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Abstract: Different data sources have been used to learn gene function. Whereas combining heterogeneous data sets to 

infer gene function has been widely studied, there is no empirical comparison to determine the relative effectiveness or 

usefulness of different types of data in terms of gene function prediction. In this paper, we report a comparative study of 

yeast gene function prediction using different data sources, namely microarray data, phylogenetic data, literature text data, 

and a combination of these three data sources. Our results showed that text data outperformed microarray data and phylo-

genetic data in gene function prediction (p<0.01) as measured by sensitivity, accuracy, and correlation coefficient. There 

was no significant difference between the results derived from microarray data and phylogenetic data (p>0.05). The com-

bined data led to decreased prediction performance relative to text data. In addition, we showed that feature selection did 

not improve the prediction performance of support vector machines.  
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1. INTRODUCTION 

 Functional genomics studies gene function on a large 
scale by conducting parallel analysis of gene expression for a 
large number of genes [1, 2]. This research is a natural suc-
cessor to the genome sequencing efforts such as, for exam-
ple, the Human Genome Project, and is made possible by the 
DNA microarrays. Such arrays, which allow researchers to 
simultaneously measure the expression levels of thousands 
of different genes, produce overwhelming amounts of data. 
In response, much recent research has been concerned with 
automating the analysis of microarray data [3]. Current ap-
proaches mainly concentrate on applying clustering tech-
niques to the expression data, in order to find clusters of 
genes demonstrating similar expression patterns. The as-
sumption motivating such search for co-expressed genes is 
that simultaneously expressed genes often share a common 
function. However, there are several reasons that cluster 
analysis alone cannot fully address this core issue [3].  

 High-throughput gene and protein assays give a view into 
the organization of molecular cellular life through quantita-
tive measurements of gene expression levels [1]. Increasing 
quantities of high-throughput biological data have become 
available to assess functional relationships between gene 
products on a large scale. Different data sources can be used 
to predict gene function.  

 First, gene function can be inferred from DNA microar-
ray expression data. DNA microarray is based on the  
assumption that genes with similar functions have similar 
expression profiles in cells. This is utilized by inductive 
learning methods that predict the function of genes that have  
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an unknown function (unknown genes), from their expres-
sion-similarity with genes with a known function (known 
genes) [3]. Currently, techniques pursued for microarray data 
analysis concentrate on applying clustering methods directly 
on the expression data. However, cluster analysis alone can-
not fully address the issue of gene function prediction [3]. 
Furthermore, many high-throughput methods sacrifice speci-
ficity for scale. Whereas gene coexpression data are an ex-
cellent tool for hypothesis generation, microarray data alone 
often lack the degree of specificity needed for accurate gene 
function prediction [4]. 

 Secondly, gene function can be inferred from phyloge-
netic profiles. The complete genomic sequences of human 
and other species provide a tremendous opportunity for un-
derstanding the functions of biological macromolecules [5]. 
Phylogenetic profiles are derived from a comparison be-
tween a given gene and a collection of complete genomes. 
Each profile characterizes the evolutionary history of a given 
gene. There is evidence that two genes with similar phyloge-
netic profiles may have similar functions, the idea being that 
their similar pattern of inheritance across species is the result 
of a functional link [6].  

 Finally, one more data source that can be used to infer 
the gene function is the scientific literature. The function of 
many genes is described in the literature. By relating docu-
ments talking about well understood genes to documents 
discussing other genes, we can predict, detect, and explain 
the functional relationships between the genes that are in-
volved in large-scale experiments. A number of groups are 
developing to organize genes. The web tool, PubGene, finds 
links between pairs of genes based on their co-occurrence in 
MEDLINE abstracts [7]. Liu et al. [8, 9] developed a tool to 
retrieve functional keywords automatically from biomedical 
literature for each gene, and then cluster the genes by shared 
functional keywords. Using a similarity-based search in 
document space, Shatkay et al. [3] developed an approach 
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for utilizing literature to establish functional relationships 
among genes on a genome-wide scale. 

 Different data sources have been used to infer gene func-
tions [3-9]. Furthermore, heterogeneous data sources have 
been combined to predict gene functions [10-12]. However, 
there is no empirical comparison to determine the relative 
effectiveness or usefulness of different types of data in terms 
of gene function prediction. In this paper, we performed a 
comparative study for functional prediction of Saccharomy-
ces cerevisiae genes from different data sources. Data from 
three different types of sources were compared: microarray 
data, phylogenetic profile data, biomedical literature data, 
and a combination of the three heterogeneous data sets. The 
goal was to determine the relative effectiveness or usefulness 
of this data in terms of gene function prediction. 

2. METHODS 

2.1. Data Sources 

1. The first data set derives from a collection of DNA 
microarray hybridization experiments [13]. Each data 
point represents the logarithm of the ratio of expres-
sion levels of a particular gene under two different 
experimental conditions. The data consists of a set of 
79-element gene expression vectors for 2,465 yeast 
genes [4]. These genes were selected by Eisen et al. 
[13] based on the availability of accurate functional 
annotations. The data were generated from spotted ar-
rays using samples collected at various time points 
during the diauxic shift [14], the mitotic cell division 
cycle [15], sporulation [16], and temperature and re-
ducing shocks [4]. 

2. In addition to the microarray expression data, each of 
the 2,465 yeast genes is characterized by a phyloge-
netic profile [5]. In its simplest form, a phylogenetic 
profile is a bit string, in which the Boolean value of 
each bit indicates whether the gene of interest has a 
close homolog in the corresponding genome. The pro-
files employed in this paper contain, at each position, 
the negative logarithm of the lowest E-value reported 
by BLAST version 2.0 [17] in a search against a 
complete genome, with negative values (correspond-
ing to E-values greater than 1) truncated to 0. Two 
genes in an organism can have similar phylogenetic 
profiles for one of two reasons [4]. First, genes with a 
high level of sequence similarity will have, by defini-
tion, similar phylogenetic profiles. Second, for two 
genes which lack sequence similarity, the similarity in 
phylogenetic profiles reflects a similar pattern of oc-
currence of their homologs across species [4]. This 
coupled inheritance may indicate a functional link be-
tween the genes, on the hypothesis that the genes are 
always present together or always both absent be-
cause they cannot function independently of one an-
other [4].  

3. In this paper, the experiments are carried out using 
gene functional categories from the MIPS Compre-
hensive Yeast Genome Database (CYGD) 
(http://mips.helmholtz-
muenchen.de/genre/proj/yeast/index.jsp). The data-
base contains several hundred functional classes, 
whose definitions come from biochemical and genetic 

studies of gene function [4]. For each of the genes, 
the abstracts used to curate the CYGD were extracted 
and formed a document. Abstracts may occur in more 
than one document if they refer to multiple genes. All 
the documents form a document database. Since each 
document represents one gene, we use the words 
document and gene interchangeably. 

 The abstracts in each document were tokenized, stemmed 
by Porter’s stemming algorithm, and filtered by a stop list 
[9]. The standard term frequency-inverse document fre-
quency (TFIDF) function was used [18] to assign the weight 
to each word in the document. TFIDF combines term fre-
quency (TF), which measures the number of times a word 
occurs in the gene’s set of abstracts (reflecting the impor-
tance of the word to the gene), and inverse document fre-
quency (IDF), which measures the information content of a 
word – its rarity across all the abstracts in the background 
set. The inverse document frequency (IDF) is calculated as: 

a
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where 
aidf  denotes the inverse document frequency of 

word a in all the documents; 
adf denotes the number of 

abstracts in which word a occurs; and N is the total number 

of abstracts in all the documents. 

 TFIDF is defined as: 

aa

g

a

g idftftfidf =
           (2) 

a

gtfidf denotes the weight of the word a to the gene g; 

a

gtf the number of times word a occurs in gene g. 

 To distribute the word weights over the [0, 1] interval, 

the weights resulting from TFIDF were often normalized by 

cosine normalization, given by 

( )
=

=
||

1

2W

s

s

g

a

ga

g

tfidf

tfidf
Weight

             (3) 

where |W| denotes the number of words in the abstracts of 

gene g. 

 Each document, which corresponded to one gene, was 

modeled as an M-dimensional TFIDF vector, where M is the 

number of distinct words in the document. Formally, a 

document was a vector (tfidf1, tfidf2, … , tfidfM), where tfidfi 

is the tfidf value of word i.  

4. These three types of data mentioned above are com-

bined by concatenating the three types of vectors to 

form a single set of vectors. This is also called early 

integration or feature integration [4]. We used feature 

integration because feature integration considers the 

various types of data at once, making a single predic-

tion for each gene with respect to each functional 

category [4].  

 Prior to learning, the gene expression, phylogenetic pro-
file, text TFIDF vectors, and the combined data are adjusted 
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to have a mean of 0 and a variance of 1. The gene expression 
and phylogenetic profile data were from [4]. 

2.2. Classifier 

 In this study, Support Vector Machine (SVM) was used 
for gene function prediction. SVMLight v.3.5 was used [19]. 
SVM has been widely used in gene and protein function pre-
diction [12, 20]. Linear kernel and polynomial kernel were 
applied. 

2.3. Cross-Validation of the Models 

 The normal method to evaluate the prediction results is to 
perform cross-validation on the prediction algorithms [21]. 
Tenfold cross-validation has been proved to be statistically 
good enough in evaluating the prediction performance [22, 
23]. In this paper, each of the data sets (microarray, phyloge-
netic, text mining, and the combined data sets) was parti-
tioned into ten subsets with both positive and negative genes 
spread as equally as possible between the sets. Each of these 
sets in turn was set aside while a model was built using the 
other nine sets. This model was then used to classify the 
genes in the tenth set, and the accuracy computed by com-
paring these predictions with the actual category. This proc-
ess was repeated ten times and the results averaged [24].  

2.4. Feature SELECTION 

 The feature selection method we used in this study is 

MIT correlation score, which is also known as the signal-to-

noise score [25] that helps to eliminate the “noisy” features. 

For a given feature i, we compute the mean and standard 

deviation of that feature across the positive examples 

(
+

i
and 

+

i
, respectively) and across the negative examples 

(
i

and 
i

, respectively). The MIT correlation score is de-

fined as MIT (i) = 
+

+

+
ii

ii
μμ || . When making selection, we 

simply take those features with the highest scores as the most 

discriminatory features. For the text data, the features are the 

terms or the distinct words. 

2.5. Performance Measures 

 Several statistics were used as performance measures: 

(1). Accuracy: the proportion of correctly classified in-

stances: 

Accuracy = FNFPTNTP

TNTP

+++

+

          (4) 

where true positives (TP) denote the correct predictions of 

positive examples; true negatives (TN) are the correct pre-

dictions of negative examples; false positives (FP) represent 

the incorrect prediction of negative examples into the posi-

tive class; and false negatives (FN) are the positive examples 

incorrectly classified into the negative class.  

(2). Sensitivity: the percent of positive examples which 

were correctly classified; 

Sensitivity = FNTP

TP

+             (5) 

(3). Specificity: the percent of negative examples which 

were correctly classified; 

Specificity = FPTN

TN

+            (6) 

(4). Positive Predictive Value (PPV): the percentage of 

the examples predicted to be positive that were cor-

rect: 

PPV = FPTP

TP

+             (7) 

(5). Negative Predictive Value (NPV): the percentage of 

the examples predicted to be negative that were in 

fact negative. 

NPV = FNTN

TN

+             (8) 

(6). Correlation Coefficient (CC): It is also known as Sim-

ple Matching Coefficient (SMC). CC depends not 

only on sensitivity and specificity, but also on PPV 

and NPV. 

CC = 
)(*)(*)(*)(

)*()*(

FNTNFPTPFPTNFNTP

FPFNTNTP

++++
   (9) 

 Paired t-tests were performed to evaluate whether the 
results obtained from the four data sets were significantly 
different from each other. 

3. RESULTS 

 The database contains different functional classes, whose 
definitions come from biochemical and genetic studies of 
gene function. The experiments reported here used 8 CYGD 
functional categories which have the most genes available in 
the CYGD data set as of July 30

th
, 2009, (Table 1).  

Table 1. The Gene Function Categories Studied in this Paper 

Function 

Category 

Function 

1 Metabolism 

10 Cell cycle and DNA processing 

11 Transcription 

12 Protein synthesis 

14 Protein fate (folding, modification, destination) 

20 Cellular transport, transport facilitation and transport 

routes 

34 Interaction with the cellular environment 

42 Biogenesis of cellular components 

 

3.1. Gene Function Prediction from Microarray, Phylo-

genetic, and Text Data 

 The results of gene function prediction from different 
data sources were shown in Fig. (1), Fig. (2), Table 2, and 
Table 3.  
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 When microarry data was used and linear kernel was 
applied for gene function prediction, all the genes in each 
category, except category #12, were mis-classified (true 
positive = 0), which can be observed, in Fig. (1), that the 
sensitivity values were 0’s. Similar results can be observed 
when phylogenetic data was used and linear kernel was ap-
plied to classify gene function except category #1 (Fig. 1). 
When linear kernel was applied and text data was used, the 
results derived from text data significantly outperformed 
those derived from microarray data and phylogenetic data 
(p<0.01). SVM can correctly classify the function of the 
genes in category #12 with an accuracy of 0.963 and a sensi-
tivity of 0.7. 

 When polynomial kernel was applied, the results derived 
from text data outperformed those derived from microarray 
data and phylogenetic data (p< 0.05) except category #1 
(Fig. 2). No significant difference was observed between the 
gene function prediction results derived from microarray 
data and phylogenetic data (p >0.05) (Fig. 2). 

 For text data, linear kernel outperformed polynomial ker-
nel (p<0.01) as measured by sensitivity, PPV, accuracy, and 
CC. Polynomial kernel worked significantly better than lin-
ear kernel (p<0.01) for microarray data, and phylogenetic 
data (Fig. 1, Fig. 2, Table 2, and Table 3). A linear-SVM can 
outperform a polynomial-SVM because the noise contained 
in the dataset can be amplified by the high-order polynomial 
kernel into the feature-space, which may weaken the classi-
fier‘s discriminative power. 

3.2. Gene Function Prediction from Combined Data 

 From the Fig. (1), Fig. (2), Table 2, and Table 3, we can 
see that using combined data to classify yeast gene function 
did not improve the SVM performance. When linear kernel 
was applied, the results derived from text data significantly 
outperformed those derived from the combined data, as 
measured by sensitivity (p<0.01) (Fig. 1A), accuracy 

(p<0.05) (Fig. 1C), and CC (p<0.05) (Table 2). There was no 
significant difference between the combined data results, 
microarray data results, and phylogenetic data results 
(p>0.05). 

 Similar to microarray data and phylogenetic data, poly-
nomial kernel worked significantly better than linear kernel 
(p<0.01) for combined data (Fig. 1, Fig. 2, Table 2, and Ta-
ble 3). However, the results derived from text data with lin-
ear kernel still outperformed those derived from combined 
data with polynomial kernel (p<0.01). 

3.3. Feature Selection 

 In this study, the MIT was used as the feature selection 

method to test if feature selection can improve SVM per-

formance on gene function prediction using text data. Linear 

kernel was applied. The experiments demonstrated that, 

MIT, a naïve feature selection algorithms, which does not 

take into account the heterogeneity of the data, did not yield 

improved prediction performance (Fig. 3). Highest sensitiv-

ity, accuracy, PPV, NPV, and CC were obtained when all the 
features were used.  

4. DISCUSSION 

 A primary goal in biology is to understand the molecular 

machinery of the cell. The sequencing projects provide us 

one view of this machinery. A complementary view is pro-

vided by data from microarray hybridization experiments. 

High-throughput techniques, such as DNA microarray and 

sequencing, accompanied by an increase in the number of 

publications discussing gene-related discovery, provide the 

researchers great resources to understand the gene function 

better. In this paper, we classified yeast gene functions from 

different data sources. CYGD database categorizes the yeast 

genes into different categories, of which we analyzed eight 
(category numbers 1, 11, 14, 20, 12, 10, 42, and 34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The prediction performance, sensitivity (A), specificity (B), and accuracy (C), of the linear-kernel support vector machines with 

different data sets as inputs. P: phylogenetic data; M: microarray data; T: text data; C: combined data. The series 1, 11, 14, 20, 10, 12, 42, 

and 34 are the functional categories tested in this study. 
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1 0.238 0 0.462 0.300

11 0 0 0.499 0.191

14 0 0 0.490 0

20 0 0 0.669 0

10 0 0 0.487 0

12 0 0.493 0.7 0.497

42 0 0 0.397 0

34 0 0 0.237 0

P M T C
0.94

0.95

0.96

0.97

0.98

0.99

1.00

1 0.97 1 0.975 0.963

11 1 1 0.981 0.963

14 1 1 0.986 1

20 1 1 0.984 1

10 1 1 0.991 1

12 1 0.992 1 0.990

42 1 1 0.992 1

34 1 1 0.993 1

P M T C 0.700

0.750

0.800

0.850

0.900

0.950

1.000

1 0.777 0.739 0.839 0.789

11 0.774 0.774 0.872 0.789

14 0.818 0.818 0.896 0.818

20 0.821 0.821 0.927 0.821

10 0.842 0.842 0.911 0.842

12 0.878 0.931 0.963 0.930

42 0.893 0.893 0.928 0.893

34 0.913 0.913 0.927 0.913

P M T C
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 Although the idea of combining heterogeneous data sets 
to infer gene function is not new [4], there is no empirical 
comparison to determine the relative effectiveness or useful-
ness of difference types of data in terms of gene function 
prediction. In this paper, we report a comparative study of 
yeast gene function prediction using different data sources, 
namely microarray data, phylogenetic data, literature text 
data, and a combination of these three data sources. 

4.1. Effect of Different Data Sources on Gene Function 
Prediction 

 The results showed that, using SVM as the classifier, text 
data can provide better prediction results than microarray 
data and phylogenetic data, particularly when linear kernel 
was applied (Fig. 1, and Table 2) as measured by sensitivity, 
PPV, NPV, accuracy, and CC. These results confirmed that 
the CYGD predictions we tested are not learnable from 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The prediction performance, sensitivity (A), specificity (B), and accuracy (C), of the polynomial-kernel support vector machines 

with different data sets as inputs. P: phylogenetic data; M: microarray data; T: text data; C: combined data. The series 1, 11, 14, 20, 10, 12, 

42, and 34 are the functional categories tested in this study. 

Table 2. The Prediction Performance (PPV, NPV and CC) of support Vector Machines (Linear Kernel) with Different Data Sets 

as Inputs 

Kernel 

Type 

Functional 

Category 

Phylogenetic Data Microarray Data Text Data Combined Data 

  PPV NPV CC PPV NPV CC PPV NPV CC PPV NPV CC 

1 0.718 

(0.08) 

0.782 

(0.04) 

0.320 

(0.07) 

- 0.739 

(0.03) 

* 0.876 

(0.06) 

0.837 

(0.03) 

0.553 

(0.04) 

0.739 

(0.07) 

0.795 

(0.04) 

0.374 

(0.07) 

11 - 0.774 

(0.03) 

* - 0.774 

(0.00) 

* 0.884 

(0.03) 

0.871 

(0.01) 

0.601 

(0.07) 

0.567 

(0.02) 

0.804 

(0.01) 

0.253 

(0.03) 

14 - 0.818 

(0.00) 

* - 0.818 

(0.00) 

* 0.890 

(0.05) 

0.897 

(0.01) 

0.610 

(0.07) 

- 0.818 

(0.00) 

* 

20 - 0.821 

(0.01) 

* - 0.821 

(0.01) 

* 0.906 

(0.04) 

0.932 

(0.01) 

0.739 

(0.04) 

- 0.821 

(0.00) 

* 

10 - 0.842 

(0.00) 

* - 0.842 

(0.00) 

* 0.914 

(0.03) 

0.912 

(0.01) 

0.625 

(0.06) 

- 0.842 

(0.00) 

* 

12 - 0.878 

(0.00) 

* 0.894 

(0.08) 

0.934 

(0.01) 

0.632 

(0.07) 

0.997 

(0.01) 

0.960 

(0.01) 

0.817 

(0.05) 

0.883 

(0.05) 

0.934 

(0.01) 

0.629 

(0.05) 

42 - 0.893 

(0.01) 

* - 0.893 

(0.01) 

* 0.866 

(0.10) 

0.932 

(0.01) 

0.554 

(0.04) 

- 0.893 

(0.04) 

* 

 

Linear 

34 - 0.913 

(0.00) 

* - 0.913 

(0.00) 

* 0.765 

(0.03) 

0.932 

(0.01) 

0.387 

(0.04) 

- 0.913 

(0.00) 

* 

-: means no positive was predicted; *: means no value was calculated because of being divided by zero. 
Each value is an average value over ten-fold cross-validation. Values in the brackets are the standard errors. Bold values mean significant difference. 

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 0.356 0.193 0.133 0.294

11 0.096 0.133 0.159 0.294

14 0.020 0.109 0.209 0.122

20 0.121 0.002 0.348 0.086

10 0.013 0.128 0.162 0.174

12 0.097 0.557 0.547 0.557

42 0.004 0.053 0.219 0.083

34 0.009 0.019 0.110 0.010

P M T C
0.940

0.950

0.960

0.970

0.980

0.990

1.000

1 0.969 0.967 0.993 0.965

11 0.982 0.970 0.997 0.965

14 0.998 0.997 0.994 0.996

20 0.995 0.999 0.995 0.997

10 1 0.989 0.998 0.985

12 0.997 0.989 0.999 0.995

42 0.998 0.999 0.993 0.996

34 1 1 0.997 1

P M T C
0.700

0.750

0.800

0.850

0.900

0.950

1.000

1 0.808 0.764 0.768 0.788

11 0.782 0.781 0.808 0.788

14 0.819 0.835 0.851 0.837

20 0.839 0.820 0.880 0.834

10 0.843 0.853 0.866 0.856

12 0.887 0.937 0.944 0.942

42 0.891 0.897 0.910 0.898

34 0.914 0.915 0.920 0.914

P M T C
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Table 3. The Prediction Performance (PPV, NPV and CC) of Support Vector Machines (Polynormial Kernel) with Different Data 

Sets as Inputs 

Kernel 

Type 

Functional 

Category 

Phylogenetic Data Microarray Data Text Data Combined Data 

  PPV NPV CC PPV NPV CC PPV NPV CC PPV NPV CC 

1 0.807 

(0.06) 

0.809 

(0.03) 

0.446 

(0.05) 

0.651 

(0.11) 

0.772 

(0.05) 

0.258 

(0.11) 

0.901 

(0.11) 

0.764 

(0.03) 

0.278 

(0.06) 

0.744 

(0.05) 

0.794 

(0.04) 

0.372 

(0.06) 

11 0.640 

(0.08) 

0.789 

(0.01) 

0.180 

(0.04) 

0.580 

(0.07) 

0.794 

(0.01) 

0.192 

(0.09) 

0.950 

(0.05) 

0.803 

(0.01) 

0.329 

(0.07) 

0.744 

(0.05) 

0.794 

(0.04) 

0.372 

(0.06) 

14 0.533 

(0.07) 

0.820 

(0.00) 

0.08 

(0.06) 

0.874 

(0.09) 

0.834 

(0.01) 

0.262 

(0.10) 

0.903 

(0.08) 

0.850 

(0.01) 

0.382 

(0.10) 

0.881 

(0.11) 

0.836 

(0.01) 

0.286 

(0.06) 

20 0.855 

(0.12) 

0.839 

(0.01) 

0.277 

(0.07) 

0.100 

(0.33) 

0.821 

(0.01) 

0.03 

(0.04) 

0.950 

(0.04) 

0.876 

(0.02) 

0.528 

(0.06) 

0.857 

(0.15) 

0.834 

(0.01) 

0.234 

(0.06) 

10 0.300 

(0.44) 

0.843 

(0.00) 

0.162 

(0.09) 

0.687 

(0.14) 

0.858 

(0.01) 

0.251 

(0.07) 

0.859 

(0.32) 

0.864 

(0.01) 

0.329 

(0.15) 

0.684 

(0.14) 

0.864 

(0.01) 

0.294 

(0.08) 

12 0.873 

(0.20) 

0.888 

(0.01) 

0.255 

(0.08) 

0.889 

(0.08) 

0.942 

(0.01) 

0.671 

(0.07) 

0.991 

(0.02) 

0.941 

(0.01) 

0.711 

(0.05) 

0.944 

(0.05) 

0.942 

(0.01) 

0.697 

(0.07) 

42 0.050 

(0.17) 

0.893 

(0.01) 

0.04 

(0.02) 

0.717 

(0.37) 

0.898 

(0.01) 

0.178 

(0.10) 

0.821 

(0.16) 

0.914 

(0.01) 

0.391 

(0.07) 

0.743 

(0.24) 

0.900 

(0.01) 

0.220 

(0.03) 

 

Polynomial 

34 0.200 

(0.42) 

0.914 

(0.00) 

0.105 

(0.09) 

0.300 

(0.51) 

0.915 

(0.01) 

0.224 

(0.10) 

0.585 

(0.43) 

0.922 

(0.01) 

0.224 

(0.16) 

0.200 

(0.02) 

0.914 

(0.00) 

0.209 

(0.04) 

Each value is an average value over ten-fold cross-validation. Values in the brackets are the standard errors. 

either microarray data or phylogenetic data [4]. Pavlidis et 
al. [4] pointed out that the failure to classify the gene func-
tions from microarray data or phylogenetic data was not a 
failure of SVM model. Rather, for many functional catego-
ries, the data are simply not informative. The microarray data 
is only informative if the genes in the category are coordi-
nately regulated at the level of transcription under the condi-
tion tested. Simultaneous expressed genes may not always 
share a function. On the other hand, genes that are function-
ally related may demonstrate strong anti-correlation in their 
expression levels, (a gene may be strongly suppressed to 
allow another to be expressed) [3]. Similarly, phylogenetic 
data are limited in resolution in part because relatively few 
genomes are available. In particular, among the genomes 
from which phylogenetic profiles were derived, all but one is 
bacterial. Thus it is difficult to generate useful phylogenetic 
profiles for genes that are specific to eukaryotes [4].  

 One complement data source we can use to classify gene 
functions is literature data. With the advancement of genome 
sequencing techniques comes as an overwhelming increase 
in the amount of literature discussing the discovered genes 
[26]. As an illustrative example, the number of PubMed 
documents containing the word gene published between the 
years 1970-1980 is a little over 35,000, while the number of 
such documents published between the years 1990-2000 is 
402,700 – over a ten fold increase [3]. The gene functions 
have been described in the literature. Therefore, we believe 
that the gene functions can be classified by revealing coher-
ent themes within the literature. Content-based relationships 

among abstracts are then translated into functional connec-
tions among genes. Liu et al. [8, 9, 25] developed a system 
to retrieve functional keywords automatically from biomedi-
cal literature for each gene, and then cluster the genes by 
shared functional keywords. The keywords extracted by the 
system revealed a wealth of potential functional concepts, 
which were not represented in existing public databases [27]. 
The system also clustered the genes into appropriate func-
tional groups based on the functional keyword association 
[8, 9]. 

 Our gene function prediction by text data strategy is simi-
lar to the document categorization in information retrieval. In 
our case, each document is the collection of abstracts which 
are related to a specific gene. Document categorization, de-
fined as classifying documents into categories according to 
their topics or main contents in a supervised manner, orga-
nizes large amounts of information into a small number of 
meaningful categories and improves the information retrieval 
performance either via term-weighting, or query expansion.  

4.2. Combining Heterogeneous Data Sets for Gene Func-
tion Prediction 

 The problem of learning from multiple information 
sources has been extensively studied in machine learning 
where it is called as multi-modal learning. Generally there 
are two types of multi-modal learning: feature level integra-
tion and semantic integration [28]. The feature integration 
combines the information at the feature level and performs 
learning in the joint feature space. The correlation structure 



Comparative Study of Yeast Gene Function Prediction The Open Bioinformatics Journal, 2011, Volume 5    75 

between different sources can be discovered via learning. 
The semantic integration, on the other hand, first builds indi-
vidual models based on separate information sources and 
then combines these models via some processes say, mutual 
information maximization [29]. Li et al. [28] listed four rea-
sons why semantic integration was preferred over feature 
integration. However, Pavlidis et al. [4] argued that feature 
integration considers the various types of data at once, mak-
ing a single prediction for each gene with respect to each 
functional category. They also argued that the performance 
of SVMs when data types are combined and a single hy-
pothesis is formed is superior to combining different inde-
pendent hypotheses [4].  

 In this study, we used feature integration. The results 
showed that the combined data did not improve the predic-
tion results, especially compared with text data. Our results 
confirmed the conclusion drawn by Pavldis et al. [5] when 
they studied gene function learning from microarray data and 
phylogenetic data. Learning from different data types is not 
always a good idea. The combined data led to decreased pre-
diction performance relative to an SVM trained on a single 
type of data (e.g. text data). In this case, the decrease occurs 
when one data type provides much more information than 
the others, indicating that the inferior data types (e.g. mi-
croarray and phylogenetic data) contribute noise that disrupts 
learning [5].  

4.3. Effect of Feature Selection on Gene Function Predic-
tion 

 In this study, MIT correlation score was used as the fea-
ture selection method. By treating each feature independ-

ently, MIT correlation score does not take into account pos-
sible correlations between features. But MIT has the advan-
tages of simplicity and efficiency. Prediction performance 
declined as features are removed. MIT has been successfully 
applied to gene expression data analysis for cancer predic-
tion [25]. 

 The results of the experiments indicated that SVM did 
not benefit from feature selection (Fig. 2), which had been 
reported in text prediction [30-32]. Taira and Haruno [33] 
compared SVM and decision tree in text categorization, and 
the best average performance was achieved when all the fea-
tures were given to SVM, which was a distinct characteristic 
of SVM compared with the decision tree learning algorithm. 
Joachims [19] argued that, in text prediction, feature selec-
tion was often not needed for SVM, as SVM tends to be 
fairly robust to overfitting and can scale up to considerable 
dimensionalities. SVM avoids overfitting by choosing the 
maximum margin separating hyperplane from among the 
many that can separate the positive from negative examples 
in the feature space. Also, the decision function for classify-
ing points with respect to the hyperplane only involves dot 
products between points in the feature space. Because the 
algorithm that finds a separating hyperplane in the feature 
space can be stated entirely in terms of vectors in the input 
space and dot products in the feature space, a support vector 
machine can locate the hyperplane without ever representing 
the space explicitly, simply by defining a function, called a 
kernel function, that plays the role of the dot product in the 
feature space. This technique avoids the computational bur-
den of explicitly representing the feature vectors [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Effect of feature selection in combination of SVM classifier on sensitivity (A), specificity (B), PPV (C), NPV (D), accuracy (E), 

and correlation coefficient (F). Note the different scales on the vertical axes. The horizontal axes refer to the number of features used by 

SVM to predict the gene function. Error bars indicated the standard errors. The series 1, 11, 14, 20, 10, 12, 42, and 34 are the functional cate-

gories tested in this study. 
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5. CONCLUSION 

 The results in this paper showed a rather counter-intuitive 
result that the literature text data can provide more accurate 
prediction results over microarray and phylogenetic data in 
case of the CYGD database containing all the genes of yeast 
whose function is already known. Combining different data 
types did not provide better performance than using only a 
single data type, text data. 
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