and tissues revealed that the 
abundances of expressed genes follow a power-law distribu-
tion [21] with exponent close to -1 (i.e., Zipf’s law [40]). 
The analyzed tissues were publicly available from SAGE 
(serial analysis of gene expression) database and included 
not only human normal cells but also different types of can-
cer tissues as well as embryonic stem cells. Furusawa and 
Kaneko investigated the possible universal features of cell’s 
reaction dynamics, and in particular, what kind of molecular 
dynamics can generate the observed power-law behavior. It 
is worth noticing that there is a relationship between the ex-
ponent of the power-law derived from a Zipf’s law and the 
exponent from a power-law probability distribution. The 
functional form of the Zipf’s law can be written as 

Z(r) ~ r b
           (6) 

 It indicates the frequency of an occurrence of an event 
relative to its rank r. Zipf’s law states that the frequency of 
the rth largest occurrence of the event (in this case gene ex-
pression ) is inversely proportional to its rank. Therefore, 
Furusawa and Kaneko computed the rank-ordered frequency 
distributions of expressed genes. In contrast, Ueda et al. fo-
cused on the probability distribution to find genes with ex-
pression level k 

P(k) ~ k            (7) 

 It can be shown that both exponents are related by means 
of the relationship: 

= 1+ (1 / b)            (8) 

which shows the agreement between both studies since Ueda 
et al. reported an exponent close to 2.  

 Their model defines a variety of chemicals (n1,…,nk), 
where ni denotes the number of molecules of the chemical 
species i. The chemical reaction dynamics is determined by 
considering a catalytic network composed of individual 
chemical reactions. This reaction network transforms nutri-
ent chemicals into proteins. Each reaction is catalyzed by a 
chemical l and transforms a chemical i to some other chemi-
cal j (i.e., i+l -> j +l ). An interesting feature of the model is 
that the results are robust to a uniform selection of reaction 
coefficients as well as the internal network structure (i.e., 
random or scale-free topologies) of the catalytic networks, 
which denotes the flexibility of the approach. 

 To simulate chemical reactions, it was necessary to con-
sider fundamental compounds that play the role of resources 
or nutrients supplied from the environment and that perme-
ated by diffusion through the membrane. Although these 
nutrient chemicals did not have a catalytic capability, they 
could be transformed into other chemicals by means of 
chemical reactions. Due to that some of the chemicals could 
not permeate through the membrane, the number of chemi-
cals inside the cell could grow and reach a threshold beyond 
which the cell divides into two and the number of molecules 
also splits among the two new cells. The mathematical ex-
pression for the reaction dynamics is described using the 
following rate equation: 

dni
dt

= Con( j,i,l) nj
j ,l

nl / N
2 Con(i, j ',l '

j',l'

) ninl' / N
2

+ D i (ni / V ni / N )

              (9) 

where Con(i,j,l) takes the value 1 if there is a reaction i + l -

> j + l and 0 otherwise. Next, indicates the coefficient for 

each chemical reaction and i  is 1 if the chemical i is pene-

trable and 0 otherwise. The last term shows the diffusion of 

chemicals through the membrane, where ni denotes the 

number of the ith chemical species in the environment and V 

shows the volume of the environment in units of initial cell 

size. The analysis and simulation results indicated that the 

reaction dynamics exhibited a critical value for the diffusion 

coefficient D=Dc. For values above this critical point, the 

flow from external environment is too rapid and the cells 

stops growing. Continuous cellular growth, including cell 
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divisions, are only maintained for values D Dc, where the 

internal reaction dynamics is faster than the external flow of 

nutrients. The results show that the slope in the rank-ordered 

number distributions of chemical species increases with the 

diffusion coefficient and only at the critical point D=Dc, it 

becomes a power-law with exponent -1. 

 Here it is interesting to discuss why this power-law is 
maintained in so complex and fluctuating medium. It was 
suggested that a hierarchical organization of catalytic reac-
tions is behind this scale-freeness behavior at the critical 
point. In this view, the generation of higher ranking chemi-
cals (those that are present in very high number (ni > 1000)) 
is catalyzed by lower ranking chemicals (those that are pre-
sent in lower number). Next, the latter chemicals are again 
catalyzed by chemicals that show a lower abundance, and 
this hierarchically organized sequence of reactions continues 
until the chemical species with lower number of molecules 
are reached (ni < 5). The presence of hierarchy in the reac-
tion dynamics leads to explain the observed exponent in the 
power-law distribution by means of a mean-field approxima-
tion (see Ref. [21] for details). 

 An important finding of the present model is that the ob-
served power-law distribution does not depend on the details 
on the model, such a kinetic ratio, reaction network configu-
ration or specific functional molecules. It rather means a 
universal property of the cell that is able to grow using envi-
ronmental nutrients and operate complex biochemical reac-
tions at a precise critical state. The fact that a critical point 
exists in reaction dynamics raises the question about its ori-
gin and why it has been assimilated by the cell system. This 
could be investigated by computing simulations of the cell 
growth at different diffusion values. The results showed that 
the growth ratio of a cell is maximized at D=Dc, indicating 
that a critical state is one of the best possible candidates for a 
probabilistic natural selection. Furthermore, and interest-
ingly, the computation of the degree of similarity, measured 
as the scalar product of k-dimensional vectors of chemical 
composition, between chemicals of the original cell and split 
cells, revealed that the critical state also maximizes this 
value. These findings suggest that evolutionary dynamics 
supports a critical state based on maximization principles of 
cell growth and chemical homogeneity and similarity. This 
research is interesting since it provides new insights on prin-
ciples closely related to dynamic process, instead of using 
only topological information.  

FLUCTUATIONS IN GENE EXPRESSION 

 Another recent finding on gene expression dynamics has 
shown that the distribution of gene expression fluctuations 
(i.e., standard deviation) in gene expression time series fol-
lows a power-law distribution [41]. This scaling indicates 
that while most genes exhibit a relatively low variation in 
expression level, a few genes show a highly variable pattern. 
The analyzed time series experiments included human cell 
data corresponding to cell-cycle-regulated transcripts meas-
ured using high-density oligonucleotide arrays and the cell 
cycle of the budding yeast. The observed fat-tailed distribu-
tion was observed in both human and yeast organisms. Then, 
the relationship between the dynamic information of gene 
expression time series and the underlying network structure 
was investigated. In order to elucidate a possible relationship 

between the fluctuation of genes and its topological charac-
teristic (i.e., node degree) and explain the power-law of fluc-
tuations, we propose a simple mathematical model based on 
stochastic formulation [42-44].  

 First, a set of nodes that correspond to genes is consid-

ered. Each node has an intrinsic value that reflects its expres-

sion level. Next, it is assumed these nodes may be intercon-

nected and that the node degree distribution follows a power-

law with exponent . Then, a general stochastic partial dif-

ferential equation is considered with the multi-dimensional 

stochastic variable Xt = (Xt
i ,..., Xt

M ) denoting the gene ex-

pression level and the multi-dimensional Wiener process 

represented by W(t) = (W1(t ),...,WM (t )) , where all the 

processes are assumed to be independent to each other. The 

model assumption is that each node i fluctuates as described 

by dWi (t ) . Moreover, fluctuations can be induced between 

adjacent nodes. We then can formulate the dynamic stochas-

tic partial differential equation (SPDE) for gene expression 

dynamics as follows: 

dXt
i
= μ i (mi Xt

i )dt + CdWi (t ) + D aij

j=1, j i

M

dWj (t )       (10) 

where μ
i
is the strength of the mean reverting mechanism, 

aij denotes the adjacency matrix and C and D are propor-

tional coefficients. In previous expression, the first term on 

the right hand side represents the mean-reverting mecha-

nism. This mechanism means that the gene expression level 

of a given gene i tends to fluctuate around its mean value m. 

The second term denotes a self-regulatory fluctuation (or 

loops). The last one takes into account the regulatory interac-

tion transmitted from the other nodes connected to node i. 

 By using Ito formula, the SPDE can be solved and the 

dynamic solution for gene expression system can be derived. 

Moreover, by computing the variance V[ Xt
i ]  when the sys-

tem reaches the steady state, it is possible to derive the fol-

lowing relationship between standard deviation and node 

degree for steady state: 

i
= V i

=
C 2

+ D2ki
2μ i         (11) 

 Then, by combining this equation with the power-law 

distribution of the underlying regulatory network k , we 

find: 

P( )
2D2( 1)

2 1(2μ) 1(1 C 2 / (2μ 2 ))
~

1
2 1     (12) 

 This relationship shows a power-law distribution for the 

distribution of fluctuations, similar to that found in the gene 

expression data. Furthermore, it allows us to establish a link 

between the degree exponent of the network and the expo-

nent of the node fluctuation . To be precise, it shows that 

the underlying network exponent can be computed using 
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only dynamic information by means of the expression 

= ( +1) / 2 . 

 The disproportionate number of highly fluctuating genes 
shown by the power-law of fluctuations resembles the exis-
tence of hub nodes observed in many biological networks [7, 
27, 45]. This result suggests a possible link between struc-
ture and dynamics to explore real system characterized by 
many fluctuating and networked elements, and supports 
previous findings on the power-law nature of gene regulatory 
networks [46-49].  

CONCLUSION 

 Systems whose structural information is difficult to col-
lect represent a challenge to reconstruct its underlying topol-
ogy. While metabolic networks are being reconstructed rap-
idly for hundreds of organisms, gene networks have not fol-
lowed the same development. Large-scale genomic tech-
nologies have made it possible to measure thousands of 
mRNA levels in parallel and collect their fluctuation patterns 
by means of time series experiments. However, it has not yet 
implied an accurate and extensive knowledge about the gene 
regulatory network structure for a significant large number 
of organisms. This is even more evident when the question is 
to elucidate the dynamical processes that occur in these net-
works [50]. Furthermore, the links between structural fea-
tures and dynamical processes remain largely uncovered. In 
the same way, as we have shown here, recent qualitative 
approaches focused on identifying the existence of universal 
laws and generic principles, have provided a novel and re-
markable insight into the cell’s functional organization and 
its dynamics. It is expected that more complex models and 
new methodologies that include and combine fundamental 
properties observed across species, may lead to understand 
the coupling between dynamic and structural characteristics 
and help to reconstruct and systematically identify large 
fragments of the cellular maps still hidden to the eyes of the 
world.  
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