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Abstract: Recent developments in Next-Generation Sequencing (NGS) technologies have opened doors for ultra high 
throughput sequencing mRNA (mRNA-seq) of the whole transcriptome. mRNA-seq has enabled researchers to 
comprehensively search for underlying biological determinants of diseases and ultimately discover novel preventive and 
therapeutic solutions. Unfortunately, given the complexity of mRNA-seq data, data generation has outgrown current 
analytical capacity, hindering the pace of research in this area. Thus, there is an urgent need to develop novel statistical 
methodology that addresses problems related to mRNA-seq data. This review addresses the common challenge of the 
presence of overdispersion in mRNA count data. We review current methods for modeling overdispersion, such as 
negative binomial, quasi-likelihood Poisson method, and the two-stage adaptive method; introduce related statistical 
theories; and discuss their applications to mRNA-seq count data. 
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1. INTRODUCTION 

 DNA sequencing is a powerful technique that allows 
scientists to obtain key genetic information from biological 
system of interest. However, traditional sequencing methods 
such as capillary electrophoresis based Sanger sequencing 
have inherent limitations with regard to throughput, 
scalability, speed, resolution and cost. Next Generation 
Sequencing (NGS) has been developed to address such 
limitations, and this technology has triggered numerous 
ground-breaking discoveries and evoked a revolution in 
biomedical research [1]. NGS technologies enable 
sequencing the entire genome and transcriptome in a rapid 
and cost-effective manner, and can be applied to a wide 
range of biomedical applications such as variant discovery, 
profiling of histone modifications, identification of 
transcription factor binding sites, resequencing, and 
chararcterization of the transcriptome. The application of 
NGS to the transcriptome, also known as mRNA-seq, allows 
direct sequencing of a population of transcripts and these 
read counts linearly approximate target transcript abundance 
[2]. Therefore, mRNA-seq data can provide rich information 
on alterative splicing, allele-specific expression, unannotated 
exons, and differential expression. 

 In mRNA-seq data analysis, sequenced fragments are 
aligned with a reference sequence and the number of 
fragments (typically called counts) mapped to regions of 
interest is recorded, usually as count data [2]. However, 
unlike other types of discrete responses, count responses 
cannot be expressed in the form of several proportions. For 
count responses, the upper limit is infinite and the range is  
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theoretically unbounded. Thus, methods for binomial 
responses do not apply. Log-linear models built upon 
Poisson distributions are most popular for analyzing the 
number of counts. An important mathematical feature of the 
Poisson distribution is that the mean equals its variance. 
However, in mRNA-seq data the variance of the count is 
often much larger than its mean, and this property is called 
overdispersion. When overdispersion occurs, the log-linear 
model does not hold, which results in biased and misleading 
conclusions. Therefore, alternative analytical strategies are 
needed to adequately address over dispersion of mRNA-seq 
data. 

 The regular log-linear regression and related goodness-
of-fit tests will first be introduced in Section 2, followed by 
overdispersion and its detection in Section 3. In Section 4, 
we will review extended Poisson models and the newly 
developed two-stage adaptive strategy for overdispersion in 
mRNA-seq count reads. Finally, future directions will be 
discussed. 

2. LOG-LINEAR REGRESSION MODEL FOR COUNT 
DATA 

 To assess differential continuous expression measures, 
such as microarray data, among various groups or treatments 
and other demographic factors, an ordinary linear regression 
can be written as follows: 

 Yijg = xi! jg = ! jg0 + ! jg1xi1 +…+ ! jgpxip + " ijg ,  (1) 

1 ! i ! nj and " ijg ~ N 0,# jg
2( ),  

where Yijg  denotes the expression level of gene g  of the ith  

replicate in the j th  treatment group and ! jg  represents 
corresponding regression coefficients, which quantify group 
effects on gene expression levels. An example of ix  is 
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treatment assignment or gender. If xi1  represents a group 
indicators, ! jg1  stands for difference in expression level 
between group j and the reference group. Similarly, if ipx  

stands for gender, ! jgp  represents the difference in the 
expression level of gene g  between males and females. A t-
test can be applied to evaluate whether a certain group effect, 
for example, ! jg1  is equal to a constant C. In the case that 
C = 0 , the test is the familiar one to assess the significance 
of the result, 
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T-distribution with degree of freedom dg .  

 However, in mRNA-seq data, the expression level is 
often measured by count rather than a continuous value. 
Thus, using the model employed in (1) will likely result in a 
misleading conclusion. Although biomedical investigators 
previously transformed their count data and used tools 
appropriate for continuous data [3-5], it is now more suitable 
to employ more advanced statistical methods that better 
characterize the features of count data. 

 The Poisson distribution is a widely used model for the 
count response. It is determined by only one parameter ! , 
which is both the mean and variance of the distribution. 
However, this parameter often varies because of 
heterogenous underlying characteristics; for example, the 
reads for A/T-rich regions are usually low. Thus, this single-
parameter model can no longer be applied if heterogeneity is 
high. Therefore, the log-linear regression model, an 
extension of the simple Poisson distribution, was developed 
to account for such heterogeneity [6]. 

 Let Yijg  denote the mRNA-seq count for gene g  in the 

ith  replicate of the j th  treatment group and 
 
xi = xi1,…, xip( )  

denote a vector of explanatory variables of the i th subject 
1 ! i ! nj( ) . 

 Given xi , the response variable Yijg  follows a Poisson 
distribution with mean !ijg , 

Yijg | xi ~ Poisson !ijg( ), 1 " i " nj ,  (2) 

whereas the conditional mean !ijg  is linked to a linear 
combination of predictors by the log function: 

 log(!ijg ) = xi" jg = " jg0 + " jg1xi1 +…+ " jgpxip ,  (3) 

where  ! jg = (! jg0 ,! jg1,…,! jgp )
"  is the parameter vector, 

including interest and nuisance parameters. In the analysis of 
mRNA-seq data, a replicate-specific offset term is frequently 

used to account for replicate-to-replicate variation in 
technical factors such as errors and efficiency of laboratory 
operations such as RNA extraction and amplification [7]. 
Technical laboratory effects typically is manifest as 
differences in the total number of sequence reads generated 
for each replicate. Thus, the offset term is typically a simple 
function of the read count data of the replicate. The average, 
median, or upper quantile is often used [7]. Mathematically, 
the offset term may be absorbed into the intercept term of 
equation 3. Thus, we use the notation of equation 3 
throughout with the understanding that the offset term is 
often required in practice. 

 Subsequently, with the log-linear model defined above, 
the variation of a count response can be usually partially 
explained by a vector of predictors. 

 Without loss of generality, in the rest of this review 
except Section 4.3, we will remove j  and g  by considering 
only 1  gene and 1  treatment group. 

2.1. Inference About Model Parameters 

 In statistics, maximum-likelihood estimation (MLE) is 
used to estimate the parameters by finding optimal 
mathematical values that maximize the likelihood function 
(or the log-likelihood function). For the log-linear model, the 
log-likelihood function is 

l !( ) =
i=1

n

" yi#i $ exp #i( ) $ log yi!{ }

=
i=1

n

" yixi
T! $ exp xi!( ) $ log yi!{ }.

 (4) 

 To locate the numbers maximizing the log-likelihood, we 
need to solve the score function, which sets the first derivative 
of the log-likelihood function with respect to !  as 0: 

!
!"

l "( ) =
i=1

n

# yixi
T $ exp xi"( )xi%{ }.  (5) 

 As the second-order derivative is negative, the unique 
solution to the score equation (5) will be the MLE of ! , 

denoted as  !
!

. The MLE  !
!

 follows an asymptotically 

normal distribution, that is 
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I !( )  is the Fisher information matrix, defined as 

I !( ) = E " #2
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&
'
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)
*  [6]. For the log-linear model 

defined in (2) and (3), 

E I !( )"# $% = E &ixixi
'( ), I !( ) = 1

n i=1

n

(&ixixi
' .  (6) 

 In practice, it is usually not feasible to evaluate 
E I !( )"# $%  in a closed form. Thus, the observed version of 

I !( )  with estimated  !
!

 replacing !  serves as a natural 
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estimator of I !( )  for inference. Then the MLEs can be 
obtained from iterative numerical optimization by taking 
advantage of modern computers. 

 In most mRNA-seq analyses, we are primarily interested 
in testing whether a predictor of interest is associated with 
the gene expression level, such as cancerous versus normal 
tissue. Group comparisons can be made using Wald, score, 
or likelihood ratio tests. 

2.2. Goodness of Fit 

 Departures from the Poisson assumption that mean 
equals variance are frequently seen even in well-designed 
and controlled practical studies, especially in mRNA-seq 
count data. Therefore, it is important to evaluate whether the 
log-linear model fits the data appropriately. In this review, 
we discuss 2  goodness-of-fit tests for log-linear regression: 
the Pearson's ! 2  test and the deviance test. 

2.2.1. Pearson's 2!  Statistic 

 Pearson's ! 2  statistic is the sum of normalized squared 
residuals. A residual is defined as the difference between the 
observed and model-fitted values of the response variable, 
and the sum of its squares asymptotically follows a chi-
square distribution under regular conditions. For instance, let 

yi  be the count response and 
 
!
!
i = exp xi "

!#

$
%

&

'
(  be the fitted 

value under the log-linear model 1 ! i ! n( ) . Since the mean 
and variance are the same for the Poisson distribution, we 

may also estimate the variance as  !
!
i . Subsequently, the 

normalized residual for the i th subject is 
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Pearson statistic is simply 
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proven that the Poisson distribution converges to a normal 
distribution when the mean !  grows unbounded [8]. If we 

ignore the sampling variability in  !
!

, we have 
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 It follows that for fixed n , 
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where p is the number of parameters, that is the dimension of 
β. 

 Given both yi ~  Poisson !i( )  and !i s are all large, 
Pearson's statistic approximately follows a chi-square 
distribution with degrees of freedom of n ! p . Note that the 
asymptotic distribution of Pearson's statistic holds when 
!i " #  while n  is fixed. This is somewhat in comparison 
with the common large sample theory, because most 
asymptotic results typically hold with a large sample size n . 
In mRNA-seq data, !i s may not be large; thus, inference 
based on the asymptotic chi-square distribution may be 
invalid. 
2.2.2. Deviance Statistic 

 The deviance statistic is defined as twice the difference 
between the maximum achievable log-likelihood and the 
value of the log-likelihood evaluated at the MLEs of the 
model, that is, 

D y,!( ) = 2 l y, y( ) " l y,!( )#$ %& ,  

where  y = y1,…, yn( )! . l y, y( )  is the log-likelihood 

assuming the model is a perfect fit to the data and l y,!( )  is 
the log-likelihood of the model of consideration. For log-
linear regression, the deviance statistic is defined as 
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 If the Poisson model holds, D y,!( )  is approximated by 
a chi-squared random variable with degrees of freedom 
n ! p . When the deviance divided by the degrees of 
freedom is significantly larger than 1, which is a rare case 
under the null hypothesis of good fit with Poisson, it is 
indicative of lack of fit. 

3. OVERDISPERSION AND ITS DETECTION 

 Although the Poisson model is most widely employed for 
count data analysis, a common violation of it is 
overdispersion, which is seen in mRNA-seq count data. As 
discussed at the beginning of Section 2, the mean and 
variance of a Poisson distribution should be the same. This is 
actually a very stringent restriction, and in many 
applications, the variance ! 2 =Var y( )  often exceeds the 
mean ! = E y( ) , causing overdispersion and making it 
inappropriate to model such data using the Poisson model. 
When overdispersion occurs, the standard errors of 
parameter estimates of the Poisson log-linear model are 
artificially deflated, leading to exaggerated biased estimates 
and false positive findings. In mRNA-seq data, 
overdispersion may occur because of correlated gene counts, 
clustering of subjects and within group heterogeneity. If the 
underlying reason for overdispersion is uncertain, a common 
approach is to use a parametric model with 1  additional 
parameter to account for variance inflation or use a 
nonparametric robust estimate for the asymptotic distribution 
of model estimate and make an inference based on the 
corrected asymptotic distribution. 
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 Several methods have been developed to detect 
overdispersion, 4  of which are discussed here. First, 
overdispersion detection could be taken as the goodness-of-
fit test to evaluate how well a Poisson model fits the data. In 
fact, the 2  goodness-of-fit tests, the deviance and Pearson's 
chi-square statistics, discussed in Section 2, can be used to 
verify whether overdispersion occurs. However, the deviance 
and Pearson's statistics can be quite different if the mean is 
not large enough. Second, Vuong's statistic [9], which tests 
the Poisson model against its nested model such as the 
negative binomial model, can be an efficient way to test 
overdispersion. Third, a recently proposed generalized 
ANOVA [10] detects overdispersion by extending U-
statistics with asymptotic theory. Finally, for mRNA-seq 
data analysis, Auer and Doerge [11] adopted a score test 
method proposed by Dean and Lawless [12, 13]. They 

defined 
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of a correct specification of the mean response !i . This 
statistic is motivated by assuming a form of extra Poisson 
variation, Var(yi ) =  !i + "  !i

2 , and then testing the null 
hypothesis of the Poisson model H 0 :! = 0 . When the 
sample size n! " , the following statistic 
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approximately normally distributed under the null hypothesis 
that yi  follows a Poisson distribution. If the sample size n  is 
fixed, but !i " #  for all 1 ! i ! n , T  is asymptotically 
equivalent to 
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 Dean and Lawless [12] showed that the limiting 
distribution of T2  is a linear combination of chi-squares as 
!i " #  1 ! i ! n( ) . 

4. METHODS FOR OVERDISPERSED COUNT DATA 

 When overdispersion is detected and the appropriateness 
of the Poisson model is in serious doubt, the model-based 
asymptotic variance no longer indicates the variability of the 
MLE and inference based on the likelihood approach may be 
invalid. A different and more appropriate model can be used 
to fit the data if the underlying cause for overdispersion is 
known. In previously published sequence count data 
analyses, multiple approaches have been employed to 
address overdispersion [14-18]. These overdispersion 

modeling methods can be divided into 3  categories: the 
maximum likelihood based parametric method, the 
maximum quasi-likelihood based nonparametric method and 
the two-stage analysis strategy. 

4.1. Parametric Method 

 As mentioned in Section 2, mRNA-seq reads frequently 
show overdispersion because of reasons such as correlated 
gene counts, clustering of subjects, and within-group 
heterogeneity. Therefore, it is natural to add a random effect 
ri  to standard Poisson models to capture additive 
heterogeneity. Equation (2) can be rewritten as 

Yi | xi , ri ~ Poisson riµi( ), 1 ! i ! n.  
 As stated above, if the random effect ri  is known, the 
count response yi  follows standard Poisson distribution. 
However, when ri  is unknown or not observed, we assume it 
as a random that follows a parametric distribution. 
Statisticians have shown that it is convenient and reasonable 
to assume that ri  has a gamma distribution [8]. Therefore, it 
is easy to derive the marginal distribution of response Yi , 

P(Yi = yi | xi ) =
! " + yi( )#" µi

yi

yi!! "( ) (µi +# )
"+yi

,  (9) 

where !  and !  are the parameters of gamma distribution. 
Equation (9) is the probability mass function of a negative 

binomial distribution with mean 
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µi

 and variance 
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, which can be rewritten as mean !i  and 

variance !i + "  !i
2  to match the test in (8). Unless ! = 0 , 

this variance is always larger than the mean ! . Therefore, 
the negative binomial model adds an extra term !  !2  to the 
variance of Poisson model to account for overdispersion. For 
this reason, !  is the parameter to control dispersion or the 
shape of this distribution. The negative binomial model has 
been widely used for sequence count data analyses, such as 
egeR [14-16], DESeq [17] and baySeq [18]. 

 As a parametric model belonging to the exponential 
family, negative binomial inference can be performed with 
maximum likelihood. Its log-likelihood is derived as 
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 By maximizing this log-likelihood, we readily obtain the 

MLEs  !
!

, as well as their asymptotic distribution for inference. 

 By testing the null H 0 :! = 0 , we can evaluate whether 
there is overdispersion in the data. However, since its range is 
nonnegative, 0  is a boundary point. Thus, the asymptotic 
theory of the MLE cannot be applied directly for inference 
about ! , as 0  is not an interior point in the parameter space. 
Statisticians refer to this problem as inference under 
nonstandard condition. Under certain conditions that are 
satisfied by most applications, including the overdispersion test 
being discussed here, inference about the boundary point can be 
based on a modified asymptotic distribution. For example, to 
test the null hypothesis, H 0 :! = 0 , the revised asymptotic 
distribution is an equal mixture of a point mass at 0  and the 

positive half of the asymptotic normal distribution of  !
!

 under 
the null hypothesis. Intuitively, the lower half of the asymptotic 

distribution of  !
!

 is “folded” into a point mass at 0, since 
negative values of !  are not allowed under the null hypothesis. 

4.2. Non-Parametric Method 

 When overdispersion exists and the assumptions of negative 
binomial are satisfied, the parametric method and related 
maximum likelihood are very efficient to model mRNA-seq 
counts. However, negative binomial may not always hold for all 
mRNA-seq reads and therefore a robust inference is required. 
Robert Wedderburn introduced a quasi-likelihood function in 
1974 [19]. Despite its properties being similar to that of the log-
likelihood function, it only requires the mean and variance of 
the response to follow a certain pattern, without having to 
specify any parametric distribution. Quasi-likelihood models 
can be fitted using a straightforward extension of the algorithms 
for generalized linear models. 

 To perform inference, the challenge is to estimate the 
asymptotic variance of estimated parameters. The most popular 
method is the sandwich variance estimate, which is derived 
based on the estimating equations. Scaled variance is another 
approach. 
4.2.1. Sandwich Estimate for Asymptotic Variance 

 Let 

E yi | xi( ) = !i xi"( ), Di =
#!i
#"
, B = 1

n i=1

n

$DiVi
%1Di

& ,  (11) 

where !i xi"( )  indicates that the mean !i  is an arbitrary 

function of xi! . Let  !
!

 be the estimating equation estimate of 

! , i.e.,  !
!

 is the solution of 

i=1

n

!DiVi
"1 yi " #i( ) = 0,  (12) 

where !i  and Di  are defined in (11), and Vi  is also a function 

of !i . It has been proven that 
 !
!  is consistent and 

asymptotically normal regardless of the distribution of yi  and 
choice of Vi , as long as the mean function E yi | xi( ) =  

!i xi"( )  is correct [16]. Further, if yi  given xi  is modeled 
parametrically using a member of the exponential family, the 
estimating equations in (12) are essentially the same as the score 
equations of the log-likelihood with an appropriate selection of 

Vi , which !  is the same as  !
!

. 

 With the sandwich estimate, the asymptotic variance of  !
!
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 If the conditional distribution of yi  given xi  follows a 
Poisson with mean !i = exp xi"( ) , then 
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= "ixi , Var yi | xi( ) = "i , B = E "ixixi
$( ).  (14) 

 It is readily checked that the estimating equation in (12) is 
identical to the score equations of the log-likelihood of the 
Poisson log-linear regression in (5), if Vi =Var yi | xi( )  and the 
asymptotic variance of the estimating equation estimate in (13) 
simplifies to 
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 Then, the estimating equation yields the same inference as 

the MLE. However, as the estimating equation estimate  !
!

 and 
its associated asymptotic variance !"  in (13) are derived 
independent of such distributional models, it still provides a 
valid inference even when the conditional distribution of yi  
given xi  is not Poisson. For example, in the presence of 
overdispersion, Var yi | xi( )  is larger than !i , biasing the 
asymptotic variance in (15) based on the MLE. In contrast, the 
estimating equation based asymptotic variance !"  in (13) still 

provides valid inference about Var !( ) . 

 After estimating various parameters in (13) using 
corresponding moments that 
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we get the sandwich variance estimate 
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 Thus, if overdispersion is detected, we can still use the 
MLE to estimate ! , but need to switch to the sandwich 
variance estimate in (16) to ensure valid inference. 
4.2.2. Scaled Variance 

 For the log-linear model, a widely used alternative to 
address overdispersion is to add an additional scale 
parameter to inflate the variance of yi . Specifically, this 
scaled variance approach assumes the same conditional mean 
but a scaled conditional variance of yi  given xi  as 
following: 

!i = exp xi"( ), Var yi | xi( ) = !2!i .  
 If !2 = 1 , Var yi | xi( ) =  !i  and the modified variance 
approach reduces to the Poisson model. In the presence of 
overdispersion, !2 > 1  and Var yi | xi( ) >  !i , accounting 
for overdispersion. 

 Under this scaled-variance approach, we first estimate !  
using either the MLE or the estimating equation approach. 
Then, we estimate the scale parameter !2  by 
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 Alternatively, we can apply the deviance statistic to 
estimate !2  in (17) to obtain a slightly different yet 
consistent estimate of the asymptotic variance of the 
estimating equation/maximum likelihood estimate of ! . 

 However, unlike the sandwich estimate  !
!

"  in (16), the 

estimate  !
!

"  is derived based on a particular variance model 

for overdispersion. If this variance model is incorrectly 
specified, inference based on this asymptotic variance 

estimate  !
!

"  may not be reliable. 

4.3. Two-Stage Analysis 

 Typically, an mRNA-seq dataset can have thousands to 
millions of genetic features (exons, genes, or other genetic 
loci to which sequences are mapped). Some genes may have 
substantial variation in transcription levels, whereas others, 
such as housekeeping genes, may have very stable 
transcription levels, with no overdispersion. Therefore, a 
Two-Stage Poisson Model (TSPM) was proposed to first 
examine overdispersion in each individual gene before 
making inferences in order to preserve high statistical power, 
especially for small sample sizes [12]. 

 After estimating the offset terms, a nonspecific filtering 
is performed to remove genes with total counts less than 10 
across all treatment groups (a pre-specified arbitrary cutoff) 
to satisfy the conditions required by asymptotic theory in 
Section 3. Then each gene that passes the filtering process, 
such as gene g , is evaluated first for overdispersion by using 
the Dean and Lawless' method [12], introduced in Section 3, 
with the hypothesis set as 

H 0g :! g = 0 v.s. H1g :! g > 0,  

and with the statistic 
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where  h
!
ijg  is the corresponding diagonal element of the hat 

matrix (i.e. H = X XT X( )!1 XT  and X  is the covariate 

vector). At the second stage, if the H 0g  is rejected, 
suggesting that gene g  has overdispersion, a quasi-
likelihood method will be employed. Otherwise, a standard 
log-linear model will be fitted which has a greater statistical 
power than the quasi-likelihood method, since the MLE is 
most efficient when the parametric model holds. 

 Recently, Pounds et al. [20] further extended the TSPM 
by using concepts of the Assumption Adequacy Averaging 
method [21]. Briefly, Dean's test for overdispersion, a test 
based on a standard Poisson general linear model, and a 
quasi-likelihood test are applied to the count data of each 
genetic feature. A set of empirical Bayesian probabilities 
[22] is computed for each test and these empirical Bayesian 
probabilities are either combined in a weighted average or 
used to select the empirically best test for each genetic 
feature. These intermediate results are used to obtain a final 
empirical Bayesian probability that is a type of local false 
discovery rate metric for each genetic feature. The approach 
by Pounds et al. performs better than TSPM [20], but it 
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cannot be applied to a gene with small counts due to its 
dependence on asymptotic theories for detecting 
overdispersion [12]. 

5. FUTURE STUDIES 

 Uniformly applying the negative binomial or the quasi-
likelihood Poisson model to mRNA-seq count data addresses 
the overdispersion and fixes the bias resulting from standard 
Poisson models. However, it also reduces the analysis power 
for genes that do not exhibit overdispersion. The two-stage 
analysis strategy seems to address this limitation, but it can 
be used only when genes have large counts. Therefore, 
improvements in statistical methods are warranted, 
especially for genes with lower counts. 

 Another challenge is that many mRNA-seq data carry 
excessive zeroes, while statistical models described in this 
review generally no longer hold. Also, a widely recognized 
practical problem is to distinguish between a random zero, 
occurring in a gene with low expression, from a structural 
zero, occurring in an unexpressed gene. The zero-inflated 
models may be useful when there is an excess of zeroes in 
mRNA-seq data [23]. These models introduce an additional 
parameter to model the probability that a gene is 
unexpressed, which serves as a mathematical representation 
for structural zeroes whereas random zeroes reflect genes 
with low expressions. 

 mRNA-seq data have posed numerous statistical 
challenges, and translating the rich information derived from 
mRNA-seq data into clinical knowledge will be a long-
standing direction for biomedical and statistical research. 
This review aims to aid researchers to analyze regular and 
overdispersed mRNA-seq count data more appropriately and 
direct attention to practical issues in such data. 
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