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Abstract: Elaborate downstream methods are required to analyze large microarray data-sets. At times, where the end goal 
is to look for relationships between (or patterns within) different subgroups or even just individual samples, large data-sets 
must first be filtered using statistical thresholds in order to reduce their overall volume. As an example, in anthropological 
microarray studies, such ‘dimension reduction’ techniques are essential to elucidate any links between polymorphisms and 
phenotypes for given populations. In such large data-sets, a subset can first be taken to represent the larger data-set. For 
example, polling results taken during elections are used to infer the opinions of the population at large. However, what is 
the best and easiest method of capturing a sub-set of variation in a data-set that can represent the overall portrait of 
variation? 

In this article, principal components analysis (PCA) is discussed in detail, including its history, the mathematics behind 
the process, and in which ways it can be applied to modern large-scale biological datasets. New methods of analysis using 
PCA are also suggested, with tentative results outlined. 
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INTRODUCTION 

 Principal components analysis and other multivariate 
tools are used to analyze large volumes of data in order to 
tease out the differences/relationships between the logical 
entities being analyzed (for example, a data-set consisting of 
a large number of samples, each with their own data 
points/varia-bles) [1]. It extracts the fundamental structure of 
the data without the need to build any model to represent it 
[2]. This ‘summary’ of the data is arrived at through a 
process of reduction that transforms the large number of 
variables into a lesser number that are uncorrelated (i.e. the 
‘principal’ components), whilst at the same time being 
capable of easy interpretation on the original data [3, 4]. 
 Principal components analysis has broad applications and 
is used in a wide range of areas. Examples include 
craniofacial recognition [5], analysis of water quality[3], and 
to derive a set of highly confident genes [6] or single 
nucleotide polymorphisms (SNPs) [7, 8] for classification 
purposes. It has also been used in subject areas such as 
climatology, geology, meteorology, psychology, quality 
control [4], forensics and population genetics (particularly in 
relation to SNPs), medical genetics [2], and bacteriology [9]. 
It can also help in the identification of subgroups within 
samples by visually scanning the resulting bi-plot created to 
represent the data [10]. There has also been notable success 
of applying PCA to protein datasets. Du [11] successfully 
adapted and applied PCA to protein data in the form of 
Amino Acid PCA (AAPCA), where the aim was to classify 
proteins into structural classes; meanwhile, Li [12] combined  
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PCA with continuous wavelet transform (CWT) to also 
successfully predict protein structural classes; Zhao [13] also 
used PCA to help predict protein-protein interaction (PPI) 
networks by using this method to first derive an optimised 
subset and then using this subset as input to a support vector 
machine (SVM). Chou [14] also outlines 'pseudo-amino acid 
composition' as a means of managing and using the large 
amount of protein sequence that is currently held in public 
repositories. With pseudo-amino acid composition and PCA, 
patterns in protein sequences can be found, which can then 
be used to infer the cellular attributes of the corresponding 
proteins. Pseudo-amino acid composition and PCA has also 
been employed by Liu [15]. 
 In PCA experiments, two different approaches can be 
taken: 1) looking at relationships between variables; and 2) 
looking at relationships between samples. If only two 
variables are involved, then a simple linear correlation 
analysis can be employed. However, having numerous 
variables prevents this [3]. 

Post-PCA Analysis 

 After carrying out PCA and deriving the principal 
components, there is no standard way of choosing how many 
components to include or exclude in end-analysis, a fact that 
is probably related to the broad spectrum of analyses on 
which PCA is carried-out. The end goal of the study is of 
critical importance: if you wanted to determine the variables 
that defined differences between samples, then you would 
observe the first few principal components (or even just the 
first); if you wanted to determine the variables that were 
common across samples, then you would observe the last 
few. If it was the former, then choosing a certain number of 
components whose combined percentage of variance 
accumulated to a pre-determined level (generally ≥70%) 
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could be employed [4, 16]. They could also be chosen using 
‘Kaiser’s rule [17]', which states that all principal 
components with an eigenvalue greater than 1 should be 
retained, or by invoking and analyzing a Scree plot [18], 
which shows a line-graph of the eigenvalues of each 
principal component (see Appendix for detailed information 
on how principal components are derived). 
 After deriving the principal components, three methods 
for arriving at a subset of variables/markers for end-analysis 
can be pursued: 1. observe the resulting PCA bi-plot, remove 
a pre-determined number of markers, and then re-create the 
bi-plot to see if the original structure and variance is still 
visually/graphically represented. If the same structure is 
present, then remove further markers and repeat until a 
manageable subset of markers has been chosen. In essence, 
this method involves comparing the principal components 
derived from subsets of markers to those of the full set, but 
key markers could be lost in the process. 2. Only choose 
markers that have high correlation coefficients to each of the 
generated eigenvectors of the chosen principal components 
and then search for overlap between them [4]. There is no 
standard cut-off value for the correlation coefficients, but 
Mahloch [19] indicates that a value larger than 0.6 (r2) is 
sufficient, while a coefficient larger than 0.8 is regarded as 
good. Correlation coefficients close to 0 indicate that the 
marker is not significantly-contributing to variance and is 
common across samples [2, 20]. 
 A third method of selecting the markers to include in 
end-analysis is to first perform an orthogonal rotation of the 
derived principal components. There are a number of ways 
to do this, including varimax, quartimax, equamax, and 
promax rotation. The rotation of principal components is 
performed to increase the accuracy of the relationship/correl-
ation of the original markers to the newly-derived 
eigenvectors (principal components). As a result, this also 
serves to maximize the differences between each eigenvector 

[3,7], in respects resembling the complete linkage method in 
hierarchical clustering. 

Limitations of Principal Components Analysis 

 There are some limitations to employ just PCA as the 
sole analytical tool for large data-sets. For example, PCA is a 
linear transformation; thus any data-set that is non-linear will 
not be represented sufficiently after data-reduction. In 
addition, PCA assumes that the directions with the largest 
variances are of most interest [21], which might not 
necessarily be true. It also follows the assumption that the 
original data variables are correlated - if they are not, then 
PCA cannot reduce the data [21, 22]. 

Case Study: Deriving a Genetic Signature 

 A method used to minimally characterize individual 
samples from large data-sets was previously employed by 
finding haplotype-tagging SNPs (htSNPs) - i.e. a reduced list 
of SNP markers that captured the majority of haplotype 
diversity in a population [8] - whilst Horne and Camp [23] 
devised a separate method that aimed to find SNPs in linkage 
disequilibrium (LD), known as group-tagging SNPs 
(gtSNPs). The original htSNP method, which was devised by 
Meng [7], was only applied to analyze certain regions of the 
genome. Additionally, redundancy could still exist using this 

approach if, for example, 2 or more of the derived htSNPs 
mapped to regions affected by linkage disequilibrium (LD) 
[2, 24], which can encompass segments ranging in size from 
1-100Kb on the same chromosome and can also be used for 
classification purposes [25]. If two alleles are in LD with 
each other, measuring the value of one can reveal with a 
certain level of confidence that of the other due to their high 
correlation [24]. It can arise for different reasons, such as 
selection, favorable mutations, population mixture and 
migration, et cetera; if measured around known genes, it can 
help in the elucidation of those that are involved in disease 
[25, 26]. It is more common around genes that are ‘rare’ or 
recently evolved as these would have had less time for 
recombination to break the disequilibrium in question [25]. 
 Lin & Altman [8] found that using this method by Meng 
[7] could produce a list of htSNPs that achieved a 90% 
reconstruction precision of each observed haplotype. The 
process involved the generation of eigenvectors (the 
synonymous term ‘eigenSNPs’ was coined by Meng [7]) and 
then reverse-mapping these to original SNPs to arrive at a 
minimal set that could define maximum diversity/variance. 
Single nucleotide polymorphisms are useful in this regard 
because they are regarded as the most common type of 
genetic variation in the human genome [27]. 
 The derivation of eigen SNPs has also been employed in 
population and anthropological studies. The present-day 
genetic variation in humans around the world exists and has 
been strengthened by the history of migration patterns [2,28]. 
What contributed to this included mutation, genetic drift, and 
natural selection that were each driven by an interaction with 
new climates, pathogens, etc. [2]. This prompted Paschou [2] 
to attempt to build a scoring system to assign an individual 
of unknown origin to a population group based on PCA and 
SNPs - some success was achieved. However, their system 
was based on diverse population groups between whom was 
exhibited already-known differences/separation, both 
genetically and geographically. Thus, their method of 
assignation to a particular clade/population was made easier. 
Also, they only had small sample sizes from each observed 
group. 
 The method has yet to be applied to other polymorphisms 
in the human genome. However, through the use of a high-
density microarray that can scan the entire genome, applying 
the htSNP method could generate a genetic signature for a 
particular population group or even disease state, if the study 
was such. In the latter sense, it could potentially provide a 
minimum set of diagnostic and prognostic markers and assist 
in disease-type classification. 
 Thus, the aim of this work was to derive a set of 
haplotype-tagging copy number variants (htCNVs) amongst 
128 female samples from the International HapMap that 
could be used for assignation and characterization purposes 
to deduce the origin of unknown samples in the future. 

METHODS 

 In total, 270 (128 female and 172 male) Genome-Wide 
Human SNP Array 6.0 (Affymetrix SNP 6.0) CEL files from 
the International HapMap (build 270 na30 r1 a5) 
(International HapMap Project, http://hapmap.ncbi.nl-
m.nih.gov/) were processed, incorporating the following sub-
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population groups: CEPH (Utah, USA residents with 
ancestry from northern and western Europe); CHB (Han 
Chinese in Beijing, China); JPT (Japanese in Tokyo, Japan); 
and YRI (Yoruba in Ibadan, Nigeria). 

Principal Components Analysis 

 Principal components analysis (PCA) was performed as 
follows: In brief, principal components were determined 
using a covariance matrix method (used for mean-centred 
data) with normalized eigenvector scaling (see Supplem-
entary Methods for detailed information on how principal 
components were derived). A Bonferroni-corrected p< 
0.0001 for multiple comparisons was used to filter-out 
markers of insignificance before determining principal 
components. False discovery rate was not used as it was 
considered too lenient and unsuitable for the amount of 
comparisons involved. The component loadings for each of 
the derived principal components were rotated using varimax 
rotation with Kaiser normalization [31] on a UNIX-based 
system using custom R [32] scripts. 

Haplotype-tagging CNV 

 For deriving the genetic signature of variation amongst 
the HapMap samples, the method according to Meng [7] was 
applied as follows: Using absolute values on all component 
loadings, the mean correlation coefficient for each marker to 
the first few principal components whose total variance 
accumulated to ≥70% was obtained. Then, the corresponding 
mean correlation coefficient for the marker was calculated 
for all remaining principal components. If the mean of a 
marker for the first set of components was greater than its 
corresponding mean for the remaining components, then the 
marker was included. 
 Pathway analysis and keyword/term-enrichment for 
genes was performed using DAVID [33, 34]. 

RESULTS 

 On the Affymetrix SNP 6.0, 762,463 markers target 
known genes that are listed in the RefSeq gene database 

[29]. After pre-filtering for markers of difference amongst 
the 128 healthy female HapMap samples through a 
Bonferroni-corrected ANOVA, the number of markers for 
PCA was reduced to 5,896. The data generated through PCA 
was then channelled through the htCNV pipeline, which was 
capable of reducing them further to 4,594. This reduced 
number of markers covered a total of 2,866 genes that were 
significantly driving differences based on copy number 
between the four HapMap sub-population groups analyzed. 
A total of 1,893 of these genes were enriched for the UniProt 
[30] key-term ‘sequence variant’, whilst 1,838 were enriched 
for the keyword ‘polymorphism’. In addition, 1,412 were 
genes that are expressed in the brain, while 456 are 
expressed in the epithelium. 
 Hierarchical clustering using this severely reduced 
number of 4,594 markers was capable of distinguishing the 
different sub-populations (Fig. 1). However, similarities 
were revealed between the CHB (Han Chinese in Beijing, 
China) and JPT (Japanese in Tokyo, Japan). The dendrogram 
also revealed that the YRI (Yoruba in Ibadan, Nigeria) were 
distinct from all other groups. The remaining samples from 
the International HapMap, which comprised 172 healthy 
male samples, were then added and clustered using the same 
panel of markers to again reveal sub-groups based on both 
ethnicity and sex (Fig. 2). 

DISCUSSION AND CONCLUSION 

 Thus, the htCNV method -through PCA- is capable of 
defining a reduced number of markers for characterization 
purposes in a large sample cohort. Moreover, it is then robust 
in the sense that new samples can be prospectively added to 
the cohort using these markers with correct classification 
based on both population group and sex. It is reasonable to 
suggest that this method could be applied to other larger 
data-sets and used to derive panels of markers for diagnostic 
purposes. For example, in metabolomic studies, it could be 
used to drastically reduce the large -and sometimes 
incoherent- number of variables to a select few that had 
much meaning between a healthy and disease state. 

 
Fig. (1). Principal components analysis incorporating the htCNV pipeline reveals a reduced set of 4,594 copy number markers that can 
distinguish the International HapMap sub-population groups' female samples in hierarchical clustering. 
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 Although the derived, reduced set of markers cannot 
provide 100% confidence that the genomic loci to which 
they target are indeed capable of classifying the population 
groups studied -and that further work in the wet-laboratory 
would be required to prove this- it is my belief that the 
results herewith are evidence of the sound computational 
methodology employed. Indeed, such a method had not 
previously been applied to copy number markers in the 
human genome; thus, the results show how copy number loci 
can equally provide for haplotype classification along with 
other polymorphism-types in the human genome. 
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APPENDIX 

Principal Components Analysis 

 The process of reducing data using PCA involves the following steps: 1. subtract mean; 2. build covariance matrix; 3. 
calculate eigenvectors and eigenvalues; 4. transform original data; 5. end-analysis. 
 The first step in PCA is to subtract the mean of each data-set from each data-point in the set. For example, if we had data-
sets X, Y, and Z, then from each value in X, Y, and Z, we would subtract the mean of each data-set, respectively. This would 
result in the data-sets having means of 0. The covariance matrix is then built using the mean-subtracted data-sets (note: if the 
variables were measured in different units, then a correlation matrix should be employed, whereas if the variables were in the 
same units and are mean-centred, then a covariance matrix should be employed). Thirdly, eigenvectors (a) and eigenvalues (e) 
for the built covariance matrix are determined. Eigenvectors characterize the data using straight, orthogonal lines and each is 
scaled with an eigenvalue. Eigenvalues indicate the amount of variance that a component contains (similar to the percentage of 
variance). The eigenvector is the direction cosine of the axis of the principal component, such that: 

v=1

n

! z
v
= a

v
x  

Where: n=Number of original variables; Zv=vth principal component; av=vth eigenvector; x=vector of the original variables 
As mentioned, it also holds true that the variance of a principal component is equivalent to its corresponding eigenvalue: 

var(z
v
) = e

v  

Where: Zv=vth principal component; ev=vth eigenvalue 

 
Fig. (2). By adding 172 male samples and using the same markers as per Fig. 1, the htCNV pipeline is also shown to be capable of 
distinguishing between both sex and sub-population group within the Internationall HapMap. 
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 The eigenvectors are then ordered by their eigenvalue (highest to lowest), indicating the level of significance to the data-set. 
 Transformation of the original data then occurs by multiplying a matrix containing the derived eigenvectors by one 
containing the mean-subtracted original data. The result is a matrix with the same dimensions as that of the mean-subtracted 
data but whose values have been transformed. The original data can then be said to be expressed with regard to the patterns 
within it. Once the data has been transformed, end-analysis can be performed, which can involve the selection of significant 
data-points and eigenvectors - it can also involve viewing the data on bi-plots. 
 The transformed data contains the principal components and each is assigned a percentage that corresponds to the amount of 
total variance in the data towards which the component contributes. The relationship of the original variables to the new 
components is represented by correlation (r) values that are scaled between -1 and +1. If there are variables having high 
correlation to one or more of the derived components, then most of the variation will be accounted for by these components and 
such variables will be the ones that are accounting for the differences amongst samples. The last few, in such a case, will 
account for little variation as they will define constant or near-constant linear relationships amongst the variables (i.e. variables 
whose values were common across samples). 

Eigenvectors and Eigenvalues 

 Common statistical measures include the mean ( X ) and standard deviation (σ). However, variance (var), which is merely 
the square of the standard deviation (σ2), and covariance (cov) can also be used. To derive the eigenvectors and eigenvalues for 
a set of data, the covariance matrix must first be derived. 
 The standard deviation and variance are represented as follows: 
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Where: n=Number of values in the data-set; X =Mean of the data-set; Xi=ith element of the data-set 
 These measure the spread of the data. However, whereas the variance is one-dimensional, covariance is used on two-
dimensional data (for example, measuring the relationships between the height of a person and their body-weight, or between 
hours studied and exam results). Covariance retains the same formula as variance, except for a minor difference: 

cov XY( ) =
X
i
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Where: n=Number of values in the data-set; X &Y =Means of data-sets X and Y; Xi & Yi=ith elements of data-sets X and Y 
For n-dimensional data-sets, a covariance matrix can be constructed that represents the covariance between each possible 
combination of data-sets. For example, a covariance matrix for a three-dimensional data-set (X, Y, Z) would look like the 
following: 
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 The matrix is symmetrical across the main diagonal. Also, the covariance values on this diagonal are equivalent to simply 
finding the covariance of each particular data-set to itself. If we multiplied two matrices together (one a transformation matrix 
and the other a vector), the result would be a matrix that is either an integer-multiple of the original vector or not. Integer-
multiples are eigenvectors, with the scaling value being the eigenvalue. For example, observe the following: 
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Where: A=Transformation matrix; B=Vector; 10=Eigenvalue; 
2

2

!

"
#

$

%
& =Eigenvector 

 Eigenvectors are orthogonal (i.e. - perpendicular) to each other. For any nXn matrix, only n possible eigenvectors can be 
found, and they are scaled to have a length of 1. Visually, the orthogonal nature of eigenvectors means that at most 3 
eigenvectors can be displayed on a three-dimensional plot. 
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