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Abstract: Artificial neural networks (ANNs) technology models the pattern recognition capabilities of the neural 
networks of the brain. Similarly to a single neuron in the brain, artificial neuron unit receives inputs from many external 
sources, processes them, and makes decisions. Interestingly, ANN simulates the biological nervous system and draws on 
analogues of adaptive biological neurons. ANNs do not require rigidly structured experimental designs and can map 
functions using historical or incomplete data, which makes them a powerful tool for simulation of various non-linear 
systems.ANNs have many applications in various fields, including engineering, psychology, medicinal chemistry and 
pharmaceutical research. Because of their capacity for making predictions, pattern recognition, and modeling, ANNs have 
been very useful in many aspects of pharmaceutical research including modeling of the brain neural network, analytical 
data analysis, drug modeling, protein structure and function, dosage optimization and manufacturing, pharmacokinetics 
and pharmacodynamics modeling, and in vitro in vivo correlations. This review discusses the applications of ANNs in 
drug delivery and pharmacological research. 
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1. INTRODUCTION 

 In the past decade, neural networks have received a great 
deal of attention among scientists and engineers and they are 
being touted as one of the greatest computational tools ever 
developed. Much of this excitement is due to the ability of 
neural networks to emulate the brain’s ability to learn by 
example. This network makes decision and draws conclusio-
nseven when presented with incomplete information. 
Moreover, at some primitive level, neural network imitates 
brain’s creative process in adapting to a novel situation [1]. 
It is a very good statistical tool for many numeric as well as 
nonnumeric calculations. Specifically, ANNs are known to 
be a powerful tool to simulate various non-linear systems 
and have been applied to numerous problems of considerable 
complexity in many fields, including engineering [1], 
psychology, medicinal chemistry [2, 3], diagnostics [4, 5], 
and pharmaceutical research [6]. 

2. ARTIFICIAL NEURAL NETWORKS MODELING 

 As biologically inspired computational model, ANN is 
capable of simulating neurological processing ability of the 
human brain. Average human brain contains about 100 
billions of neurons with each neuron being connected with 
1000-10,000 connections to others. A single neuron consists  
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of three major parts—dendrites (fine branched out threads) 
carrying signals into the cell, the cell body receiving and 
processing the information, and the axon (a single longer 
extension) (Fig. 1). The axon carries the signal away and 
relays it to the dendrites of the next neuron or receptor of a 
target cell. The signals are conducted in all-or-none fashion 
through the cells. All the connections in the brain enable it to 
learn, recognize patterns, and predict outcomes.Similarly to 
the brain, ANN is composed of numerous processing units 
(PE), artificial neurons. The connections among all the units 
vary in strength, which is defined by coefficients or weights. 
The ANN mimics working of human brain and potentially 
fulfills the cherished dream of scientists to develop machines 
that can think like human beings.ANNs simulate learning 
and generalization behavior of the human brain through data 
modeling and pattern recognition for complex multidim-
ensional problems. A significant difference between an ANN 
model and a statistical model is that the ANN can generalize 
the relationship between independent and dependent 
variables without a specific mathematical function. Thus, an 
ANN works well for solving nonlinear problems of 
multivariate and multiresponse systems such as space 
analysis in quantitative structure-activity relationships in 
pharmacokinetic studies [7] and structure prediction in drug 
development [8]. 
 There are many types of neural networks with new ones 
being continually invented; however, all ANNscan be 
characterized by their transfer functions of their processing 
units (PE), the learning rules, and by the connections 
formulas. PE, building component of ANN, receives many 
signals as weighted process variables from the response of 
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other units [9]. The most commonly applied ANN layout is 
forward propagating network trained by error back-
propagation developed by Rumehart et al. [10]. The forward 
propagation network consists of input layer, one or more 
hidden layers and one output layer (Fig. 2) [11]. The input 
layer provides data from the external source. The mapping of 
the input data occurs by neural network hidden layers, then 
the final representative signal is generated by the output 
layer [10, 12]. The ability of neural networks to classify 

information depends on hidden layers, which are fully 
connected by the synapses to the neighboring layers. 
 In each hidden layer and output layer, the processing unit 
sums up its input from previous layer by the sigmoidal 
function to compute the output to the following layer 
according to the following equations (1) and (2) [13]. 

(1)q pq py w x=!  (1) 

 
(A) 

 
(B) 

Fig. (1). Conceptual structure of a biological neuron. (A) Schematic representing structure of biological neuron. Branched out dendrites 
receive the signal. The cell body processes the signal and relays it to the next target via axon, the elongated extension. (B) The input signals, 
represented by lightning bolts stimulate the dendrites in the synapses. The signals are relayed to the cell body, where they are processed and 
travel onto the axon as a single output signal. 
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Where, wpq is the strength of the connections between unit q 
in the current layer to unit p in the previous layer, xp is the 
output value from the previous layer, f(yq) is conducted to 
the following layer as an output value, and α is a parameter 
relating to the shape of the sigmoidal function. The 
advantage of this function is that it can accommodate a large 
signal without saturation while allowing small signals to pass 
without excessive attenuation. Nonlinearity of the sigmoidal 
function is strengthened with an increase in α. The ANN 
learns an approximate nonlinear relationship by a procedure 
called training, which is the search process for the optimized 
set of weight values to minimize the squared error between 
the estimation and experimental data of units in the output 
layer. Most commonly used methods is back-propagation 
method, whichrequires three simple steps—network design, 
learning or training, and usage [11]. In the network design 
stage the number of connections and layers is selected based 
on the type of application. Then, the training stage requires 
of selection of training set of data and remodeling of the 
network to minimize the error. And lastly, following the 
training ANN is suitable to use. 
 Network design. Number of hidden layers is essential to 
the purpose and function of an ANN as it influences the 
number of connections in the network and, thus, its 
performance. A very common approach to select the optimal 

number of hidden nodes is by trial and error method using 
the training rules as guidance; however, the upper limit of 
number of hidden nodes on an ANN model can be 
determined using the following equation (3) [14]. 

{ ( 1) ( 1)} (3)s h i o hn n n n n!= + + +  (3) 
Where, Nhiddenis the number of hidden nodes; Ntrn is the 
number of training sample; R is a constant with values 
ranging from 5 to 10, Ninp is the number of inputs and Noutis 
the number of outputs. The final number of process variables 
and response units depends on the type of the problem and is 
determined by the data for the analysis. After finalizing the 
number of layers and neurons in each layer ANN is ready for 
training. 
 Training. The process of training involves a search for 
the most optimal network state by adjustments of the weights 
of the connections between PEs. The weights are adjusted, 
based on the training set of data, until the error is minimized. 
At some point the network may become stuck in local 
minima, where the error is lower; however, less than optimal 
confirmation is achieved. The momentum can aid the 
network to continue sampling confirmations making training 
is a long iterative process.Certain empirical techniques have 
been reported to improve the convergence of ANNs in the 
global minima [15]. Kalman filter algorithm [16, 17] may 
help to reduce the amount of iterative trainingand prevent the 
ANN getting stuck in local minimaby using the simulated 

 
Fig. (2). A schematic of four-layered artificial network. Input layer units (in blue) receive input signals (x1, x2, x3) and transfer the signal 
to the hidden layers via weighted connections. Output layer receives the signals and provides the representative output signal. 
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annealing technique where the global minima can be more 
specified making the training process quicker and more 
efficient [18-20].  
 The amount of training is important because undertrained 
ANNs yields larger errors in the output signal and 
overtrained ANNs lose the ability to generalize and 
recognize patterns. Equation (4) relating to the number of 
units in the input layer, the hidden layer and the optimal 
output layer may be used forreasonable prediction of number 
of training pairs [21]: 

  
AIC = nsx ln(SS )+ 2xnw (4) (4) 

Where, nhis the number of hidden units, niis the number of 
input units, n0is the number of output units, and nsis the 
number of training data pairs. The constant β is the 
parameter that relates to the degree of over determination. 
 Further, a cross-validation technique such as a ‘‘leave-
one-out (LOO) method’’ may be applied to ensure the 
optimality of an ANN structure [22-24]. One data pair is 
systematically removed from the training data set, and the 
ANN is then trained by using the reduced data set. Akaike’s 
information criterion (AIC) can be applied to evaluate the 
optimality of ANN (Equation (6)) [25]: 
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Where, nsis the number of data pairs, nwis the number of 
weights in the ANN, and SS is the residual sum of squares 
between observed and predicted response variables [26]. 
The learning through weight adjustment can be supervised or 
unsupervised. The network is repeatedly presented with an 
input pattern and a desired output response in supervised 
learning. The training process terminates when error goal is 
near zero and neural network produces correct response for 
given input patterns. In unsupervised learning no desired 
response is available to guide system and the learning is 
through input pattern alone. The neural network system itself 
then decides features to be used for grouping input data and 
this process is called self-organization or adaptation. The 
speed of learning is actually the rate of convergence between 
the current solution and the global minimum. Momentum 

helps the network to overcome obstacles (local minima) in 
the error surface and settle down at or near the global 
minimum. The most common training algorithm is based on 
the Delta rule,according to which, each of the training 
iterations (frequently referred to as “epoch”) are described 
by the following general equation: 

New weight change = learning rule * Error + Momentum + 
Last weight change (6) 

 The feed forward step starts with presentation of process 
variable pattern and continues through activation level to 
propagate through hidden layers. The processing unit sums 
the input and applies sigmoidal function in the hidden layer 
to compute its response as shown in Fig. (3). In feed-back 
step, error values are calculated for all processing units and 
weight changes are calculated for all interconnections. The 
calculations start at output layer and progress backward 
through the network to input layer. Thus each neuron has 
one additional weight as an input that allows an additional 
degree of freedom when trying to minimize training error.  
 In the training process, it may become necessary to 
change the number of units in the hidden layers, especially in 
multilayer networks where overfitting may occur. 
Pukrittayakamee et al. described two types of overfitting that 
may occur during the training process when both function 
and its derivatives and recommended pruning or adjusting 
the number of PEs in the network to overcome this issue 
[27]. 
 Based on the design and purpose of the ANN, the 
training may reach termination in the state of minimal error 
or continue evolving and learning though interactions with 
datasets. If the data is noisy, overtraining of the ANN may 
be of a concern as it may lose the ability to generalize and 
recognize the patterns. However, evolving ANNs are often 
used for modeling brain activity and artificial intelligence 
[28], space perception [29], and analysis of data requiring 
large inputs and large outputs [30] among other applications. 

3. APPLICATION OF ANNS MODELING IN DRUG 
DELIVERY AND PHARMACEUTICAL RESEARCH 

 The potential applications of ANN methodology in the 
pharmaceutical sciences are broad as ANNs capabilities can 

 
Fig. (3). A common design of a node in an artificial neural network.The input signal travels to the unit though weighted connection. 
Multiple signals are summated, processed, and transformed based on the specific function. An output signal is relayed to the following nodes 
in the network. 
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be summarized bymodeling, pattern recognitionand predic-
tion. Thus, applications of ANNs includedrug modeling, 
dosage design, protein structure and function prediction, 
pharmacokinetics and pharmacodynamics modeling, as well 
as, interpretation of analytical data, and in vitro/in vivo 
correlations. 

3.1. ANNs Applications Analytical Data Analysis and 
Structure Retention Relationship (SRR) Methodology in 
Pharmacological Research 

 As ANNs can recognize patterns from complex sets of 
analytical data, they become very useful in data analysis of 
pharmacological research due to their ability to recognize 
even non-linear relationships from noisy data. For instance, 
ANNs can be applied in analysis of spectral data of multi-
component samples such as mixtures forquantification of the 
concentrations in the mixture using the whole spectrum in 
the identification process [31-33]. Hasani et al. used ANNs 
for detection and calibration of amino acids with similar 
structures and spectrums such as tryptophan, tyrosine, and 
histidine [32]. Moreover, ANNs are capable of assisting in 
determining of concentrations of a chiral sample and 
enantiomeric excess in a single spectrophotometric 
measurement due to their ability to identify non-linear 
relationships [34]. For instance, ranitidine hydrochloride, 
one of the most commonly prescribed antihistamines, exists 
in two forms, Form 1 and 2. Application of ANNs in 
development of method of quantification of ranitidine-HCL 
using diffuse reflectance IR spectral data and X-ray 
diffraction allows for sensitive and quick identification of 
Form 1 concentration in a multi-component tablet without 
extraction of active ingredient and Form 1 [35-37]. 
Usefulness of ANNs in analysis of peptide MS/MS spectral 
data has been also demonstrated. The constructed ANN was 
used to analyze the data generated by Sequest, a widely used 
protein identification program. ANN was demonstrated to 
classify automatically as either "good" or "bad" 
the peptide MS/MS spectra otherwise classified manually. 
An appropriately trained ANN proves to be a high-
throughput tool facilitating examination of Sequest's results 
and authors recommended a routine use of this approach in 
handling large MS/MS data sets [38].  
 ANNs can also be used as the basis of computer-assisted 
optimization method for selection of optimal gradient 
conditions for anion separations in chromatography [39-41]. 
The ANNs with 1-10-9 architecture has been found to be 
rapid and accurate in predicting retention times for anions in 
linear gradient elution ion chromatography with hydroxide 
eluents.Tham et al. applied ANNs in quantitative structure–
gradient elution retention relationship of the compounds 
such as phenyl thiocarbamyl amino acids derivatives with 
estimation of the chromatographic retention times [42]. This 
study found the training set RMS error to be 1.773 and the 
testing set RMS error— 0.8377. Based on the RMS errors of 
the training and testing sets and high correlation of predicted 
versus experimental values (R>0.97), it is clear that the 
correlation between the structure and the chromatographic 
separation can be predicted by ANNs. Similarly, ANNs can 
assist in HPLC optimization by finding correlation of the 
chromatographic behavior of solutes (capacity factors) with 
mobile phase composition and pH to predict retention times 

[43], the separation as a function of simultaneous change in 
pH and solvent strength [44, 45], and hydrophobicity 
coefficients for the prediction of peptide elution profiles 
[46]. ANNmodel have used in successful prediction of 
retention values of unanalyzed molecular in studies done by 
Agatonovic-Kustrin by determining the correlations of 
chromatograms retention times with mobile phase 
composition and pH, and with physical chemical properties 
of amiloride, hydrochloride and methyldopa [47]. Recently, 
Chen et al. have used ANNs in combination with generic 
algorithms (GA) for method optimization of detection of two 
similar biophenols blood levels even at trace amounts and 
small sample volume [48]. ANNs can serve as a great tool in 
optimization stage of the method development to help save 
time and cost during this stage of research. Further, ANNs 
may help to detect relationships in analysis of challenging 
sets of data such as characterization of mixtures. 

3.2. Preformulation 

 ANN model has been used in the design and optimization 
of preformulation to determine the physicochemical 
propertiesof amorphous polymers [49]. A study by Ebubeet. 
al. indicated that the ANN model accurately predicted the 
water-uptake, glass transition temperatures and viscosities of 
different hydrophilic polymers and their physical blends with 
a low prediction error (0-8%). It demonstrated the potential 
of the ANNs as a preformulation tool as trained ANNs 
model enables prediction of the relationships between the 
compositions of polymer blend and the water uptake 
profiles, the relationships between composition of polymers 
blends and viscosity of polymers solutions, and the 
relationship between moisture content of polymers and their 
glass transition temperatures. 
 In the phase design, it may be important to consider the 
effect of active pharmaceutical ingredients (API) on the 
tablet itself, especially if multiple APIs are present. Using 
ANNs,Onukiet. al. were able to test 14 APIsafter optimizing 
the formulation base using self-organizing maps in order to 
expand the fast-release tablet database and study the effect of 
API on the tablet properties [50]. Moreover ANNs also have 
been successfully used in design of stable formulations for 
multiple active components, such as rifampicin and isoniazid 
microemulsions [51]. ANNs are certainly very useful in the 
preformulation design and would help reduce the cost and 
length of preformulation study. 

3.3. Optimization of Pharmaceutical Formulations 

 The prediction of pharmaceutical responses based on the 
polynomial equation and response surface methodology 
(RSM) has been widely used in formulation optimization but 
may be limited to low volumes, resulting in the poor 
estimation of optimal formulations. In order to overcome 
these shortcomings, a multi-objective simultaneous 
optimization technique incorporating an ANN has been 
developed [52, 53]. For example, the reliability of ANNs in 
optimizing controlled release capsules and ketoprofen 
hydrogel ointment has been demonstrated by Hussain et al 
[54]. A trained ANN model has been successfully employed 
to predict release profile and optimize formulation of various 
drug formulations such as aspirin extended release tablets 
[55, 56], diclofenac sodium sustained release matrix tablets 



54     The Open Bioinformatics Journal, 2013, Volume 7 Sutariya et al. 

[57], salbutamol sulfate osmotic pump tablets [58], 
transdermal ketoprofen hydrogel [59], and nimodipine 
floating tablet formulation [60]. 
 Takayama et al. applied an ANN model to optimize 
controlled release theophylline tablets prepared with the 
mixture of hydroxypropylmethyl cellulose with lactose and 
cornstarch [25]. The plasma concentration profiles were 
simulated based on the pharmacokinetic parameters of 
theophylline. The results predicted by the trained ANN 
model agreed well with the observed values. Chen et al. has 
also used ANN and pharmacokinetic simulations in the 
design of controlled-release formulation [61]. Three out of 
the four predicted formulations showed very good agreement 
between the ANN predicted and the observed in vitro release 
profiles based on difference factor. Vaithiyalingam et al. 
used the ANN to model the effect of process and formulation 
variables, coating weight gain, duration of curing, and 
plasticizer concentration on in vitro release profile of 
verapamil HCl from multi-particulate beads formulated with 
a novel aqueous-based pseudolatex dispersion [62]. The 
observed drug release data of the optimized formulations 
was close to the predicted release pattern, based on the ANN 
model. Recently, Atkas et al. have utilized ANNs in 
developing a carvedilol controlled release tablets, where the 
formulation resisted the pH-dependent solubility of 
carvedilol [63]. No significant difference between ANN-
derived predictions and experimental values were observed 
during this study. Similar findings of ANNs application in 
formulation optimization have been reported by Patel et. al., 
in their study ANN was used to design low and pH-
dependent tablet formulation [64]. Optimization process 
variables included drug amount, osmotic pressure of 
promoting agent rage, polymer content and weight of the 
coating, demonstrating that ANNs may be valuable in 
optimization of the formulations. 

3.4. In Vitro In Vivo Correlations 

 The in vitro in vivo correlations (IVIVC) are of great 
interest for pharmaceutical industry to avoid bioequivalence 
studies that are predicted to produce negative results. ANNs 
applied to IVIVC have the potential to be a reliable 
predictive tool that overcomes some of the limitations 
associated with classical regression methods such as lack of 
pattern recognition powers analyzing multivariable data sets 
with high degree of variation. ANN configurations are very 
useful in prediction of IVIVC from different formulations of 
same product [65]. ANNs can also be applied in quantitative 
structure-pharmacokinetic relationship (QSPR) of beta-
blockers using ANNs demonstrating that ANNs are capable 
of prediction in vivo results from in vitro experiments [66]. 
IVIVC has been applied in prediction of absorption of 
salbutamol in the lungs in healthy and asthmatic volunteers 
based on published in vivo data [67, 68]. The drug 
concentrations were measured in urine and compared to the 
lung function. The study concluded that ANNs are useful in 
predicting in vivo response based on in vitro data based on 
the squared correlations between predicted and experimental 
values of 0.83 and 0.84 for urine and lung function 
data.Recent studies by Paixãoet. al. predicting drug clearance 
by hepatocytes based on in vitro data (train r=0.953 and test 

r=0.804) show that ANNs may be a valuable tool in 
prediction of metabolic clearance of new drugs [69]. 

3.5. Quantitative Structure-Activity Relationships 
(QSAR) and Quantitative Structure-Property Relatio-
nship (QSPR) 

 QSAR correlate structure or property descriptors of 
compounds with chemical or biological activities and 
increasing number of neural network models are currently 
published for predicting various physicochemical properties 
from the molecular structures [70-73]. All QSAR studies are 
based on the fundamental concept of interdependence of 
biological activities on physicochemical parameters. The 
relationships of structure and function with the 
physicochemical descriptors and topological parameters can 
be determined by computational methods. For instance, 
ANNs have been used by Grobburu and colleagues to predict 
the quantitative structure QSPR of beta adrenoreceptor 
antagonists in humans [74]. In the study, ANNs with 
congeneric series of ten beta-blockers having well 
established critical pharmacokinetic parameters was 
constructed and tested for its ability to predict the 
pharmacokinetic parameters from the octanol/water partition 
coefficient, the pKa, or the fraction bound to plasma proteins. 
Neural networks predicted values showed better agreement 
with the experimental values than those predicted by 
multiple regression techniques (average difference = 47%). 
Comparison studies of the predictive performance of a 
mechanistic model with an empirical ANN model in 
calculating the relationship between the tissue distribution 
and the lipophilicity of a homologous series of 5-n-alkyl-5-
ethyl barbituric acids in the rat have been published and 
demonstrated the superiority of ANNs in this application 
[75]. The mean prediction error (ME) of the mechanistic 
model was 18% (range, 20 to 57%), indicating a tendency 
for overprediction; the mean squared prediction error (MSE) 
is 32% (range, 6 to 104%).  
 On other hand, ANN model had almost no bias: the ME 
was 2% (range, 36 to 64) and had greater precision than the 
mechanistic model, MSE 18% (range, 4 to 70%). ANNs 
have also been applied in prediction of antimicrobial 
activities of quinolone derivatives and detection of their 
minimum inhibitory concentrations using a topological 
method based on chemical structure of quinolone derivatives 
[76]. Morerecently, an improved prediction model of 
antimicrobial activity has been published by Torrent et. al. 
allowing for projection of antimicrobial potency accounting 
even for factors such as protein aggregation [77]. ANN also 
has been utilized in the development of four-parameter 
counter propagation (CP) QSAR model of Dunaliellat-
ertiolecta in predicting toxicity for freshwater alga 
Pseudokircheneriellasubcapitata [78] and in screening of 
antibacterial activity of 3-hydroxypyridine-4-one derivatives 
[79].  
 Further, ANN has been useful in QSAR study of 
antitumor activity of acridinone derivatives [80]. Correlation 
of predicted values to the experimental data was 0.9484; 
moreover, the developed model allowed also to identify the 
important factors contributing to the antitumor activity such 
as lipophilicity. Thus, ANNs are not only useful in 
prediction QSARs but also in identifying the role of the 
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specific factors relevant to the activity of interest. This has 
been demonstrated in the earlier published study by Uesawa 
and colleagues in their QSAR analysis of tumor-specificity 
of 1,2,3,4-tetrahydroisoquinoline derivatives, where ANN 
allowed for identification of water-accessible surface area 
and quantum chemical descriptors as factors in estimating 
tumor specificity of compounds [72]. 
 Calculation of certain physicochemical properties before 
synthesizing or purchasing screening library would be 
especially valuable drug discovery phase. Lipophilicity and 
water solubility are properties related to the octanol-water 
partition coefficient, which can be used as rough early 
ADME screens to reject probable development failures as 
early as possible. Clark and co-workers used a data set 
containing 1085 compounds for developing a neural network 
model for octanolpartition coefficient prediction from the 
results of semi empirical AM1 calculations [81] and Eros et 
al. developed neural network (fitting and prediction errors 
were s = 0.48 and s = 0.72 respectively)from database of 625 
molecules, 98% of which are registered API showing high 
structural diversity [82]. Similarly, more recent studies based 
on QSPR ANN model predicted octanol-water partition 
coefficients for 209 chlorinated trans-azobenzene 
derivatives, contaminants in herbicides [83]. QSPR ANN 
model was also used by Noorizadeh et al. to calculate the 
polar surface area of 32 drug molecules [84]. Application of 
ANNs in prediction of API solubility has been demonstrated 
by Louis and colleagues in comparison study of MLR, ANN, 
and SVM methods with ANN yielding the best prediction 
data set [85]. Squared correlation coefficient values were 
0.814, 0.823, and 0.835 for MLR, ANN, and SVM 
respectively. 

 ANNs can also be very useful in predicting chemical 
properties of compounds. Several research groups have 
modeled the normal boiling point of hydrocarbons. 
Predictive neural network models have been published for 
alkanes [86, 87], alkenes [88] and for diverse hydrocarbons 
[89]. As expected, the models typically show good fitting 
and prediction statistics with less than ten simple descriptors. 
Goll and Jursalso applied artificial neural network to predict 
the vapor pressures of hydrocarbons and halohydrocarbons 
from molecular structure [90]. The neural network model 
with 7-3-1 architecture predicted the test set with a root 
mean square error of 0.209 (n =52). Recently, Piliszek and 
colleagues utilized property parameterization model (RM1) 
and density functional theory (DFT) followed by ANN 
analysis in prediction of subcooled vapor pressures and 
classification of 399 polychlorinated trans-azoxybenezenes 
[91]. Yaffe et al. modeled Henry’s law constant using both 
fuzzy ARTMAP and feed forward neural network, the 
heterogeneous data set (n = 495) included compounds with 
oxygen, sulphur and nitrogen containing functional groups 
and halogens [92]. The log Hvalues ranged from 26.72 to 
2.87 and topological descriptors were used as input 
parameters. The average absolute errors for the test set of 74 
members were 0.13 and 0.27 logHunits for fuzzy ARTMAP 
and the feed forward network, respectively. Liu et al. used 
five topological indices as input descriptors for the neural 
network with 5-5-3 architecture in predicting the refractive 
index, density and boiling point for alkenes and the training 
set contained 49 members [88]. Standard error for refractive 

index was found to be 0.13% and 0.4% for density using a 
test set of 16 alkenes.  
 Sild and Karelson developed ANN models for predicting 
dielectric constant and Kirkwood function using a data set of 
155 organic liquids with extensive structural diversity and a 
range of 1.87–46.5 for the dielectric constant [93]. Separate 
models with 5-5-1 configuration were developed for both 
dielectric constant and the Kirkwood function. The average 
prediction error for the dielectric constant was 27.0% and for 
the Kirkwood function 4.1%. Tettech et al. have also 
developed a radial basis forward neural network for 
simultaneous prediction of flash point and boiling point [94]. 
The database contained 400 organic compounds with flash 
points between -60 ºC and 200 ºC. The average absolute 
error for the test set in flash point prediction was 11.9 ºC 
with a 26-36-2 configuration. Suzuki et al. developed an 
ANN model for predicting liquid viscosity at a standard 
temperature of 20 ºC [95] and subsequently, a temperature-
dependent model [96]. The best model showed a root mean 
square error of 0.148 log units for the test set of 79 
compounds and 133 data points.  
 Although ANNs have surprisingly vast number of 
applications, it appears that ANNs may also yield the best 
prediction results in development of QSAR and QSPR 
models when used in combination with other statistical 
methods. For example GA may be implemented in the 
optimization process during the network training in search 
for optimal data training set, such as demonstrated by a 
recent study on indole substitutions that could inhibit HIV-1 
attachment found GA-ANNs the best model in comparison 
with MLR and MLR-ANN [71, 97]. As there are numerous 
potential combinations, further studies are needed on 
development of these statistical models based on the field of 
study and the nature of the problem in consideration.  

3.6. ANNs Application in Proteomics and Genomics 

 Due to their ability to recognize patterns, ANNs are 
suitable for recognition of domains, classification of 
proteins, prediction of enzyme class, sequence classification 
of DNA/RNA and protein. These properties are especially 
useful in the study of the protein structure and function and 
could assist in prediction of protein tertiary structure such as 
a feed forward ANN consisting of six input and six hidden 
units with sigmoid transfer function developedby Murvai et. 
al. for the recognition of domains in protein sequence [98]. 
Cai and colleagues used ANNs for predicting secondary 
protein structure based on pair-coupled amino acid sequence 
and demonstrated that ANNs is a suitable method for 
prediction of the contents of prominent secondary structures 
of the proteins [99, 100]. Further, as ANNsare able to 
recognize the patterns based on the original sequences, it 
becomes possible to group large number of proteins by 
predefined classifications. A hierarchical network named 
PRED-CLASS have been used to classify proteins into four 
classes such as transmembrane, fibrous, globular and mixed 
proteins [101]. The PRED-CLASS trained using 50 protein 
sequences, correctly predicted 371 out of a set of 387 
proteins with an accuracy of 96 percent. Artificial neural 
networks have been applied for predicting the separation of 
peptides in strong anion exchange chromatography. Such 
capability allows researchers to predict peptide separation 
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and assist with required data mining steps such as protein 
identification [102]. 
 Additionally, ANNs enable simulation of drug molecules 
and protein structures and help determine the folding and 
secondary structure of RNA strand [103, 104]. Also, ANN 
based algorithms have been used to identify, characterize and 
predict stabilization center elements from primary structure 
of single proteins and amino acid sequences of homologous 
proteins [105]. The stabilization center elements present in 
proteins stabilize protein structures by preventing their 
decay. The prediction of long chain fatty acid transport 
protein FadL topology [106], prediction of secondary 
structured of clostridialneuroprotein-C fragment [107], 
DNA/RNA and protein sequences analysis [108] are other 
applications where ANN technology has been exploited. The 
neural networks have been employed to predict eukaryotic 
protein phosphorylation sites [109], to recognize active sites 
and to predict enzyme class with high accuracy for novel 
protein structures [110], in peptide design and optimization 
[111], protein localization and sorting prediction [112, 113]. 

3.7. ANNs Application in Pharmacokinetics 

 It has been established that ANNs have wide applications 
in pharmacology, including in pharmacokinetics (PK) and 
pharmacodynamics (PD)—in monitoring multiple PK 
interactions in biological systems and in prediction of PD 
parameters such as clearance rates, protein bound fractions, 
and volume distribution [114, 115]. Due to their computation 
versatility, ANNs have been utilized as analytical tool for 
population pharmacokinetic data analysis and was found 
superior to NONMEM with lesser average absolute errors 
and significantly lesser average prediction errors than 
NONMEM [66, 116]. ANNs have been tested in prediction 
of Hussain et al. tested application of ANNs for prediction of 
PK parameters from those determined in animal studies 
[117]. Further, Ritchel et al. was able to predict human PK 
parameters using data set of physiochemical properties 
(protein binding, partition coefficients, dissociation constant, 
total clearance and volume of distribution) in combination 
with animal PK parameters [118]. Corrigan et al. applied 
neural network to predict gentamicin concentration in a 
general hospital population [119]. Their results indicated that 
neural networks offered some advantages over traditional 
dose prediction methods for gentamicin. Kenji et al. applied 
an ANN simulation to predict the pharmacokinetic of amino 
glycoside antibiotic using physiological measurement in 
patients with severe illness [120]. Recently, Moon et al. 
reported the PD model for dose determination of HMG-Co-
A-reductase inhibitors using ANNs [121]. An ANN model 
for dosing HMG-CoA-reductase inhibitors demonstrated an 
ability to predict appropriate dosing, but a larger sample size 
may be necessary for the development of a more accurate 
model. ANN analysis using standardized data showed 
reasonable predictive performance.  

3.8. Prediction Permeability of Skin and Blood Brain 
Barrier 

 Development of an accurate skin permeability model is 
becoming increasingly important as skin has been more 
utilized in recent development of drug delivery methods. 
Also, the studies on absorption of toxic compounds through 

the skin are scarce with animal skin such as rodent and pig as 
a weak substitute [122]. Similar studies by Agatonovic-
Kustrin et al. and Cheng et al. have published on use of 
ANNs in determining the quantitative structure–permeability 
relationship of penetration across skin or polydimethy-
lsiloxane membranes as the model of skin permeation [123-
126]. A set of over 200 compounds and their maximum 
steady state flux was collected from the literature [127, 128]. 
In Agatonovic-Kustrin et al. study, twelve of 42 molecular 
descriptors were selected for ANN modeling of maximum 
steady-state flux by the use of genetic algorithm, that include 
molecular shape and size, inter-molecular interactions, 
hydrogen-bonding capacity of drugs, and conformational 
stability [123]. For the 12-descriptor neural network model, 
the training set relative means square error was 0.36 and the 
testing set relative mean square error was 0.59. When the 
prediction power was evaluated using an external prediction 
set, the relative mean square error was 0.60, indicating that 
the quality of the model would be ensured. Chen et al. study 
also confirmed the suitability of ANNs for prediction of skin 
permeability based on molecule descriptors such as 
molecular weight and partial charge [123]. 

 Another method for predicting the human skin 
permeability (log K p) of compounds has been developed 
based on three-dimensional molecular structure using a 
combination of molecular orbital (MO) calculations and 
ANN. For 92 compounds that was listed in the Flynn’s data 
[129], their molecular descriptors, such as dipole moment, 
polarizability, sum of charges of nitrogen and oxygen atoms 
(sum (N,O)), and sum of charges of hydrogen atoms bonding 
to nitrogen or oxygen atoms (sum (H)), were calculated from 
MO calculations. The correlation between these molecular 
descriptors and log Kpwas examined using a feed-forward 
back-propagation neural network. To improve the 
generalization capability of a ANN, the network was trained 
with input patterns given 5% random noise [130]. The neural 
network model with a configuration of 4-4-1 for input, 
hidden, and output layers was much superior to the 
conventional multiple linear regression model in terms of 
RMS errors (0.528 vs. 0.930). Moreover, a ‘leave-one-out’ 
cross-validation revealed that the neural network model 
could predict skin permeability with a reasonable accuracy 
(predictive relative mean square error of 0.669). The ANN 
modeling of skin permeability for 45 compounds based on 
MO-calculated descriptors has been performed by Fu et al, 
with external validation was conducted for eight compounds, 
the ANN model gave a mean prediction error of 2.6%, 
whereas the prediction error of the multiple linear regression 
model with the same descriptors was 32.09% [131]. 
 Degim et al. [132] analyzed skin permeability of 40 
compounds by an ANN and compared its predictability with 
the multiple linear regression model obtained by Pugh et al. 
[114]. According to the linear model of Pugh et al., the 
partial charges of the penetrants, their molecular weight, and 
their calculated octanol–water partition coefficient log Poct/w 
were used as molecular descriptors. While the linear 
equation gave a regression coefficient (r2) of 0.672, the ANN 
produced log Kpvalues that correlated well with the 
experimental ones (r2 = 0.997). In addition, they 
experimentally determined human skin permeability for 
some compounds that have not been previously investigated, 
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and found that their experimental data can be predicted well 
from the ANN model developed. 
 The ability of ANNs to recognize and predict patterns 
may be applied in studying the blood-brain distribution 
(BBD) of a compound, which is commonly expressed as 
logarithmic function of the ratio of brain concentration to 
blood concentration of a compound. Experimental values of 
each concentration, however, are time consuming and 
expensive to obtain [133]. Therefore, reliable prediction 
model is necessary, which is possible from the molecular 
structure of a compound and by QSAR/QSPR models.  
 Numerous models have been developed and published 
for prediction of BBD. Narayan and Gunturi have developed 
MLR method based model for BBD prediction by four 
descriptors of 88 compounds (r=0.8638, q=0.8479 and 
SE=0.3929) [134]. In 2006, improved ANNs have been built 
based on chemical descriptors of the molecules—
Katritzkyet.al. usedfive descriptors (r2=0.781 and s=0.123) 
and Garg and Verma used seven descriptors (for training 
r=0.90 and for testing r=0.89) [135, 136]. A benchmark of 
predictive accuracy in the area of QSAR models for blood-
brain barrier (BBB) permeation prediction was established 
by Konovalov et al. in developing a predictive log BB-
QSAR model based on MLR method [137]. Afterward, Yan 
et al. carried out comparison study involving over 300 
compounds by 19 global molecular descriptors, eight shape 
descriptors, 88 2D autocorrelation vectors, and 1024 3D 
property weighted RDF descriptors using MLR, SVM, and 
ANN [138]. ANN was found to have similar prediction 
abilities as MLR and SVM.  

3.9. Diagnosis of Disease 

 ANNs have been applied in the diagnosis based on 
clinical chemical data of many diseases—cancers [139-141]; 
early diagnosis of lupus erythmatosus [142]; diagnosis of 
acute myocardial infarction [143, 144]; prediction of 
cardiovascular risk [145]; prediction of the development of 
pregnancy-induced hypertensive disorders [146]; diagnosis 
of Alzheimer’s disease [147]; diagnosis of benign focal liver 
disease [148]; prediction of metabolic syndrome [149]; 
AIDS research and diagnosis [150]; Parkinsonian tremor 
[151]; urologic oncology [152]; diagnosis of pigmented skin 
lesions [153]; lung nodule detection [154]; prediction of 
outcome in epilepsy surgery [155]; and in assisting in 
making diagnosis decisions in emergency room [156]. 
In addition, ANNs have also been used to predict responses 
to pharmacotherapy. Cases in point, ANNs have been used 
to predict the response to hormonal treatment in metastatic 
breast cancer [157]. They can be used to predict the clinical 
outcome for individual patients. In contrast to conventional 
methods, the level of confidence for the predictions can 
reach 90% and more using ANNs. Such predictive power 
will be a big step towards individualized therapy in the 
future.  

4. CONCLUSIONS AND FUTURE PERSPECTIVES 

 The application of ANN in medical decision making has 
been immensely successful especially as it applies to disease 
diagnosis, classification and modeling. The ANNs are newly 
developed strategies as an alternative to conventional 

modeling techniques. Applications of ANNs in the 
pharmaceutical field have been of increased interest due to 
their ability to model process that cannot be adequately 
represented using classical statistical methods. The ANNs do 
not need special computer as neural nets are described using 
mathematical models and implemented using ordinary 
computer software. Training time for networks is long but 
considerably advantageous. ANNs are an improvement over 
response surface methodology because they allow 
incorporation of literature and experimental data to solve 
common problems in pharmaceutical industry. It is capable 
of solving problems involving complex pattern recognition, 
which is advantageous in pharmaceutical product develo-
pment. The use of artificial neural network in pharmaceutical 
research drug discovery is growing at a fast rate with very 
promising prospects. 
 Due to their capacity to learn, recognize patterns, and 
generalize, ANNs are a great tool in data analysis and 
modeling. The scope of current uses that ranges from spacial 
perceptions to chemical properties, activity, diagnosis and 
toxicology indicates the true potential of ANNs in analyzing 
the data and making predictions. This exciting versatility 
allows ANNs be utilized almost in any area of science 
requiring analysis of large, variable, and/or multivariate data; 
thus, applications of ANNs are expected to continue 
expanding into many more disciplines.  

ABBREVIATIONS 

ADME = absorption, distribution, metabolism, and 
excretion 

ANNs = Artificial neural networks 

API = active pharmaceutical ingredient 

GA = generic algorithms 

HPLC = high performance liquid chromatography 

MLR = multiple linear regression 

PE = processing units 

PD = pharmacodynamics 

PK = pharmacokinetics 

RDF = radial distribution function 

RMS = root mean squared error 

RSM = response surface methodology 

QSAR = Quantitative Structure-Activity 
Relationships 

QSPR = Quantitative Structure-Property 
Relationship 

SRR = = Structure Retention Relationship 

SVM = support vector machine 
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