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Abstract: Synchronized oscillations play an important role in many biological systems. In recent years, much work has 

been done on oscillating biomolecular systems, both experimentally and theoretically. A better insight into oscillation 

mechanisms, coupling strategies and related biological processes is gained by quantitative analysis. Here we summarized 

some of recent work on oscillation and synchronization in biological systems and reviewed the basic concepts of 

synchronization of coupled oscillators and dynamics on complex networks.  

Keywords: Systems biology, dynamical modeling, complex networks, oscillations. 

1. INTRODUCTION: OSCILLATION AND SYNCHR-

ONIZATION IN BIOMOLECULAR SYSTEMS 

 Timing is crucial for biological systems. Oscillation 
carries the information of time. Such property makes 
oscillation important in biology. In order to exhibit 
biological autonomous oscillations, two elements, namely 
negative feedback and time delay, are usually, but not 
always, essential [1, 2]. A negative feedback prevents the 
process from either going too fast or too slow while 
sufficient time delay allows for an overshoot. Together, they 
make oscillation possible. If either one is missing, the system 
loses the oscillating property. The classic population model 
illustrates this idea very well. If the species reproduces very 
fast, like bacteria, the carrying capacity of the environment 
has an instant effect on the population. The population will 
eventually come to a stable fixed point. However, if the 
species reproduces with a relatively longer period, like 
sheep-blowfly [3], a time delay  should be introduced into 
this dynamical equation of the system because the carrying 
capacity of the environment would affect the population after 
time . The experimental and simulation results show that 
the system obtains oscillatory behavior after the time delay is 
added. 

 Many biological oscillations are subject to negative 
feedback with time delay. One of the best examples comes 
from glycolytic oscillation [4-6]. The inhibition of ATP on 
the enzyme phosphofructokinase (PFK), which is an enzyme 
in reaction V1  in Fig. (1), is the negative feedback (Fig. 1). 
When the flow of the pathway is large, more ATP would be 
generated and in turn inhibits PFK to slow down the 
reaction. When the flux is small, however, ATP inhibition 
would decrease and the reaction accelerates. The  
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intermediate steps of glycolysis provide the other significant 
factor --- time delay. At high ATP concentration, the 
negative feedback slows down the reaction, but ATP 
concentration would not instantaneously drop because it 
takes time for the information of the deceleration of PFK 
catalysed reaction, which appears at the beginning in 
glycolysis, to pass through the pathway. Downstream 
intermediate reactions need to slow down one by one before 
ATP drops. Other biological systems also share the same 
mechanism. Respiratory oscillation is believed to be caused 
mainly by the inhibition of sulfate uptake, which appears at 
the beginning of the sulfate assimilation, by amino acid 
cystein, which is an end product of the pathway. This 
inhibition acts as the negative feedback while the 
intermediate steps provides the time delay [5, 7, 8]. p53-
Mdm2 oscillation is another example, in which gene 
regulation and gene expression delay are the two basic 
factors mentioned above. Intracellular calcium concentration 
oscillation in T-cells is also suggested to be related to the 
delayed interaction between calcium stores and CRAC 
channel (Ca2+ -released-activated Ca2+  channels) [9]. 
Translational and transcriptional feedback are found to 
enhance the circadian oscillations in cyanobacteria and 
plants [10-14]. More generally, the dynamics and modelling 
of a class of negative feedback loops, which is common in 
biological circuits, is studied recently and revealed some 
common features of this type of oscillation [1, 2]. Besides a 
negative feedback with time delay, additional feedbacks will 
result in a shape or period difference. The simplest case is 
genetic relaxation oscillator, a combined oscillatory effect of 
a fast positive feedback and a slow negative feedback. 
Instead of a smooth harmonic periodic curve, genetic 
relaxation oscillator leads to a pulse-like shape --- with a 
sudden rise and a slow drop. In addition, more than one 
negative feedback loops are sometimes employed to 
establish oscillation, like the Notch-Hes7-Lfng loops, found 
in somite segmentation, where three negative feedback loops 
together give rise to the oscillation in Hes7 and Lfng 
expression levels [15, 16]. 
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 Now we know the strategies biological systems 
employed to establish oscillations. However, many 
biological ensembles, usually consisting of hundreds, 
thousands or even more oscillators, carry out processes that 
require accurate timing. To carry information of time in a 
population of cells or a multicellular organism, oscillation of 
individual oscillators must be synchronized. Oscillations 
without synchronization would lead to an overall effect in a 
mess as each one may have its phase and intrinsic natural 
frequency. For example, consider hurrying people on a busy 
street in rush hours, each has a distinct pace regardless of the 
others --- some may be running because of being later, while 
others are in normal pace. Thus, the pace information of the 
overall population can be hardly told. Nevertheless, such 
disordered outcome is avoided in a marching troop where 
paces are all highly synchronized. 

 So, what are the strategies that biological systems 
employed to achieve synchronization? Generally speaking, 
two mechanisms are employed: information exchange 
between different oscillators, or entrainment to a common 
external stimulus. 

 To illustrate such strategies, imagine two people, say 
James and John, walking side by side and initially having 
different natural frequency, i.e. natural pace in this case. If 
they simply walk on their own, regardless of the other one's 
pace, they will end up in their intrinsic paces and can be 
treated separately as two independent subsystems. However, 
if they walk in such a way that one tends to follow the other 
one's pace, i.e. James speeds up if he sees John is faster, 
decelerates if John is slower and vice verse, a synchronous 
effect is likely to happen between these two subsystems. 
Another approach is that the two are walking in response to a 

whistle, i.e. an external stimulus we previously mentioned, 
paces will be unified to the whistle frequency. 

 Both mechanisms are often employed by biological 
systems. The synchronization of glycolytic oscillation within 
a cell population is believed to be related to the cell-cell 
communication with acetaldehyde (Aca) [17-19]. 
Respiratory oscillation may be, suggested by some 
experiments, closely related to the hydrogen sulfide 
mediation within the population [5, 7, 8]. Many other genetic 
oscillators, including some synthetic gene networks, are 
coupled by intercellular exchange of certain small 
compound. Information exchange between different 
oscillators, however, does not have to be intercellular. In 
vitro experiments indicate that KaiC monomers exchange 
between different hexamers, which belongs to intracellular 
signal exchange, couples the phosphorylation status of the 
ensemble within a cell. Still, intercellular information 
exchange is more common in biological systems. Similarly, 
the second synchronizing mechanism is also important and 
frequently encountered in biological systems. The most 
remarkable example is the circadian clock in fungal and 
plant [12, 20]. Light, as a common external stimulus that 
changes periodically day and night, enters the pathway by a 
photoreceptor and couples the corresponding oscillator. 

 So far, we have discussed the strategies that biological 
systems choose to establish oscillations and to synchronize a 
population of oscillators. If we treat each oscillator as a node 
and interaction between oscillators as an edge, a network is 
obtained. A crucial question is: how does the system 
behavior depend on the network structure? To explore it, we 
begin with the phase oscillator model and the simplest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Simplified metabolic network for modeling yeast glycolytic oscillations [5, 6]. 
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structure --- all-to-all connected network. After that, we will 
study the impact of complex network structure. 

2. PHASE OSCILLATOR MODEL 

 Research on synchronization started early in the 17th 
century when the famous physicist Christiaan Huygens 
observed a “kind of sympathy”, later known as synchroni-
zation, in two pendulum clocks “so constructed from two 
hooks embedded in the same wooden beam”. He later 
reported his observation that “the motions of each pendulum 
in opposite swings were so much in agreement that they 
never receded the least bit from each other and the sound of 
each was always heard simultaneously. Further, if this 
agreement was disturbed by some interference, it 
reestablished itself in a short time. For a long time I was 
amazed at this unexpected result, but after a careful 
examination finally found that the cause of this is due to the 
motion of the beam, even though this is hardly perceptible” 
[21]. 

 Despite the long history of the study of synchronization, 

a major breakthrough was made only decades ago by 

Winfree [22, 23] when he represented biological oscillators 

as simple phase oscillators, regardless of amplitudes as they 

are hardly influenced under weak coupling. With the phase 

oscillator model, each system is fully determined by a time-

dependent phase variable  whose evolution is influenced 

by the phases of other interacting oscillators. 

 The examples of two people walking in pace can be 

mathematically described by the following equations: 

 1 = 1 + F1( 1, 2 ),            (1) 

 2 = 2 + F2 ( 1, 2 ).            (2) 

 Here, 1 , 2  are the phases, or paces in this case, of two 

oscillators while 1 , 2  are their natural frequencies. F1  

and F2 , acting as the coupling term, are periodic functions of 

1  and 2  and have the property that if 1 > 2 , then F1 < 0 , 

F2 > 0 , and if 1 < 2 , then F1 > 0 , F2 < 0 . Such properties 

allow the phase difference, | 1 2 | , to get smaller and 

smaller so that the paces are eventually locked with | 1 2 |  

= const, i.e. the two oscillators are synchronized. 

 Synchronization by external signals is quantitatively 

described by 

 1 = 1 +G1( , 1 ),            (3) 

 2 = 2 +G2 ( , 2 ),            (4) 

where  is the phase of external stimulus. G1 , G2  are 

positive if 1 < , 2 < , and are negative if they are the 

other way round. 

 The above situations correspond to the two approaches to 

obtain synchronization. They can be further generalized into 

N  oscillators, where N  is usually very large in biological 

systems. The internal interaction coupling follows  

 

j = j +

l

Fj ,l ( j , l ).            (5) 

 The external stimulation coupling is governed by  

 
j = j +Gj ( , j ).            (6) 

 Here, Fj ,l  and Gj  have similar property as we mentioned 

in the two-oscillator case. 

 The periodic coupling functions F  and G  can be 

expanded into Fourier series. If we take the simplest form 

Fj ,l ( j , l ) = sin( l j )  and Gj ( , j ) = sin( j ) , we get 

the well known Kuramoto model [24]. A great deal of 

understanding of synchronization of oscillators has been 

obtained analytically by the Kuramoto model [24, 25]. 

3. SYNCHRONIZATION IN ALL-TO-ALL CON-

NECTED NETWORKS 

 In biology, there are many cases where interaction exists 

within every pair of oscillators. The best studied example is 

glycolytic oscillation. As previously introduced, each cell 

can establish glycolytic oscillation. Thus, every cell can be 

treated as an oscillator. Oscillators are coupled by a small 

metabolite Aca [17-19]. As a small metabolite that can 

penetrate the cell membrane freely, Aca secreted by each cell 

forms a pool in the extracellular environment (Fig. 1). The 

Aca pool oscillates as a result of the oscillation in each cell. 

Aca in the extracellular environment can also flow into each 

cell to influence their phases and amplitudes [17]. Each 

individual oscillator is interacting with another through the 

Aca pool. Therefore, the whole population forms an all-to-all 

connected network. Moreover, according to [30], Aca 

diffusion rate should be much faster than the time scale of 

intracellular dynamics, corresponding to a strong coupling 

among the cells. Many other biological systems, such as 

respiratory oscillation, also establish all-to-all connected 

network in a similar way. So what is the synchronizability on 

such all-to-all connected network? 

 Here, we look into this question through the Kuramoto 

model, which describes the synchronous behavior among a 

large number, N , of interacting phase oscillators. Each 

oscillator, fully determined by a phase variable j , has a 

natural frequency j  that obeys a distribution density g( ) . 

Then oscillators will run at their own natural frequencies, but 

with a phase-dependent feedback information from the rest 

that tends to couple the system. More precisely, the 

dynamics of the ensemble follows  

 

j = j +
K

N l=1

N

sin( l j ).           (7) 

 Here, K  is the coupling constant that quantifies the 

coupling strength within the system, determined, for 

example, by the diffusion rate of Aca in glycolytic 

oscillations. To be more illustrative, let us imagine the phase 

oscillators as a group of people running around a unit 

circular track with intrinsic angular velocity j . Then what 

Eq. (7) tells us is that for any two individuals j  and l , j  
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tends to slow down a little to wait for l  if j  is about half a 

circle ahead, and tends to speed up to catch up with l  if it is 

about half a circle behind, and vice verse for l . Eq. (7) 

follows the general form of Eq. (5). 

 Notice that every pair of oscillators in the ensemble 

interacts with each other in the same way -- with the same 

dynamic function and same coupling constant K . Thus, this 

all-to-all connected system (fully connected network) has 

symmetry and can be tackled with mean field theory [24, 

25]. To quantify the collective behavior of the population, an 

order parameter, r(t) , and an average phase, (t) , are 

introduced as  

rei =
1

N l=1

N

e
i l .             (8) 

 Interpreted into our illustrative racing example, the point 

rei  gives center of mass of the group of people. If the group 

is nonsynchronized, runners will be almost evenly 

distributed on the track with various angular velocities, and 

the center of mass will be close to r = 0 . On the other hand, 

if it is synchronized, the runners will end up running hand in 

hand with almost the same angular velocity and phase, and 

the center of mass is close to the circular track. Thus, r(t) , 
ranging from 0 to 1, is a measurement of the coherence of 

the system. r = 0  and r =1  correspond to the limiting cases 

of totally incoherent and phase-locked cases respectively. 

Multiply both sides of Eq.(8) by e
i j , the imaginary parts of 

it becomes  

r sin( j ) =
1

N l=1

N

sin( l j ).           (9) 

 Substituding it back into Eq.(7) gives rise to  

 
j = j + Kr sin( j ).          (10) 

 From Eq.(10), it is easy to see that the interactions 

between oscillators can be completely replaced by the 

influence of a mean-field through the quantities r  and . 

What's more, Eq.(10) shows that if the coupling strength K  

is very small, i.e. the second term on the right-hand side is 

negligible, then it is reduced to  

 
j = j .            (11) 

 Almost all the oscillators run at their natural frequencies, 

and the population is not synchronized. On the other hand, if 

K >>
j

r
, then the reduced form of Eq. (10) is  

 
j = Kr sin( j ).          (12) 

 j =  would be a stable fixed point which corresponds 

to such a system behavior that all oscillators are phase-

locked at a common frequency and the order parameter 

r 1 . In between, r  increases monotonically with K . 

When K  reaches a certain threshold, the order parameter 

will have a sudden increase as it is shown in Fig. (2). This is 

because of the positive feedback of r  in Eq.(10) -- when r  

is large, the second term Kr sin( j )  contributes more to 

make the system more coherent. As a result, r  increases and 

enhances the effect of Kr sin( j ) . 

 More detailed analysis and numerical solutions [24, 25] 

show that: 

(i) Oscillators that have natural frequencies j < Kr  

will end up with their phases locked, and they 

oscillate with a common frequency . 

(ii) Oscillators that have natural frequencies j > Kr  

will end up running at frequencies around their 

natural frequencies. 

 In many physical or biological systems, the behavior of a 

single oscillator can be hardly detected through experiments. 

Often, only the averaged quantity of the population is 

measurable. The overall oscillation depends on r , i.e. the 

coherence of the system to a great extend. Only when the 

system is highly synchronized, can the oscillation of the 

population occur, see Fig. (3). Therefore, synchronization of 

real biological systems can be manifested in experiments by 

pronounced oscillations of the concentration of certain 

measurable component. An example is shown in Fig. (4) for 

the yeast glycolytic oscillations. Here oscillations of the 

NADH fluorescence indicate synchronized oscillations with 

a population. When two populations with anti-phase 

oscillations are mixed, synchronization of the cells is 

temporally lost and the collective oscillations of the mixed 

population vanish for a while and appear soon when 

synchronization is re-established in the new population. For 

such a well studied system, a set of equations can be written 

down based on the metabolic network in Fig. (1) and 

synchronization can be studied quantitatively [4-6]. 

Importantly, most of the features of synchronization 

observed in experiments and in simulations of the models 

 

Fig. (2). The order parameter r  as a function of the coupling 

strength K . As the coupling constant increase, the system becomes 

more coherent. Here, the natural frequency distribution of this 500-

oscillator system follows the normal distribution with a bias of 50 
and variance of 10. 
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can be understood using the simple Kuramoto model in the 

all-to-all connected networks. 

 Now we have seen the system behavior in a simplest 

network structure, namely all-to-all connected network. 

Next, we are going to study the dependence of the 

synchronizability on some more complex network structures. 

4. SYNCHRONIZATION IN COMPLEX NETWORKS 

 So far, we have addressed of dynamics on all-to-all 

connected systems. However, there are also many cases 

where the architecture is much more complex. Networks, 

which are now a common representation in the natural and 

social sciences, are comprised of large number of nodes and 

edges. They may carry different meanings in various 

networks. Take a few biological networks for example. In 

metabolic networks, usually nodes are metabolites and edges 

are reactions. For neural networks, nodes can be a single 

neuron or a set of locally well connected neurons, and edges 

would be the interaction between them. In gene regulatory 

networks, nodes are mRNAs levels and the edges represent 

the causal influences between them. In protein interaction 

networks the nodes are proteins and the edges represent their 

molecular interactions. 

 The circadian rhythm in mammals, a daily variation of 

24h that regulates basic physiological processes [26], which 

is governed by a central clock in brain called 

suprachiasmatic nucleus (SCN) [27], serves as a good 

example of synchronization in complex networks. SCN is 

composed of a population of one kind of neuron cells known 

as clock cells, which are self-sustained oscillators. The clock 

cells are connected in a complex manner rather than fully 

connected. SCN establishes oscillation even without external 

signals, due to synchronization among the clock cells, but 

such oscillation has a longer period, about 25h in human, 

than a day [28]. In addition, SCN also employs the other 

strategy for synchronization, namely entrainment to an 

external stimulus. A subset of neurons in SCN receives light 

signals from the environment [29], which helps adjust the 

period and phase of SCN oscillation so that it is locked with 

local time. 

 Mammalian brain is a complex system where 

oscillations, synchronization and complex network topology 

are all relevant. Reliable databases are available now for 

large-scale systems level connectivity formed by long-range 

projections among cortical areas in the brains of several 

animals [31, 32]. Large-scale anatomical brain networks are 

densely connected, with very complex and heterogeneous 

connectivity patterns [33-35]. The activity of the brain 

observed experimentally by electroencephalographs (EEG) 

or functional magnetic resonance imaging (fMRI), is 

 

Fig. (3). Synchronization of an ensemble of phase oscillators, N = 500 , at different coupling strengths. (a) K = 35 , r = 0.083 , oscillators 

basically run at their own natural frequencies as the coupling strength is too weak. No periodic population behavior (average over individual 

time series) is observed. (b) K = 45 , r = 0.416 , some oscillators begin to synchronize, and averaged oscillation emerges. (c) K = 55 , 
r = 0.887 , almost all oscillators are in phase, thus the population average is basically the same as that of a single oscillator. 

 

 

 

 

 

 

 

 

 

Fig. (4). Synchronization of yeast glycolytic oscillations in mixing experiment. Two suspensions of yeast cells, each with a glycolytic oscil-

lation, were at first cultured separately. The phase difference between them was managed to set to 180 degrees. At a certain moment, mix the 

two suspensions. The oscillation of total nicotinamide adenine dinucleotide hydride(NADH) concentration was barely observable in the first 

1-2 min, but after around 5-6min, i.e. 7-8 periods of oscillation, a synchronized oscillation reappeared, with the same period and similar am-

plitude as the one before mixing. From [4]. 
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characterized by oscillations occurring over a broad 

spectrum and by synchronization over a wide range of 

spatial and temporal scales [36]. The interplay between the 

complex network architecture and complicated oscillations 

form complex functional networks of the brain [37-40]. 

Understanding large-scale organization of the brain from the 

viewpoint of complex networks [32, 41, 42] has become a 

multidisciplinary topic of great interest. 

 Such biological examples highlight the need for studying 

synchronization in networks with more complex 

architecture. The Kuramoto model on complex networks 

leads to a remarkable understanding for oscillatory 

ensembles. Coherence depends both on coupling strength 

and network topology. So, before going into detailed 

dynamical analysis, it is necessary to have a brief 

introduction on complex network topology. More systematic 

reviews of complex networks can be found in [43-45]. In our 

case, i.e. Kuramoto model on complex network, each node 

represents an oscillator, and edges stand for the interactions. 

Network topology usually influences the dynamic behavior 

in various ways. Two common and well discussed types of 

network are scale-free network [46] and small-world 

network [47]. Scale-free networks have the property that the 

nodes' degree distribution follows power law which indicates 

that no particular scale can be set to the network. Small-

world network arises from the famous small world 

experiment, which states that one can be reached from any 

other within a few steps or edges as in fully random 

networks, even though the network is highly clustered 

locally. Such networks usually require several long range 

connections between different communities in which nodes 

are densely connected. When phase oscillators are placed on 

a complex network, such as scale-free network or small-

world network, interesting coherence phenomena emerge 

within the ensemble. 

 In order to obtain a quantitative analysis, the generalized 

Kuramoto model is introduced, which is governed by  

 

i = i +
K

N j

aij sin( j i ),          (13) 

where aij  are the elements of the connectivity matrix. When 

all aij =1(i j)  the original Kuramoto model in all-to-all 

connected network is recovered. 

 Studies on synchronization in complex topologies were 

first reported for small-world and scale-free networks. These 

works are mainly numerical explorations of the onset of 

synchronization beyond which groups of nodes oscillating 

coherently first appear. The surprising results show that a 

critical point exists when the network is described by a 

power-law connectivity distribution with an exponent > 3  

[48]. Beyond such critical point, the system is fully 

synchronized. 

 For degree heterogeneous random networks, in which the 

degree distribution can be broad, but the connections among 

the oscillators are otherwise random, theoretical approaches 

argued that the critical coupling is proportional to k / k2  

[49]. As a result, different topologies should give rise to 

distinct critical points to synchronization. In particular, the 

path towards synchronization in Erdös-Renyi random 

networks and scale-free networks has been compared in [50] 

(see Fig. 5). In fact, the onset of synchronization first occurs 

for scale-free networks. As the network substrate becomes 

more homogeneous, the critical point shifts to larger values 

and in this sense the networks seem to become less 

synchronizable. However, the amplitude of the collective 

oscillation of the network is larger in Erdös-Renyi random 

networks. The reason is that in scale-free network, the nodes 

with large degrees are more strongly influenced by the mean 

field so that synchronization among these subsets of nodes 

can be achieved with weaker couplings. When the coupling 

becomes stronger, almost all the oscillators are synchronized 

in Erdös-Renyi random networks, but many nodes with 

small degrees in the scale-free networks are still not 

synchronized, leading to a smaller collective oscillation.  

 The topology of complex networks not only influences 

the transition point to coherence, but also changes the route 

that the oscillators undergo the transition to synchronization. 

In globally coupled oscillators, before the system achieves 

global locking of frequency and phases, oscillators with 

frequencies close to each other first form a synchronized 

cluster. However, in a complex network, such effective 

cluster is not solely determined by frequency, but can also be 

strongly influenced by the network topology. As seen in Fig. 

(5), the transition to complete synchronization, r =1 , is 

sharper for homogeneous networks. The reason is that the 

formation of effective synchronization clusters is different in 

random and scale-free networks, as shown in Fig. (6). In 

scale-free network, both links and nodes are incorporated 

together to the largest synchronized cluster formed by hubs, 

while for random network, links are added to the nodes 

already belonging to a cluster. 

 

Fig. (5). Comparison of the transition to synchronization in random 
network (ER) and scale-free (SF) networks. Here  is the coupling 

strength. r  is the order parameters over the all the nodes and rlink  

measures the synchronization between the nodes with network 
connections. From [50]. 
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 As we discussed before, there are two schemes for 

synchronization: mutual interaction and entrainment by 

external stimulus. Many biological processes are subjected to 

both schemes. An good example is circadian rhythms 

generated by complex network of neurons in SCN [27] 

where the neurons are coupled through a complex network 

connectivity and part of the neurons are subject to direct 

influence of photic input [29]. The entrainment of coupled 

phase oscillator networks by external pacemaker has been 

studied in [51, 52]. It is shown that the entrainment 

frequency window of a network decreases exponentially 

with the depth of the network. The depth is defined as the 

average forward distance of the elements from the 

pacemaker. These results show that only shallow networks 

can be effectively locked by the pacemaker. This analysis is 

of great importance to understand the function of biological 

systems in a changing environment. 

 The concept of synchronization on complex networks has 

been expanded significantly over the last few years [53]. It is 

not just restricted to the study of phase oscillators only. In 

fact, a more general situation, where the oscillators can 

display more complicated oscillations, such as chaotic 

oscillators, can be considered. In such cases, even two 

identical oscillators with different initial conditions will 

follow totally different trajectories in phase space and thus 

do not synchronize. However, coupling between the 

oscillators can stabilize the trajectory and the oscillators can 

follow the same orbits in phase space while the orbits can 

still be very complex and chaotic. Theoretically, the 

complete synchronization of a whole network of identical 

oscillators is suitable for theoretical analysis and has been 

the focus of research in the field of dynamics of large scale 

complex networks. Even though such theoretical setting may 

not be very close to real systems, the analysis provides 

fundamental insights on how the network topology 

determines dynamical patterns on networks. Therefore, we 

provide a brief review of this topic as well, and the readers 

can refer to [53] for a more comprehensive review. 

 The dynamics of each oscillator is governed by a set of 

equations, which are assumed to be identical for all 

oscillators.  

 
x = F(x).          (14) 

 In a network, each oscillator would send out signals, 

generated by an output function from the state x , H (x) , 

which is again assumed to be oscillator-independent. We can 

take the yeast glycolytic oscillation as an example. The time 

evolution of metabolites (the system variables x ) in Fig. (1), 

such as ATP/ADP and NAD/ NADH, is described by a set of 

kinetic equations [5, 6], which form the functions F(x) . The 

concentration of Aca which depends on the other metabolites 

and is responsible for the cell-cell communication, is the 

output function H (x)  of the oscillators. Of course, in such a 

real systems, the cells cannot be fully identical, and the 

interaction is assumed to be all-to-all, but not a complex 

network. 

 The dynamics of a network of N  oscillators takes the 

form  

 

xi = F(xi ) +
i=1

N

aijwij [H (x j ) H (xi )]        (15) 

= F(xi )
j=1

N

GijH (x j ),          (16) 

where aij = 0  or 1 represents the network topological 

connections, and wij  is the weight of the link. The 

combination of them is shown by the coupling matrix 

G = (Gij ) , which is a weighted matrix and is in general 

asymmetrical even though the underlying topological matrix 

A = (aij )  can be symmetrical. Mathematically, the complete 

synchronization state is a solution of this equation where the 

states of all the oscillators in the network are exactly the 

same, i.e.  

 
x1(t) = x2 (t) =…= xN (t) = s(t),         (17) 

where s(t) , the synchronized trajectory, is the same as that 

of a single oscillator, i.e., it is a solution of Eq. (14). 

However, such a synchronization state can be stable or 

unstable. It is stable when the system will return back to this 

state if it is perturbed away from it; otherwise, it is unstable 

if any small perturbation will make it impossible to come 

 

Fig. (6). Synchronized clusters for several values of  for the two cases of random and scale-free networks. From [50]. 
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back. Therefore, the central question in the study of 

synchronization in complex networks is: under what 

condition the complete synchronization state is stable so that 

it can be realized starting from some initial conditions of the 

system. 

 The analysis is based on the observation of two coupled 

oscillators shown in Fig. (7a), where an oscillator x  is 

driven by another oscillator s . In general, the 

synchronization state x(t) = s(t)  is stable and can be 

achieved if the coupling strength is suitable within a range of 

1 < < 2  for typical oscillators F . This is a typical case 

for nonlinear oscillators, especially chaotic oscillators, that 

synchronization state of two coupled oscillators only 

becomes stable when the coupling strength  is larger than 

the threshold 1 , and usually should be smaller than another 

threshold 2 . The thresholds 1  and 2  depends on the 

particular oscillators F  , as well as the coupling function 

H , and in some cases the synchronization region can be 

unbounded, i.e., 2 = . Theoretically, using mode-

decomposition, we can break a complex network in Eq. (16) 

effectively into N 1  pairs of oscillators, all connected to a 

single oscillators s , as shown in Fig. (7b). The connection 

strength for these pairs is now l  (
 
l = 2,3, ,N ), where 

l  is the l th eigenvalue of the network coupling function G  

(we always have 1 = 0 ). To achieve the complete 

synchronization state of the network in Eq.(17), all the 

N 1  oscillators in Fig. (7b) should be synchronized by the 

common forcing s(t) . This means that 1 < l < 2  for all 

l . Listing all the eigenvalues of the network and ordering 

them, we get the condition for synchronization of a whole 

network as [54]: 

 1 < 2 3 N < 2 .         (18) 

 From the above equation, it is clear to see how network 

structure affects synchronization of oscillators. Because we 

hope to have a smaller coupling strength  to satisfy the 

first condition 2 > 1 , the larger the minimal non-zero 

eigenvalue 2  is, the easier the network could be 

synchronized. On the other hand, if N  is too large, it is 

possible that for any  satisfying the first condition 

2 > 1 , the second condition N < 2  cannot be fulfilled 

and synchronization cannot be achieved at all. To find a 

region of  where the synchronization could be realized, 

the ratio of the eigenvalues must satisfy 

R = N / 1 < 2 / 1 . This analysis shows that when 

considering complex networks, the synchronization 

dynamics becomes quite complicated: the same set of 

oscillators ( 1  and 2  fixed) may be switched from 

synchronized to non-synchronized state if the network 

wiring changes ( R  changed) and vice verse. 

 The eigenvalue l  is determined by the network structure 

(i.e., the coupling matrix G ), and we mentioned in the 

above, the synchronization thresholds 1  and 2  depends 

on the properties of individual oscillators. Let us first 

consider unweighted network where the links have the same 

strength wij =1 . For a regular network with only local 

connections, 2 0  so that the oscillators cannot be 

synchronized in large networks since the eigenratio R  

and the synchronization condition in Eq. (18) cannot be 

satisfied. Including a few shortcuts we can change the non-

synchronizable regular network to synchronizable small-

world networks because now 2  is non-zero and R  is finite. 

Randomizing connections of networks can improve 

synchronization because 2 kmin , the minimal degree of 

the networks. Therefore, increasing the average connectivity 

to have larger kmin  can also lead to enhanced 

synchronization in random networks. However, if the 

network possesses modular structure, adding links inside the 

modules will increase the modularity and enhance 

synchronization within the modules, but reduce the 

synchronizability of the whole network [55]. If the links are 

added to enhance the communication between the modules, 

synchronization of the whole network can be enhanced. In 

biological networks, a balance between these two situations 

seems to be crucial: the formation of network modules 

enables the modules to perform specialized functions 

through stronger synchronization within the modules. But 

some relatively weak degree of synchronization among the 

modules allows the system to perform integrated function 

from specialized subsystems. 

 The other limiting effect, the largest eigenvalue N , is 

mainly determined by the maximal degree kmax  of the 

network. Therefore it is difficult to synchronize degree 

heterogeneous networks such as the scale-free networks, if 

2  is finite for given oscillators [56]. Nevertheless, if 2  is 

infinite, then heterogeneity degree will favor synchronization 

because the hubs will synchronize first [57]. 

 The picture changes if we take the coupling weights into 

consideration. In a recent work, we have shown that for 

random enough networks without significant local 

connections and modular architectures, the eigenvalues are 

determined by the intensity of the nodes [58], in particular,  

2 Smin , N Smax .          (19) 

where Smin  and Smax  are the minimum and maximum of the 

intensity S  of the nodes respectively, defined as 

Si = j
aijwij , i.e., the total input weight of the a node from 

the other nodes in the network. Therefore, we can understand 

that the dynamical properties of the network can be changed 

by rearranging weights of the links. For example, if we 

normalize the weights of the nodes according to the degree 

wij =1/ ki , the intensity becomes uniform ( Si =1  for all the 

nodes) and the network can obtain the best synchronizability 

[59]. 

 If the system cannot achieve the complete 

synchronization state because such a state is no longer a 

solution of the system in Eq. (16), for example, when the 
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coupling is not strong enough, when the elements are 

nonidentical and diverse or when there are environmental 

perturbations, the dynamics of the network can display 

complicated patterns shaped by the underlying network 

structure [57]. We can obtain meaningful understanding by 

analyzing the eigenvectors of the coupling matrix. In scale-

free network, the hubs having large degrees receive strong 

mean field influence from the rest of the networks thus can 

form effective synchronization clusters [57]. In modular 

networks, the dynamical interaction brings the nodes to form 

effective clusters of different levels depending on the 

strength of interactions [60]. 

 Analyzing dynamical interaction in such large-scale 

networks from the viewpoint of synchronization can provide 

insights into various dynamical properties of large-scale 

biological networks. Recent investigation of synchronization 

dynamics of brain networks [61-63] have shed light on the 

challenging problem of the structure-function relationship in 

neural systems. The modelling and analysis using 

sophisticated neural population oscillators show a transition 

to synchronization very similar to that in Kuramoto model, 

even in the presence of strong noisy perturbations. The 

results show that noise-like dynamical fluctuations is 

structured which is consistent with experimental observation 

of complex functional networks in the brain [37-40]. 

Importantly, the synchronization analysis has shown that the 

functional connectivity is closely related to the underlying 

complex network organization, which would influence 

significantly the response of the brain neural systems to 

external stimulus. The interplay between structured 

background activity and the external signals should be 

relevant in many large-scale biological networks, such as 

metabolic networks, regulatory networks and protein 

interaction networks. For example, in metabolic networks, 

we typically consider the steady balance of the flux. 

Nevertheless, the flux may fluctuate in time, and the 

fluctuation of different metabolites is supposed to be 

correlated due to the underlying network interaction. 

Studying synchronization in networks can provide 

understanding of the relationship between such functional 

interaction patterns and the underlying network substrate, 

and provide insight into how biological system can function 

in a changing environment. 

CONCLUSION 

 Timing in many biological systems is achieved by 
oscillation. Theoretical models, like Kuramoto model, can 
reveal some important features of synchronization of 
oscillators connected with simple or complex network 
architecture, which helps us achieve better understanding on 
oscillation and synchronization in biological systems. 

 Much effort is devoted and some interesting directions 
emerge recently. For synchronization that involves cell-cell 
communication, a small compound that can penetrate cell 
membranes is usually found. The concentration of such 
compound, i.e. the synchronizer, in the extracellular 
environment is closely related to the cell density. When cell 
density is high, the corresponding concentration is high and 
vice verse. Different extracellular concentrations sometimes 
can result in different behaviors of individual. In other 
words, this compound is the language used between 
individual cells. High concentration of synchronizer helps 
cells tell each other to have a population behavior. On the 
contrary, low concentration allows cells to tell each other to 
switch from population behavior into individual behavior. 
Such study [17, 64, 65], known as quorum sensing, may help 
us reveal the mystery of how bacteria sense cell density in 
order to choose between individual or population behavior. 
Furthermore, study on quorum sensing may even lead us to 
the understanding of the cell-cell communication in 
multicellular organisms. Besides quorum sensing, recent 
discussions indicate that the study on oscillation motif may 
help us to have a better global picture of the classified 
oscillators. Instead of studying a specified oscillator, 
oscillation motif, which is more general, focuses on the 
dynamics of a general class of oscillators. The oscillation 
pattern of one kind of such motifs, negative feedback loop, is 
well discussed lately, and simulation results of such model 
match experimental results from various different gene 
oscillators belonging to the same type of motif [1, 2]. The 
dynamics of oscillation and synchronization of other genetic 
oscillators, classified into relaxation oscillator, smooth 
oscillator and stochastic oscillator, is also frequently 
discussed in recent years [66]. The oscillation motif study 
still mainly focuses on genetic oscillators. This type of study 
can help further discover the relationship between network 
topologies and dynamical behavior. Apart from the above 
directions, better quantitative understanding of the 
oscillatory behavior gives rise to the applications in synthetic 

 

Fig. (7). Schematic plot of the eigenmode decomposition in network. (a) For 2 unidirectionally coupled nodes; (b) for a network of N  

coupled nodes. From [53].  
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biology. Synthetic genetic oscillators are rapidly produced in 
recent years [64, 67, 68], which could make more practical 
usage in different fields. 

 All in all, study on oscillations and synchronization in 
biological systems has made great progress, both 
qualitatively and quantitatively, in the past few years. Many 
promising approaches are being applied and better 
understanding of this biological process may be around 
corner. 
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