
20 The Open Bioinformatics Journal, 2012, 6, 20-27  

 
 1875-0362/12 2012 Bentham Open 

Open Access 

Characterizing Protein Shape by a Volume Distribution Asymmetry Index 

Nicola Arrigo1, Paola Paci2, Luisa Di Paola1*, Daniele Santoni3, Micol De Ruvo1, Alessandro 
Giuliani5 and Filippo Castiglione4 

1Università Campus Biomedico, 00128 Rome, Italy 
2CNR-Institute of Systems Analysis and Computer Science “Antonio Ruberti”, Bio Math Lab, 00185 Rome, Italy 
3CNR-Institute of Systems Analysis and Computer Science “Antonio Ruberti”, 00185 Rome, Italy 
4CNR-Institute for Computing Applications “Mauro Picone”, National Research Council, 00185 Rome, Italy 
5Department of Environment and Health, Istituto Superiore di Sanità, 00161 - Rome, Italy 

Abstract: A fully quantitative shape index relying upon the asymmetry of mass distribution of protein molecules along 
the three space dimensions is proposed. Multidimensional statistical analysis, based on principal component extraction 
and subsequent linear discriminant analysis, showed the presence of three major ‘attractor forms’ roughly correspondent 
to rod-like, discoidal and spherical shapes. This classification of protein shapes was in turn demonstrated to be strictly 
connected with topological features of proteins, as emerging from complex network invariants of their contact maps. 
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1. INTRODUCTION 

 It is commonly stated that the activity of a protein is 
somewhat encoded into its shape [1]. A rough classification 
of proteins on the basis of their shape, identifies two distinct 
classes: globins (near spherical molecules) and sclero-
proteins (rod-like or fibrous). Fibrous proteins are for the 
major part mainly structural elements (for instance, collagen 
in the connective tissue); on the other hand, globins are apt 
to many different tasks, often subdued to the presence of 
specific interaction sites located on the protein surface [2]. 

 The concept of molecular shape is somewhat elusive: the 
identification of quantitative descriptors for the molecular 
structure is, thus, a potentially very interesting avenue of re-
search [3]. 

 Several methods have been proposed to characterize pro-
teins shape [4, 5]: so far, shape analysis has been limited to 
protein surface representation, assuming believing that sur-
face as the privileged view given is a key factor, because is 
the region where it is where biologically meaningful interac-
tions take place [6]. Actually, geomitetric shape has been of-
ten defined with reference to a finite set of points, a space 
curve, or a surface [7], instead of considering the overall 
volume of a molecule, that is specifically the purpose of this 
work, building upon previous results in which we demon-
strated both the lack of any marked separation between pro-
tein internal and external milieu and the basic fractal struc-
ture of protein fold (Di Paola et al. JCIM). 
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 Literature provides several different approaches to de-
scribe the molecular surfaces: among these, Van der Waals 
surface(VdW) refers to the union of atoms (modeled as balls) 
according to their van der Waals radiuses [8]; the Solvent 
AccessibleSurface (SAS), originally proposed by Lee and 
Richard [9], is the surface traced out by the center of a probe 
sphere (typically a water molecule) rolling on top of the 
VdW surface: in this way, the overall protein molecule hin-
drance comprises also the hydration shell. The Solvent Ex-
cluded Surface (SES) is the result of the SAS erosion by the 
same probe [10, 11]. For a graphic representation, see Fig. 
(1). 

 Hopfinger developed a useful method for small mole-
cules named ‘molecular shape analysis’ [12], based on the 
comparison of electrostatic fields, later adapted by Arteca 
and Mezey to define shape descriptors of macromolecules 
[13]. 

 Some authors have focused on the detection of protru-
sions and cavities of known input structures, provided by 
shape descriptors. 

 The Connelly function [10], the most used and known, is 
derived as follows: in any point on the surface, a sphere is 
centered, having a diameter as large as a water molecule. If 
the fraction of the sphere volume within the SES volume 
(see dashed sphere in Fig. 1) is smaller than 0.5, the surface 
is considered as locally convex, otherwise concave. 

 Formally, for any point x ∈ M , let us consider the ball B 
(r, x )centered at x with radius r : if S (r, x ) = δB (r, x ) is the 
boundary of B (r, x ) and SI the portion of S (r, x ) contained 
within the surface, the Connolly function fr: M → R is de-
fined as: 
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 High values of fr (x ) indicate that the surface around x is 
largely concave, while low values point to a prevalent con-
vexity around x. Røgen and Sinclair introduced protein shape 
descriptors based on backbone [14]. 

 Although curvature-based methods (as Connelly’s) well 
identify points located at local protrusions and cavities, they 
all depend on a pre-fixed value r (the neighborhood size); in 
many cases, it is desirable that the function value can also 
give some clues about the length scale of the conformational 
feature the function refers to. 

 All these models have a strong ‘theoretical flavor’ and 
are concentrated on the molecule surface shape. On the con-
trary, we adopted a mainly statistical bottom-up approach in 
order to derive a coarse-grain, but easily computable and free 
from a priori constraints shape index. At odds with surface-
based approach, the proposed index is based on the volume 
distribution of the atoms along the three axes of the space. 

 The starting point of this work is that the most interesting 
geometrical templates in structural biochemistry are the 
sphere, the disc and the cylinder; thus, we decided to rely 
upon the amount of symmetry of the volume distribution on 
the three dimensional space so to develop a global index 
catching the relative ‘spherical’, ‘discoidal’ or ‘cylinder’ 
character of the studied structure.  

 A data set spanning the entire range of variation of pro-
tein shapes, from perfect sphere to almost perfect cylinders, 
was developed in order to check by means of a correlative 
approach based on Principal Component Analysis (PCA) 
[15], the consistency of the proposed index with relevant 
size, geometry and topology related properties of protein 
structures. 

 The demonstrated ability of the proposed method not 
only to discriminate different shapes but to discover the 
shape variability typical of a functional protein class (mem-
brane proteins) confirms the relevance of volume based 
shape representation. 

2. METHODS 

 

Fig. (1). VdW, SAS and SES molecular surfaces [9]. 

 In this work, we perform an analysis of the three-
dimensional protein structures along the canonical axes, as 
reported in PDB files, containing the relevant information 
about biomolecular structures. 

 As a first step, we identify the Center of Mass (CM) of 
the molecule, reducing each amino acid residue to the corre-
spondent α -carbon. In the case of the sphere, the center of 
mass coincides with its geometrical center and the distance 
from the CM to the surface of the molecule is identical along 
each of the three dimensions. In the case of the disc, the CM 
represents its center, two dimensions have an almost identi-
cal elongation and the third is not relevant; in the case of the 
cylinder, there is just one relevant dimension and the CM is 
located approximately at the middle point of the cylinder 
main axis. 

 Once identified the CM, the maximal distance of α–
carbons from the CM is computed along the three axes; the 
three values Rx ,Ry , Rz represent the radius of hypothetical 
spheres (Fig. 2), whose volume provides indication concern-
ing the length of the object along a specific direction: 

 
 The corresponding equivalent spherical volumes are then 
computed: 

 

 In the case of the sphere, Vx= Vy= Vz , whereas for a ge-
neric non-spherical molecule, these three volumes differ 
from each other. 

 Let’s now introduce a shape space, in which each protein 
is identified by a vector ρ defined as follows: 

 

Fig. (2). Radiuses Rx, Ryand Rzin the case of HSA (PDB code 
1E7I). 
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Fig. (3). Shape space: each point of the space represents a molecule 
in terms of its own shape; green, red and black dots refer to spheres, 
discs and rods, respectively. 

 
 The reference shapes correspond to the following points 
in the shape space (Fig. 3): 
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 The tetrahedron represented in Fig. (3) is the space of 
possible protein molecular shapes. Clearly, a nearly spherical 
molecule is represented by a point closely located to S; on 
the contrary, the largest distance from S accounts for rod-like 
proteins. Thus we use the ratio between the actual distance of 
the protein from S with the maximum distance correspondent 
to perfect rod-like shape; this maximum distance is: 

�

 On the other hand, the distance related to disc template 
is: 

�

 Thus, let us define a normalized distance 
1d

d
 , being 

the distance of a generic point in the shape space from S; ac-
cording to ξ values, molecules can be classified as follows: 

�

where ξ is an asymmetry index, given its character of depar-
turefrom perfect symmetry in space. 

 To prove the effectiveness of our index, we tested it on a 
40 proteins data set, half of which chosen amongglobular 
shapes and half among fibrous. 

 In Table 1 the values of ξ are reported along with the 
classification consistent with our proposal and the number of 
residues(nodes). 3D structures of three proteins belonging to 
spherical, discoidal and rod-like groups are shown in Fig. 4 
a), b), c) respectively. 

 

 

Fig. (4). Protein reference sample structures : a) 3ln3 (globular): putative reductase; b) 3kou (planar): cyclic ADP ribose hydrolase; c) 1cgd 
(rod-like): collagen peptide. 
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Table 1. Protein Data Set: PDB Codes are Reported in the 
First Column; Nodes = Number of Residues;  is the 
Asymmetry Index; Shape = Class	

PDB ID	 Nodes	 	 Shape	

1cgd� 60  � 1� Rodlike�

1cag� 58� 1� Rodlike�

3qc7� 172� 0,99� Rodlike�

1h6w� 161� 0,94� Rodlike�

2kt9� 116  � 0,76� Rodlike�

1qqk� 254� 0,73� Rodlike�

1emw� 88  � 0,71� Rodlike�

1gr3� 132� 0,65� Rodlike�

3dmw� 87� 0,65� Rodlike�

3hon� 55  � 0,63� Rodlike�

3p46� 39� 0,57� Discoidal�

3js7� 174  � 0,55  � Discoidal�

3hal� 262� 0,54� Discoidal�

3jqu� 173� 0,52� Discoidal�

1azz� 727� 0,51� Discoidal�

1v1h� 610� 0,51� Discoidal�

2dkm� 104� 0,50� Discoidal�

2v53� 292� 0,47� Discoidal�

2vl5� 869� 0,42  � Discoidal�

3kou �  482 �  0,41 �  Discoidal�

1bkv �  68  �  0,41 �  discoidal�

2otp �  387 �  0,37  �  Spherical�

3qae �  371 �  0,36 � Spherical�

3lqb �  207 �  0,32 � Spherical�

1ao6 �  1556  �  0,30 � Spherical�

2xvq �  1135 �  0,21 � Spherical�

2vuf �  1105  �  0,21  � Spherical�

2xw0 �  1135 �  0,20 � Spherical�

3gbl �  97 �  0,18 � Spherical�

3jxp �  307  �  0,16 � Spherical�

2y3z �  351 �  0,13 � Spherical�

3po6 �  263  �  0,12 � Spherical�

3ln3 �  331 �  0,11 � Spherical�

3p43 �  126 �  0,11 � Spherical�

2q2m �  152 �  0,10  � Spherical�

Table 1 Contd..... 
 

PDB ID	 Nodes	 	 Shape	

2jtd �  112  �  0,10 � Spherical�

3p4h �  142 �  0,08  � Spherical�

1uz2 �  158 �  0,05 � Spherical�

3q1q �  112 �  0,05 � Spherical�

3npo �  169 �  0,02  � Spherical�

 
 In order to put into perspective the proposed asymmetry 
index, we introduce some topological descriptors, based on a 
protein structure representation in terms of inter-residue con-
tact graphs [16]. 

 As a matter of fact, the 3D crystal structure of a protein 
canbe translated into a contact matrix among α -carbons that 
in turn can be considered as a network with α-carbons as 
nodes and the contacts between them as edges. This kind of 
formalization isextremely useful to study protein properties 
at all [17-19]. 

 Starting from the spatial position of α -carbons, in the 
PDB files, the mutual residue distance matrix d = {dij} is 
computed : the generic element dij is the Euclidean distance 
in the 3D space between the i-th and j-th residue, holding the 
primary structure ordering. A link is established between two 
residues if their mutual distance lies in the range 4 − 8Å; the 
contact graph adjacency matrix A ={aij} is therefore defined 
as: 

�

 Some topological descriptors can be extracted from A 
[20]: 

 N : number of nodes (residues) in the graph; 

 E : number of edges connecting the graph nodes; 

 density : ratio between the actual number of edges E and 
the maximum value;  

 N (N− 1)/ 2, corresponding to the complete graph; 

 avdegree : the average of node degrees ki , where 

 is the number of links involving the i-th 

node; 



N

1j
iji ak

 avshortpath : the shortest path is the minimum number 
oflinks connecting two residues; this value, averaged 
over allthe residue pairs, is the average shortest path; 

 diameter : the longest shortest path; 

 avcluscoeff: the clustering coefficient 

   


mj,Nm,j
ii

mijmij
i 1kk

aaa2
C  is a measure of con-

nectivity on a local scale, for the i-th node: it measures 
the connectivity of the sub-graph made of nodes con-
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nected to thei-th node. Ci averaged over the whole set of 
nodes is the avcluscoeff. 

3. RESULTS 

 We computed the asymmetry ξ and the seven above men-
tioned topological properties for each protein of the data set. 
In order to evaluate the correlation of ξ with the other pa-
rameters, a multivariate data analysis is required. To this 
aim, we applied PCA to the data matrix, containing all the 
computed properties for each protein in the data set. 

 The presence of a specific component highly correlated 
withξ (PC2) is a consequence of the selection of a data set 
spanning the entire range from spherical to rod-like struc-
tures. On the other hand, protein size as measured by N is the 
main order parameter shaping the data set (PC1). 

 Results are reported in Table 2 in terms of component 
loadings, i. e., of correlation coefficients between principal 
components(PCs) and original variables. A high absolute 
value of the correlation coefficient (loading) between a vari-
able and a component is used as guide for the structural in-
terpretation of the extracted components. 

 PCA highlighted a three component solution as explain-
ing the by far most important (and reasonably signal-like) 
part of information correspondent to the 86% of total vari-
ance, with PC1 explaining the 47% of variability, while PC2 
and PC3 accounting for 25% and 14% respectively. 

 Not surprisingly, the first component (PC1) corresponds 
toprotein size: the number of nodes N, as well as the number 
of links E, are strongly related to this component. 

 Both contact density and clustering coefficient negatively 
scale with size, confirming previous results, [19]. As shown 
in Fig. (5), density neatly scales with size (here, number of 
nodes). 

 The second component (PC2) identifies the ’general 
shape’,since asymmetry has the highest correlation. It has to 
be stressed that diameter and avcluscoeff bring considerable 
contributions to PC2, suggesting that topology influences 
general shape. 

 In the case of PC3, the only relevant descriptor is avde-
gree. Therefore, this component is a topologic invariant, 
since it is neither influenced by size nor by general shape. 

 Afterwards, we repeated the analysis taking out asymme-

Table 2. Principal Component (PC) Pattern	

 PC1 PC2 PC3 

(AS)  -0.37 0.80 -0.20 

nodes (N)  0.92 -0.02 -0.07 

avdegree  0.13 0.27 0.94 

edges (E)  0.92 -0.02 -0.004 

density  -0.7 0.24 -0.30 

avshortpath  0.82 0.52 -0.13 

diameter  0.69 0.64 -0.17 

avcluscoeff  -0.55 0.76 0.20 

 

Fig. (5). Effect of protein size on density (open red circles). The data follows a power low behavior (green line). 
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try, thus evaluating the ability of sole topologic features to 
predict protein shape. 

 

Fig. (6). Cartographic representation of PC2 vs PC1 on the basis of 
protein shape index ξ. 

 The ‘reduced’ principal components (PC1r - PC3r, i.e., 
those components generated without the explicit contribution 
of ξ )are indeed able to perform a very significant classifica-
tion of the three groups of rod-like, discoidal, and spherical 
proteins, as reported in Table 3, where the classification ma-
trix based on linear discriminant analysis based PC1r-PC3r is 
reported. 

 As evident from Table 3, the discriminant analysis allows 
for an 84.4% of correct classification. 

 The efficacy of this discrimination can be appreciated in 
Fig. (6), reporting the space spanned by the first two reduced 
space components, where the space is approximately subdi-
vided into three regions, correspondent to the three classes. 

 The ability of the components to separate the three 
classes is a proof-of-concept of the fact ξ is consistent with 
other features of protein organization (as those used for gen-
erating PC1r-PC3r). As it can be observed in Table 4, PC1r 
still represents size, but avshortpath is now concentrated on 
PC1r. 

 In order to check the relevance of the proposed index 
with an independent data set, asymmetry index was com-
puted on a sample made of three different classes of proteins: 
globins, membrane and fibrous proteins. While ’globin’ and 
’fibrous’ classifications refer directly to the protein shape, 
the denomination ’membrane’ has to do only with the loca-
tion of the molecule in the cell. According to the presence in 
membrane proteins of a part of the structure in the form of an 
elongated (mainly alpha helix) patch inside the membrane, 

 Furthermore, avcluscoeff is now the most sensitive de-
scriptor to PC2r, being clusterization linked to shape; on the 
contrary, avdegree does not change appreciably, confirming 
it isa general invariant property. The ‘reduced’ component 
space explains the 88% of total variability as follows: PC1r = 
52%,PC2r = 21% and PC3r = 15%. 

Table 3. Linear Discriminant Analysis Results. Topology is Able to Predict General Shape 

 Estimated Shape 

Original shape  rod    disc   sphere   Total 

rod   11   0   3   14 

%   78.57   0.00   21.43   100 

disc    0   8   1   9 

%   0.00   88.89   11.11   100 

sphere   1   1   9   11 

%   9.09   9.09   81.82   100 

Table 4. PCr Component Loadings 

  PC1r    PC2r   PC3r 

nodes (N)  0.91    -0.12   0.04 

avdegree  0.14    0.53   -0.82 

edges (E)  0.91    -0.11   -0.03 

density  -0.67    0.26   0.45 

avshortpath  0.87   0.38   0.23 

diameter  0.76    0.49   0.32 

avcluscoeff  -0.46   0.86   0.08 
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we expect that membrane proteins must lie in between ’glo-
bin’ and ’fibrous’ shapes as for their asymmetry index val-
ues. In the meantime, we do expect membrane proteins do 
have an higher variability with respect to the two other 
classes as for their asymmetry values. Here, see Fig. (7), we 
report result for the shape index for the above three classes 
of proteins; blue dots are proteins sharing the same globin-
fold pattern, resulting in a spheroidal structure; green trian-
gles are membrane proteins known to have widely different 
shapes with a slight prevalence for elongated forms (at least 
for the membrane embedded part of the structure), red 
squares correspond to fibrous proteins, having an elongated, 
rod-likemolecular shape. As shown in figure, fibrous protein 
segregate in the upper part of the figure, with asymmetry in-
dex close to maximum (Mean = 0.96, Std. Dev. = 0.03) ; 
globins, that are approximately spherical, locate, as expected, 
on the bottom, in a wider area with respect to rod-like struc-
tures (Mean= 0.24, Std.Dev. =0.09). Membrane proteins, fi-
nally, spread out in the wide central part of the figure (Mean 
= 0.44, Std.Dev. = 0.24),consistently with their morphologi-
cal variability going hand-in-hand with a tendency toward 
elongated shape as for their membrane-embedded part. The 
above results were highly statistically significant for both 
mean (Students t-test) and variance (F-test) pairwise com-
parisons. Fibrous vs. membrane comparison scored a t value 
=6.8 (p ¡ 0.0001) and an F value = 44.35 (p ≤ 0.0001); globin 
vs membrane comparison scored a t value= 2.53 (p ≤ 0.03) 
and an F value = 6.05 (p ≤ 0.02), eventually globin vs. fi-
brous comparison scored a t-value = 21.2 (p ≤0.0001) and an 
F-value = 7.34 (p ≤ 0.008). The ability of the index not only 
to discriminate between different classes but to account for 
the internal variance of the membrane proteins is afurther 
proof of their possible use as a simple quantitative shapein-
dex to study diff erent protein folds. 

4. CONCLUSION 

 As previously suggested by Holm and Sander [1], the 
generation of a principal component space based on the mu-
tual correlation of different shape features allows for the 
identification of ‘attractor shapes’ acting as ideal templates 

rationalizing the apparently wild variety of protein forms. In 
this work, the same strategy was adopted in order to validate 
a global shape index allowing for a quantitative appreciation 
of the position of a given structure in the continuum span-
ning from very asymmetric fibrous structured to approxi-
mately globular shapes. 

 

Fig. (7). Structural class of proteins discriminated on the basis of 
the asymmetry index. 

 The possibility to discriminate the pertaining of a given 
molecule to the ‘rod-like’, ‘discoidal’ and ‘spherical’ attrac-
tors by the components of a feature space, not explicitly tak-
ing into account the proposed index, was a proof-of-concept 
of both the existence of such attractors and the consistency 
of the asymmetry descriptor here defined. Focusing on the 
quantification of symmetry, in order to build a general shape 
descriptor is notonly one of the many possible choices. In 
contrast, symmetry, as aptly explained by Goodsell and Ol-
son[2], is a crucial property for rationalizing structure, func-
tion and even evolution history of protein molecules. Here it 
is sufficient to remind the role played by protein internal 
structural symmetries in allosteric effects, folding and cell 
localization [2] and the importance of detecting sequence-
based symmetries, for both the modeling of sequence-
structure relations and the protein evolution by gene duplica-
tion [21]. 

 Our results point to the possibility to sketch a quantitative 
formalization of a so far largely qualitative concept as pro-
tein form, that could have very relevant outcomes in protein 
science. 

 This hope is substantiated by the strong, and still largely 
unexploited, link between general shape information and 
graph theoretical properties of protein contact networks. 
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