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Abstract: The Miyazawa-Jernigan (MJ) contact potential for globular proteins is a widely used knowledge-based 
potential. It is well known that MJ’s contact energies mainly come from one-body terms. Directly in the framework of the 
MJ energy for a protein, we derive the one-body term based on a probabilistic model, and compare the term with several 
hydrophobicity scales of amino acids. This derivation is based on a set of native structures, and the only information of 
structures manipulated in the analysis is the contact numbers of each residue. Contact numbers strongly correlate with 
layers of a protein when it is viewed as an ellipsoid. Using an entropic clustering approach, we obtain two coarse-grained 
states by maximizing the mutual information between coordination numbers and residue types, and find their differences 
in the two-body correction. A contact definition using sidechain centers roughly estimated from C  atoms results in no 
significant changes.  
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1. INTRODUCTION 

 Comprehending the nature of the physical interactions 
between different types of amino acids is crucial for 
understanding protein folding and structure prediction. The 
physics-based potential functions are based on full atomic 
models and therefore require high computational cost. 
Furthermore, they need not fully capture all of the important 
physical interactions. The known three-dimensional 
structures of proteins contain a large amount of information 
on the forces stabilizing proteins. Potential functions and the 
rules governing protein stability can be revealed from 
statistical analysis on known structures. By assuming that 
frequently observed structural features correspond to low-
energy states, the observed statistical frequencies of various 
features, after comparing with that in a reference state or a 
null model, are converted into effective free energies [1-5]. 
A recent review on the theory and methods used to derive 
such potentials is in ref. [6]. Although such potentials, 
implicitly incorporating many physical interactions, do not 
necessarily reflect real energies, their application in protein 
folding, protein-protein docking, and protein design has 
achieved impressive successes. 

 Minimal models of proteins, which have a significantly 
reduced number of degrees of freedom and give a coarse-
grained yet accurate description of polypeptide chains, are 
widely used to obtain insights into folding mechanisms of 
proteins, as well as in structure prediction and sequence 
design. Minimal models also enhance the statistical 
significance of knowledge-based potentials. In the simplest 
model, only the -carbon atoms are considered. In many 
applications, a sidechain is represented by a center attached 
to a C  atom. For a coarse-grained representation of 
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polypeptide chains, interaction potentials, either contact- or 
distance-dependent, can be extracted from a database of 
known structures. 

 The Miyazawa-Jernigan (MJ) contact potential for 
globular proteins is a widely used knowledge-based potential 
[2, 7]. In the MJ model, a residue is represented by its side-
chain center, which for Gly is taken as the position of its C  
atom. A pair of residues are defined to be in contact if they 
are not nearest neighbors in sequence and the distance 
between their centers is less than 6.5Å. The number of 
different types of residue-residue contacts can be counted 
directly from the structure of proteins. Miyazawa and 
Jernigan also introduced an effective solvent molecule, 
which has the volume of an average residue, to consider the 
residue-solvent contacts for explicitly including the solvent 
effect. In this model, residues make the same number of 
contacts (coordination number) on average, with either 
effective solvent molecules or other residues. By means of 
the approximation that the solvent and solute molecules are 
in quasi-chemical equilibrium and an approximate treatment 
of the effects of chain connectivity, Miyazawa and Jernigan 
estimated their interresidue contact energies from known 
crystal structures of globular proteins. 

 The high correlation between MJ effective contact 
energies eab  and the energies required to transfer amino 

acids from water to less polar environments is well known. 
Energy eab  between residue types a  and b  may be 

decomposed into two components: the desolvation terms 
ea0 , eb0  and the mixing term eab , and then written as 

eab = eab ea0 eb0 , where subscript ‘0’ is for the solvent or 

water. Among different types of contacts, the average 
difference of the desolvation terms is about 9 times larger 
than that of the mixing terms. This means that contact 
energies eab  are dominant by the ‘one-body’ desolvation 
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term. Similar conclusion can be drawn by an eigenvalue 
decomposition analysis of the MJ matrix (eab )  [8]. 

 If energy eab  came completely from the ‘one-body’ term, 

i.e. eab = a + b
, the one-body 

a
 would be well estimated 

as  

a =
1

210 b,c

1

2
eab + eac ebc( ).

          (1) 

(The difference between 
a

 and the least square estimation 

of Ref. [9] is insignificant.) The error of this one-body 
approximation is measured by the standard deviation of these 
210 estimated values. The values 

a
 and their standard 

deviations are listed in Table 1. Indeed, the one-body 
approximation is quite good. (The estimation includes the 
special case: 

a = eaa / 2 = ea0 .) It is our main purpose here 

to explore the origin of the one-body term and the two-body 
correction based on a probabilistic consideration, rather than 
to improve the potential function. The MJ energies 

ij
e  were 

first derived in 1985. Later in 1996 the energies were 
updated based on a much larger database, but no significant 
effects of the database size were seen. We shall focus on the 
1996 version of eij . 

2. METHODS 

 To make a close correspondence with the 1996 version of 
eij , in the present study we use the PDB_select25 of 2001 

Sep Release, instead of the current version. The database 
contains representative protein structures with sequence 
identity less than 25% [10]. We exclude those with chain 
lengths less than 50 and those annotated as membrane 
proteins. The final number of structures used in the analysis 
is 1274. The center representing the i -th residue ai  of a 

protein is a point along the joint line from the C  atom of ai  

to its C  atom and at a distance 
 

 from the C  atom, where 

values of 
 

 depend on the residue types, and, taken from 
Park & Levitt, have been listed in Table 1 [11]. For Gly, 

 = 0 , i.e. the center is just its C  atom. A pair of residues 

are held to be in contact if the distance between their centers 

are less than 6.5Å  and one is not the nearest neighbors of 
the other along the chain. 

2.1. A Probabilistic Model 

 According to Miyazawa and Jernigan, the total contact 
energy of a protein native structure is defined as the 
difference between the energy of its native structure and that 
of its extended conformation:  

E =
a,b

eabnab ,             (2) 

where 
ab

n  is the number of contacts or ‘sides’ between 

residue types a  and b . If eab  can be contributed completely 

to the one-body term, i.e. eab = a + b
, we have  

E =
i

ai i ,             (3) 

where i  is the site index, ai  indicates the residue type at site 

i , and 
i
 is the contact number of ai  or its coordination 

number. In this form of the total contact energy, the only 
structural information is { i} , the coordination number at 

each site. Correspondingly, it is reasonable to assume that 
the joint probability P(A,S)  for the sequence 

 
A = a1a2…an  

to take its native structure S  is  

P(A,S) =
i

P(ai , i ),            (4) 

where P(ai , i )  is the shorthand notation for 

P(a = ai , = i ) , and P(a, )  is the probability for a residue 

of type a  to have  contacts. We may associate an energy 

U  with the logarithmic probability:  

U = logP(A,S) =
i

log P(ai , i )[ ].          (5) 

 Usually, instead of the probability, in statistical modeling 
some probability ratio with respect to certain null model or 
reference state is considered. Correspondingly, the energy U  
is associated with a log-odds. 

Table 1. Estimated Single-Body  from the MJ Matrix, their Standard Deviations , and the Distances 
 

 between the C  Atoms 

of Residues and their Representative Centers 

  C M F I L V W Y A G 

  2.19  2.60  3.43  3.05  3.44  2.51  2.55  2.16  1.26  0.91  

 0.27 0.25 0.25 0.27 0.27 0.26 0.20 0.17 0.18 0.18 

 
(Å)  2.0 3.0 3.4 2.3 2.6 2.0 3.9 3.8 1.5 0.0 

  T S N Q D E H R K P 

  1.03  0.72  0.66  0.76  0.55  0.53  1.34  0.81  0.20  0.86  

 0.18 0.20 0.25 0.18 0.36 0.33 0.20 0.30 0.33 0.16 

 
(Å)  1.9 1.9 2.5 3.1 2.5 3.1 3.1 4.1 3.5 1.9 
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 The proper reference state concerns the problem under 
study. For example, the gapless threading and the Rosetta’s 
fragment assembling should use different reference states. 
One essential feature of the MJ model missing in P(A,S)  or 

U  is the solvent or ‘water’ effect. In the MJ model residues 
are in contact not only with other residues, but also with 
‘unseen’ solvent. To connect U  with E  of Eq. (3), we have 
to distribute ui = logP(ai , i )  to its 

i
 sides in some way. 

We have inspected the sign of log[P(a | ) / P(a)] , where 

P(a)  is the fraction of residue type a  in the entire database, 

and found that the sign changes only once when  increases 
from zero for all residue types except Thr. In the picture of 
MJ, = 0  may be interpreted as the case when a residue is 
fully exposed to the solvent. A very large  then 
corresponds to the case when a residue is deeply buried into 
the interior of a protein. Thus, for a given residue type a , at 

a
*  where P(a | a

* ) = P(a) , residue a  would freely contact 

with either other residue or water. Increasing  from *  by 
1 means that a contact with water is converted to that with 
residue. Regarding the case when the coordination number 
of residue type a  is always 

a
*  as the reference state, we 

may estimate the contribution 
a

u  of a contact ‘emitted’ from 

residue type a  to the energy U  as  

ua =
N(a, )

N(a)

1

a
* log

P(a | )

P(a)
,          (6) 

where N(a, )  is the total number of residues of type a  and 

with coordination number  in the entire database, and 

N(a) = N(a, ) . 

 We have only a few discrete integer values of . 
Usually, at any , P(a | )  never exactly equals P(a) . We 

determine *

a
 by interpolation as:  

a
* = +

P(a) P(a | )

P(a |
+
) P(a | )

,           (7) 

where 
+
= +1  and [P(a |

+
) P(a)][P(a | ) P(a)] < 0 . 

2.2. Two-Body Correction 

 So far, we have ignored any explicit interaction between 
residues. To include the interaction between residue pairs, 
we may consider  

P(A,S) =
i

P(ai , i )
j ai

Q(aj | ai , i ) /Q(aj )

1/2

,         (8) 

where ai  denotes the contacts of ai , Q(aj | ai , i )  is the 

probability for a residue of the type aj  to be in contact with 

ai  conditional on the coordination number of ai  being 
i
, 

Q(aj )  is the probability for a residue of type aj  to be in 

contact with any other residues, and power 
1

2  is used to 

avoid double counting of pairs. We can then derive the two-

Table 2. Counts N (a, ) , the Total Number of Residues of Type a  with Coordination Number Being  

   0   1   2   3   4   5   6   7   8   9   10  11  12  13 

 A   938  1613  2302  2493  2580  2678  2368  1608  650  227  53  10  2  1 

V   358  738  1374  1895  2324  2822  2762  2103  977  355  77  20  1  0 

C   34  103  251  443  658  839  765  525  236  82  18  1  0  0 

D   1332  2206  2975  2523  1810  1271  713  397  156  42  8  1  0  0 

E   1871  3473  3528  2590  1658  1037  570  272  91  29  4  0  0  0 

F   279  556  729  1101  1628  1959  1597  932  341  95  23  2  0  0 

G   1218  2421  2869  2672  2450  1999  1428  762  328  111  25  4  0  0 

H   415  693  855  830  933  733  522  259  82  20  4  0  0  0 

I   262  523  973  1408  1990  2422  2375  1725  925  324  68  11  1  0 

W   118  200  340  438  556  679  514  279  104  17  3  1  0  0 

K   1956  3309  3444  2519  1779  943  427  157  52  13  2  0  0  0 

L   400  1055  1664  2285  3190  3737  3580  2462  1135  360  79  9  1  0 

M   269  411  522  592  686  826  692  481  255  87  18  2  2  0 

N   988  1747  2108  1906  1460  1069  681  340  146  42  10  2  0  0 

Y   315  600  770  1071  1434  1590  1322  725  241  73  9  1  0  0 

P   1492  1785  2116  1589  1302  1022  669  336  140  41  5  2  0  0 

Q   886  1787  1955  1655  1245  822  497  208  88  18  7  1  0  0 

R   1152  2114  2327  1971  1564  1128  603  306  110  18  6  0  0  0 

S   1049  1995  2727  2497  1992  1611  1219  636  272  68  16  1  2  0 

T   668  1497  2518  2412  1993  1628  1177  701  338  102  35  4  0  2 
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body energy uab  for correction to ua  as  

uab, =
1

2
log Q(b | a, ) /Q(b)[ ],          (9) 

where the dependence of uab  on  has been explicitly 

indicated. 

3. RESULTS AND DISCUSSION 

 The fundamental numbers for analysis are counts 
N(a, ) , the total number of residues of type a  with 

coordination number being , in the entire database. We do 
not count each protein separately. These counts are listed in 
Table 2. As seen from the table, the counts at large  are 
small. We have to combine them into a big bin. Specifically 
speaking, each  from 0 to 8 is a bin while all 9  form a 
single bin of = 9 . Undetermined residue types B, Z and X 
are included in counting , but their statistics is not 
considered. By estimating P(a | )  directly from N(a, )  

(without adding pseudocounts), we calculate 
a
*  using Eq. 

(7) and then the one-body ua  using Eq. (6). Their values 

(together with the average coordination numbers 
a

) are 

listed in Table 3. 

3.1. A Binary Partition of Residue States According to 

the Coordination Number 

 Our analysis on the two-body correction is based on 
counts like N(a, ;b) , which is the number of the ‘sides’ 

emitted from a residue of type a  with coordination number 
 and reaching at a residue of type b . There are 

20 20 = 400  types of pair ab , when distributed to 
different  the counts become too small to be statistically 
significant. Thus, a coarse-graining is considered to give a 
binary partition of these . When we reduce  into two 
classes, say ‘0’ and ‘1’, the mutual information between 
residue type and coordination state  

I(a; ) =
a,

P(a, ) log
P(a, )

P(a)P( )
 

I(a; ) =
a

P(a,‘0’) log
P(a, ‘0’)

P(a)P(‘0’)
+

a

P(a,‘1’) log
P(a,‘1’)

P(a)P(‘1’)
,        (10) 

where P(‘0’) =
< cP( ) , P(‘1’) = cP( ) , the 

definitions of P(a,‘0’)  and P(a,‘1’)  are analogous, and c  is 

the parameter for partition. It has been proven that the 
coarse-grained mutual information I(a; )  is never greater 

than the original one, and an optimal binary partition can be 

obtained by maximizing I(a; )  with respect to c  [12]. We 

find that the optimal partition is at c = 4 , so we may call 

‘0’ the ‘exposed’, and ‘1’ the ‘buried’. Note that c  is very 

close to the values 
a
*  listed in Table 3. (For Thr, its sign of 

log[P(a, ) / P(a)]  changes twice; only the one closest to 
c = 4  is kept.) 

3.2. Additivity of the Contribution to ua  from Each 

Contact 

 In the calculation of ua  according to Eq. (6), it is implied 

that the contribution to 
a

u  from each contact is additive. To 

examine the additivity, we plot ua, = log[P(a | ) / P(a)]  

versus  in Figs. (1a and 1b), where = 9  is actually the 
combined bin of 9 . The additivity corresponds to the 
linearity of the curves. Roughly speaking, this linearity is 

still recognizable, but two slopes separated at c = 4  are 
seen rather clearly for most residue types. 

3.3. Comparison Among ua , MJ’s 
a

 and some 

Hydrophobicity Scales 

 The one-body terms 
a

 of MJ’s contact energies have 

been attributed to the hydrophobic effect. We notice that the 
correlation between MJ’s 

a
 and MJ’s ‘average contact 

energies’ ea  is very high (with the correlation coefficient 

Table 3. The Values 
a
*  for the ‘Neutral’ Reference State, the Average Coordination Number 

a
, and the One-Body Energies ua  

Estimated According to the Probabilistic Model 

  C M F I L V W Y A G 

 
a
*  3.69 4.11 3.55 3.83 3.71 3.90 3.47 3.44 3.70 4.34 

a
  5.02  4.27  4.50  4.94  4.74  4.80  4.27  4.26  4.04  3.30 

ua  0.34  0.19  0.31  0.31  0.28  0.25  0.23  0.24  0.10  0.08  

  T S N Q D E H R K P 

 
a
*  4.43 3.84 3.80 3.66 3.72 3.26 5.15 3.64 3.37 2.91 

a
  3.51  3.25  2.95  2.74  2.84  2.41  3.39  2.78  2.31  2.76 

ua  0.08  0.12  0.17  0.21  0.21  0.31  0.07  0.18  0.29  0.20  
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r = 0.996 ), and the strong correlation between ea  and the 

experimental transfer free energies of amino acids have been 
examined [7]. 

 Several hydrophobicity scales for amino acid side chains 
based on statistical analyses of residue distributions of 
known structures have been reported [13-16]. In these 
analyses it is assumed that residues are distributed between 
the surface and interior of the protein in the same way they 
would be distributed between water and a solvent with a 
polarity similar to that of the protein’s interior. For example, 
Wertz and Scheraga (WS) classified all residues as being 
either buried in the protein or exposed to water based on the 
number of times that a grid of lines parallel with each of 
three orthogonal axes intersects the solvent exposed van der 
Waals surface of each residue. An apparent transfer energy 
for residue type a  is then estimated as  

Fa = RT log(Ma
e /Ma

b ),          (11) 

where Ma
e  and Ma

b  are the mole fractions of residue type a  

that are exposed to water and buried in the protein, 
respectively. Most side chains are neither entirely buried nor 
entirely exposed. Taking this into account, Guy modeled the 
spacial distribution of residues as a function of their distance 
from the protein surface by dividing the protein ellipsoid 
‘body’ into layers parallel to the protein surface [17]. This 
layer analysis leaded to a refined hydrophobicity scale. We 
have examined correlations between ua , MJ’s 

a
, WS’s 

scale and Guy’s scale. We have also added a scale wa
 

derived from the similar version of binary partition 

according to c = 4 . The comparison among them is 
displayed in Table 4. It is seen that ua  has a strong 

correlation with MJ’s 
a

, but the correlation of Guy’s scale 

is even stronger. (We have also examined the reference state 

with the above ‘neutral’ *  replaced by * = 0  or * = qa , 

MJ’s average coordination numbers. However, the 
correlations between the obtained ua  and MJ’s 

a
 are much 

weaker.) 

 The linear regression lines of MJ’s 
a

 versus the 

probabilistic energies ua  is shown in Fig. (2). In fact, the 

regression between 
a

 and ua  (or Guy’s hydrophobicity 

scale Fa ) shows rather strong correlation for polar as well 

as apolar residues, except for typical hydrophobic residue 
types Leu, Phe and Ala, besides Cys which also involves the 
disulfide bond. The regression line between 

a
 and ua  

seems to imply that the correlation of ua  with 
a

 is not 

restricted just on apolar residues. 

 

Fig. (1). Propensity of a  to , ua, = log[P(a | ) / P(a)]  versus 

. Fig. (1a) is for a {G,A,V ,C,F, I ,W ,L,M ,Y} , and Fig. (1b) 

for a {D,E,N ,Q,K ,H ,R,S,T ,P} .  

Table 4. Correlations between ua , 
a

 and some Hydrophobicity Scales. WS: the Scale of Wertz-Scheraga; Guy: the Scale of Guy 

Averaged Over four Datasets; wa
: the Scale Based on the Binary Partition at c = 4  

  
a

 ua   WS Guy 

 ua    0.935        

WS   0.914   0.906      

Guy   0.953   0.941   0.952    

wa
   0.915   0.992   0.893   0.943  
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3.4. Two-Body Corrections 

 Instead of using (9), the two-body corrections are 

calculated for the binary partition of  at c = 4  into ‘0’ 
(exposed) and ‘1’ (buried). The values of 

uab, =
1

2
log[Q(b | a, ) /Q(b)]  with {‘0’, ‘1’}  are listed in 

Tables 5a and 5b. (Note that the values there have been 
multiplied by 200.) The two tables both show some 
asymmetry. The most striking difference between the two 
tables is: while the interactions between apolar residues are 
stronger in the exposed environment, the interactions 
between polar residues are stronger in the buried 
environment. This is consistent with the physics of residue 
interaction: apolar residues near the protein surface strongly 
attract each other to reduce their areas accessible to water, 
while ionizable sidechain groups in the protein interior are 
virtually always uncharged to reduce the permittivity effect. 
(There are some charges in the interior, but they are almost 
always functional.) It is not surprising that Cys, involving in 
disulfide bonds, behaves peculiarly in Cys-Cys pairing. In 
the tables, the environment propensities 

ua, = log[P(a | ) / P(a)]  of residues are also listed. (Our 

scale 
a

w  of binary partition corresponds to 

wa = ua, ‘1’ ua, ‘0’ .) 

Fig. (2). MJ’s 
a

 versus the probabilistic energies ua . The 

regression line is 
a = 4.278ua 1.507 .  

 In consistence with the demixing effect, the magnitude of 
diagonal entries is generally larger than that of the 
nondiagonal ones. The correlation between eab  and 

uab = ua + ub  without two-body correction is r = 0.921  

while the correlation using the one-body values ( wa + wb
) of 

the binary partition is r = 0.902 . To include the two-body 
correction, we consider  

uab = wa + wb + (uab, + uba, ),         (12) 

with {‘0’,‘1’} . The correlation between eab  and this 

corrected uab  is r = 0.911  for =‘0’ , and r = 0.909  for 

=‘1’ . (The two-body correction deduced from the binary 

partition is able to improve the correlation between 

uab = ua + ub  and MJ’s eab  to r = 0.931 , but only when one 

fifth of the correction is kept.)  

3.5. Contacts Defined by C  Atoms 

 In the simplest representation, the polypeptide chains are 
modeled using only the C  atoms to provide a global picture 

of low-resolution structures. It is worth examining contact 
energies va  with the contact definition involving only C  

atoms. Generally, when contacts are defined by a cutoff 
distance between C  atoms, the correlation of va  with 

a
 is 

much weaker than that of ua . At cutoff Rc = 7.5Å  the 

correlation is only 0.86 . Thus, proper representative centers 
for sidechains are advantageous to the quality and utility of 
va . 

 We have tried the simplest way to assume that the 
sidechain center of the i -th residue is along the direction 
from the midpoint of the line joining the (i ±1) -th C  atoms 

to the i -th C , and at the distance 
 

 associated with the 

sidechain residue type. The correlation between 
a

 and ua  

is r = 0.929 , and the regression line is 
a = 4.20ua 1.49 . 

A more careful approximation takes the mean orientation of 
the sidechain center into account (mainly an off-plane angle 
of 

 40.1 ), but the change in correlation is almost negligible. 
Although the simplest models are useful, a certain degree of 
complexity is needed for more realistic applications. 

4. CONCLUDING REMARKS 

 Knowledge-based potentials for simplified models of 
protein are essential to understanding the protein structure 
and folding dynamics. Among numerous forms of potential 
functions for coarse-grained protein structures, the most 
widely used one is the weighted linear sum over pairwise 
contacts, which provides the great computational 
expediency. Such potentials include the MJ contact energies 
as a special case. It is not so obvious that many of them may 
be approximated with a simple function of individual residue 
properties such as hydrophobicity, demixing, and 
electrostatics [9]. (Note that the ‘one-body’ approximations 
of Ref. [9] may contain also ‘two-body’ terms in the sense of 
interactions, and that the one-body term of the MJ contact 
energies is the contribution of each contact associated with a 
residue of a given type to the energy of a protein.) 

 According to the equilibrium statistical thermodynamics, 
the relative probability P(s)  of a microstate s  with energy 

u(s)  is given by the Boltzmann distribution 

P(s) = Z 1e u(s ) , where =1 / kT , k  is the Boltzmann 

constant and Z  the normalization factor or the partition 
function. This Boltzmann distribution is assumed in most 
statistical potential functions. However, from the viewpoint 
of probabilistic modelling, the derivation of knowledge-
based force fields need not rely on statistical mechanics. A 
model constructed based on certain conditional 
independency can be assessed by the fit of that model to the 
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Table 5a. Two-Body Corrections uab, ‘0’  (Multiplied by 200) for the ‘Exposed’ Environment (with rows for a , Except for the Last 

Row which is ua, ‘0’  Multiplied by 100) 

   A  V  I  L  M  F  W  Y  H  K  R  D  E  N  Q  S  T  G  P  C 

 A  –43  –4  0  –1  2  14  33  8  20  12  5  3  17  0  6  –4  3  –9  6  23 

V  2  –31  –30  –22  –15  –14  –2  –3  3  22  11  41  11  11  6  16  –2  4  –5  –14 

I  –2  –28  –42  –30  –30  –22  –9  –20  –8  18  11  36  27  23  12  22  12  11  3  6 

L  –7  –19  –34  –43  –29  –25  –13  –18  –1  18  4  41  19  25  –6  26  24  23  6  10 

M  –4  –6  –26  –26  –56  –28  –24  –19  –5  14  11  21  11  23  –1  29  14  3  3  40 

F  28  –13  –13  –30  –35  –57  –51  –49  –13  6  –18  39  30  13  13  26  46  19  –5  –10 

W  22  20  –16  –14  –12  –29  –83  –34  –30  –5  –39  41  18  5  1  21  49  20  –30  37 

Y  20  3  –26  –16  –27  –34  –41  –44  –15  6  –14  31  21  22  –8  22  23  8  –10  0 

H  18  1  2  –4  –16  –23  –22  –16  –46  22  1  –9  0  2  8  2  18  7  –10  –1 

K  8  7  8  7  16  12  –2  –6  16  40  57  –44  –54  1  –0  5  4  4  18  31 

R  4  3  3  –1  9  –11  –17  –7  5  67  26  –33  –45  14  2  7  11  11  –5  14 

D  5  33  32  31  12  24  38  33  –7  –51  –33  7  25  –25  0  –25  –13  8  9  35 

E  12  6  7  7  9  25  20  19  0  –60  –43  29  30  3  9  –8  –10  26  –9  55 

N  3  17  27  23  29  10  17  13  –4  1  8  –31  –0  –26  –12  –11  –13  –0  7  34 

Q  5  3  3  –16  –13  10  –15  3  10  –1  4  5  12  –1  –13  –1  –4  8  –11  15 

S  –2  12  22  18  24  22  26  27  –2  3  5  –26  –16  –6  –3  –16  –7  –0  1  6 

T  1  4  14  25  24  31  32  30  14  5  15  –11  –16  –15  –12  –13  –24  –12  4  23 

G  –12  –8  –2  13  4  –1  12  –1  13  10  11  20  35  –5  15  5  –8  –50  –2  –39 

P  8  –9  2  7  –2  –23  –43  –22  –18  17  –7  21  –1  13  –10  5  13  –4  –10  –10 

C  16  2  6  –0  –9  –3  52  –10  –31  48  23  47  62  60  17  34  35  11  –5  –254 

 ua, ‘0’   19  61  73  63  31  56  41  40  –3  –42  –28  –28  –40  –24  –30  –15  –7  –11  –27  88 

 

Table 5b. Two-Body Corrections uab, ‘1’  (Multiplied by 200) for the ‘Buried’ Environment (with Rows for a , Except for the Last 

Row which is ua, ‘1’  Multiplied by 100) 

   A  V  I  L  M  F  W  Y  H  K  R  D  E  N  Q  S  T  G  P  C 

 A  –22  –11  –10  –5  –1  12  17  14  20  14  11  21  16  13  12  8  1  –11  11  15 

V  –11  –29  –20  –16  –4  –3  9  4  22  16  25  39  28  35  22  25  12  17  10  22 

I  –9  –20  –28  –19  –8  –7  5  –6  25  15  18  38  20  40  21  29  12  28  12  23 

L  –4  –16  –18  –28  –8  –11  –8  –8  12  15  13  39  21  37  7  29  19  34  22  21 

M  –0  –5  –8  –8  –31  –19  –12  –21  4  14  15  22  15  16  1  19  17  15  2  10 

F  10  –4  –9  –11  –18  –41  –25  –23  1  21  15  27  19  19  13  18  23  22  –4  10 

W  20  8  7  –7  –12  –26  –40  –24  –12  6  –10  6  5  12  –4  13  22  18  –34  17 

Y  13  5  –4  –7  –19  –24  –23  –20  –9  –10  1  12  10  5  4  16  24  17  –18  13 

H  21  25  26  15  9  5  –13  –7  –48  3  –11  –40  –29  –21  –6  –16  –4  –2  –9  –20 

K  16  23  20  22  11  17  11  –3  10  4  38  –73  –82  –17  –23  –13  –10  1  6  22 

R  13  33  25  19  18  16  –15  3  –12  24  9  –67  –72  –13  –17  –15  –8  –4  –21  23 

D  22  45  44  48  29  34  7  13  –42  –71  –69  –20  –5  –53  –23  –39  –27  –23  –0  41 

E  18  36  32  32  18  17  5  12  –31  –74  –73  –7  –4  –32  –15  –32  –20  5  –15  37 

N  13  38  44  43  15  22  10  11  –18  –22  –9  –47  –30  –46  –21  –35  –29  –33  –12  22 

Q  13  27  30  17  9  14  9  2  –7  –24  –18  –25  –19  –30  –34  –21  –22  –11  –10  13 

S  7  27  31  32  20  19  11  15  –15  –10  –13  –37  –22  –37  –18  –31  –23  –25  –12  3 

T  2  12  12  19  15  25  27  24  –2  –12  –10  –27  –16  –28  –16  –20  –20  –19  –6  13 

G  –12  18  30  33  13  23  17  19  –4  10  2  –24  11  –27  –7  –26  –19  –52  –6  5 

P  8  10  11  21  2  –1  –29  –16  –1  16  –13  –3  –13  –11  –3  –13  –10  –9  –16  –4 

C  16  21  23  22  15  10  15  12  –16  21  18  33  38  17  11  –1  11  –2  –2  –178 

 ua, ‘1’   –16  –38  –43  –39  –24  –37  –29 –29  3  76  40  41  71  32  45  18  8  12  39 –47 

 

data. The Boltzmann distribution as an exponential form is 
related to the exponential decay of the probability measures 

for certain tail events in the so-called large deviation theory 
[18]. An example of deriving a ‘temperature’ factor for 
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protein stability is given in Ref. [19] (see Eq. (16.8) there). 
We have derived the one-body term based on a probabilistic 
model directly in the framework of the MJ energy of a 
protein. Although no direct relation is available between the 
scaling factor of our 

a
u  and the ‘room temperature’, the 

correlation between ua  and MJ’s 
a

 is evident. The amino 

acid hydrophobicity estimated from a layer analysis by Guy 
showed strong correlation with MJ’s 

a
, but their 

frameworks for the energy of a protein differ. The 
coordination number carries some interpretation as a layer 
index, so Guy’s hydrophobicities strongly correlate with our 
ua  or wa

. 

 The structural information most concerning one-body 
energies is coordination numbers, which play an essential 
role in our analysis. According to the one-dimesional mean-
field-like approximation of Ref. [20], the correlation 
between the mean coordination number 

a
 and one-body 

energy 
a

 should be strong. Indeed, this is verified by our 

calculation of the correlation, r = 0.909 . 

 More sophisticated contact energy potentials have been 
proposed, which incorporate several features of residues, 
such as their solvent exposure, their secondary structures, or 
orientation of side chains. For example, effective contact 
energies for an expanded 60-residue alphabet (including 
three secondary structural classes) have been estimated [21]. 
Using an entropic clustering approach, we have obtained two 
coarse-grained states by maximizing the mutual information 
between coordination numbers and residue types. Obvious 
differences between the two states are seen in their two-body 
corrections. The dependence of residue pair correlations on 
structural environment is worth a detailed investigation [22]. 
Nonlocal sidechain contacts between regular secondary 
structure elements, those cross-strand or those between 
different helices or -sheets, which show stronger correlation 
than that of local contacts [22], would play a role different 
from local ones. Especially, the contacts between different 
helices and/or -sheets should be more responsible to 
forming the stable structure core than other contacts, and 
would be expected being more conservative in sequence. 
Inclusion of such features in designing new contact 
potentials is important in practice. 

ACKNOWLEDGEMENT 

 This work is supported by the National Natural Science 
Foundation of China. 

CONFLICTS OF INTEREST 

 None Declared. 

 

REFERENCES  

[1] S. Tanaka and H. A. Scheraga, “Medium- and long-range interac-
tion parameters between amino acids for predicting three-
dimensional structures of proteins”, Macromolecules, vol. 9, pp. 
945-950, 1976.  

[2] S. Miyazawa and R. L. Jernigan, “Estimation of effective interre-
sidue contact energies from protein crystal structures: Quasi-
chemical approximation”, Macromolecules, vol. 18, pp. 534-552, 
1985.  

[3] R. L. Jernigan and I. Bahar, “Structure-derived potentials and 
protein simulations”, Curr. Opin. Struct. Biol., vol. 6, pp. 195-209, 
1996.  

[4] M. J. Sippl, “Knowledge-based potentials for proteins”, Curr. 
Opin. Struct. Biol., vol. 5, pp. 229-235, 1995.  

[5] X. Li and J. Liang, “Knowledge-based energy functions for 
computational studies of proteins”, In: Computational Methods for 

Protein Structure Prediction and Modeling, Springer: Berlin 2007, 
pp. 71-123.  

[6] S. P. Leelananda, X. P. Feng, P. Gniewek, A. Kloczkowski, and R. 
L. Jernigan, “Statistical contact potentials in protein coarse-grained 
modeling: from pair to multi-body potentials”, in Multiscale 
Approaches to Protein Modeling, Springer: Berlin 2011, pp. 127-
157.  

[7] S. Miyazawa and R. L. Jernigan, “Residue-residue potentials with a 
favorable contact pair term and an unfavorable high packing 
density term”, J. Mol. Biol., vol. 256, pp. 623-644, 1996.  

[8] H. Li, C. Tang, and N.S. Wingreen, “Nature of driving force for 
protein folding: A result from analyzing the statistical potential”, 
Phys. Rev. Lett., vol. 79, pp. 765-768, 1997.  

[9] P. Pokarowski, A. Kloczkowski, R. L. Jernigan, N. S. Kothari, M. 
Pokarowska, and A. Kolinski, “Inferring ideal amino acid 
interaction forms from statistical protein contact potentials”, 
Proteins: Struct. Func. Bioinf., vol. 59, pp. 49-57, 2005.  

[10] U. Hobohm and C. Sander, “Enlarged representative set of protein 
structures”, Protein Sci., vol. 3, pp. 522-524, 1994.  

[11] B. Park and M. Levitt, “Energy functions that discriminate X-ray 
and near-native folds from well-constructed decoys”, J. Mol. Biol., 
vol. 258, pp. 367-392, 1996.  

[12] W. M. Zheng, “Entropic approach for reduction of amino acid 
alphabets”, [Available from:  arxiv.org/abs/physics/0106074].  

[13] C. Chothia, “The nature of the accessible and buried surfaces in 
proteins”, J. Mol. Biol., vol. 105, pp. 1-14, 1976.  

[14] D. H. Wertz and H. A. Scheraga, “Influence of water on protein 
structure. An analysis of the preferences of amino acid residues for 
the inside or outside and for specific conformations in a protein 
molecule”, Macromolecules, vol. 11(1), pp. 9-15, 1978.  

[15] J. Janin, “Surface and inside volumes in globular proteins”, Nature, 
vol. 277, pp. 491-492, 1979.  

[16] B. Robson and D. J. Osguthorpe, “Refined models for computer 
simulation of protein folding”, J. Mol. Biol., vol. 132, pp. 19-51, 
1979.  

[17] H. R. Guy, “Amino acid side-chain partition energies and 
distribution of residues in soluble proteins”, Biophys. J., vol. 47(1), 
pp. 61-70, 1985.  

[18] H. Touchette, “The large deviation approach to statistical 
mechanics”, Physics Reports, vol. 478, pp. 1-69, 2009.  

[19] A. V. Finkelstein and O. B. Ptitsyn, Protein Physics. Academic 
Press: Boston 2002.  

[20] A. R. Kinjo and S. Miyazawa, “On the optimal contact potential of 
proteins”, Chem. Phys. Lett., vol. 451, pp. 132-135, 2008.  

[21] C. Zhang and S. H. Kim, “Environment-dependent residue contact 
energies for proteins”, Proc. Natl. Acad. Sci. USA., vol. 97, pp. 
2550-2555, 2000.  

[22] A. P. Cootes, P. M. G. Curmi, R. Cunningham, C. Donnelly, and A. 
E. Torda, “The dependence of amino acid pair correlations on 
structural environment”, Proteins, vol. 32, pp. 175-189, 1998.  

 
 

Received: November 21, 2011 Revised: December 20, 2011 Accepted: December 23, 2011 
 
© Zeng et al.; Licensee Bentham Open. 
 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License  
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 
work is properly cited. 


